
Accepted Manuscript

Operator ranges and spaceability

Derek Kitson, Richard M. Timoney

PII: S0022-247X(11)00048-5
DOI: 10.1016/j.jmaa.2010.12.061
Reference: YJMAA 15571

To appear in: Journal of Mathematical Analysis and Applications

Received date: 8 July 2010

Please cite this article in press as: D. Kitson, R.M. Timoney, Operator ranges and spaceability,
J. Math. Anal. Appl. (2011), doi:10.1016/j.jmaa.2010.12.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.



OPERATOR RANGES AND SPACEABILITY

DEREK KITSON AND RICHARD M. TIMONEY

Abstract. Recent contributions on spaceability have overlooked
the applicability of results on operator range subspaces of Banach
spaces or Fréchet spaces. Here we consider general results on space-
ability of the complement of an operator range, some of which we
extend to the complement of a union of countable chains of op-
erator ranges. Applications we give include spaceability of the
non-absolutely convergent power series in the disk algebra and of
the non absolutely p-summing operators between certain pairs of
Banach spaces. Another application is to ascent and descent of
countably generated sets of continuous linear operators, where we
establish some closed range properties of sets with finite ascent and
descent.

Dedicated in memory of Nigel Kalton.

1. Introduction

The concept of spaceability of a subset of a topological vector space
was first used in [13]. (If X is a topological vector space and S ⊂ X,
then S is called spaceable if there is a closed infinite dimensional linear
subspace W ⊂ X with W ⊂ S ∪ {0}.) It was highlighted further in
[1], where it was pointed out that highly non-linear and apparently
pathological sets can often have the property. The term ‘spaceable’
was introduced in [2] (see also [15]). There have been several further
works on this notion (for example [3]) and on the weaker notion of
lineability (which omits the closure condition on the subspace).

One of our results will be an improvement (Theorem 4.1) on recent
results of Botelho et. al. [5, 6], which considered a problem raised in
[22] about lineability of the complement B(X, Y ) \ Πp(X, Y ) of the p-
summing operators between Banach spaces X and Y (1 ≤ p < ∞).
We can establish spaceability of the intersection of these complements,
under more general conditions on X and Y .

The realisation that the notion of operator range is very useful seems
to be due to Dixmier [9, 10] for ranges of operators on Hilbert space.
See also Fillmore & Williams [12].
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Definition 1.1. A linear subspace Y of a Banach space X is called a
(Banach) operator range if there is a Banach space Z and a bounded
linear operator T : Z → X with T (Z) = Y .

Operator ranges generalise closed linear subspaces, but yet they still
have surprisingly many of the properties of closed subspaces.

One may extend the notion of operator range by allowing X and Z
to be Fréchet spaces (completely metrizable locally convex topological
vector spaces) or even further to be F -spaces (completely metrizable
topological vector spaces). Alternatively, one may restrict the notion
by imposing restrictions on Z (or on T ). Dixmier considered Hilbert
space operators, for example. If we assume the operator T is injective
(as we may do by replacing Z by Z/ ker T and T by the induced map
on the quotient), then the (complete) space Z is uniquely determined
up to isomorphism by Y . (If Ti : Zi → X, i = 1, 2, are injective con-
tinuous linear operators with T1(Z1) = T2(Z2) then T−1

2 T1 has closed
graph. Hence T−1

2 T1 : Z1 → Z2 is an isomorphism.) We could therefore
consider ‘Hilbert operator ranges’, or ‘Fréchet operator ranges’ in ad-
dition to Banach operator ranges (by taking Z in the appropriate class
and generalising to allow X to be Fréchet).

Our proof of Theorem 4.1 relies on a technique of Davis & Johnson [8]
(who showed that S = K(X, Y ) \⋃

1≤p<∞ Πp(X, Y ) is nonempty when

X is a super-reflexive Banach space and X, Y are infinite dimensional)
and on results of Drewnowski [11] (including Proposition 2.4 below).
Our notation is that B(X, Y ) denotes the bounded linear operators
from X to Y , K(X, Y ) denotes the (closed ideal of) compact operators
in B(X, Y ) and Πp(X, Y ) the (absolutely) p-summing operators (in
B(X, Y )).

Our second main application (Theorem 5.6) concerns sets of opera-
tors on a Fréchet space X with finite ascent and descent. These notions
were considered in [20] for arbitrary sets of linear operators on X (not
necessarily commuting) and [20] established an algebraic direct sum
decomposition of X into a generalised kernel and range space (given
finiteness of the ascent and descent). It seems much more desirable to
have a topological direct sum decomposition of X, which we show in
Theorem 5.6 for countably generated sets of operators.

While there are counterexamples showing that many of our results
become false if the countability assumption is removed, there are nev-
ertheless positive results in the literature (such as [3, Theorem 3] on
everywhere divergent Fourier series) which can be stated as spaceabil-
ity of the complement of the union (not linear span) of uncountably
many operator ranges. We think it would be of interest to be able to
capture such results in a general theorem.
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2. Background

We will consider spaceability of the complement of a (Fréchet) op-
erator range, and later extend some of the results to the complement
of a union of operator ranges. Perhaps the most basic case is that of a
closed subspace.

Our proof for Theorem 2.2 requires the following and, since we do
not have a reference, we include a proof (using a simpler argument than
our original, for which we thank N. Kalton).

Lemma 2.1. If X is an infinite dimensional Fréchet space (over the
field K) such that the weak topology coincides with the Fréchet topology,
then X is isomorphic to KN (with the product topology).

Proof. As the topology of X is Fréchet, hence there is a countable basis
of zero neighbourhoods in X, it must be that there are countably many
linear functionals determining the weak topology. That means that
the dual space X ′ of X must have countable algebraic dimension. Let
{φ1, φ2, . . .} be an algebraic basis for X ′ and consider the map π : X →
KN given by π(y) = (φj(y))j∈N, which is linear, continuous, injective, a
homeomorphism onto its range since X has the weak topology, hence
π(X) is complete and closed in KN. By the Hahn-Banach theorem and
linear independence of the φj , π(X) = KN. �

Theorem 2.2 (Wilansky, Kalton). If X is a Fréchet space and Y ⊂ X
is a closed linear subspace, then the complement X \ Y is spaceable if
and only if Y has infinite codimension.

Proof. It is clear that spaceability of X \Y implies infinite codimension
of Y . Also, as finite dimensional Y ⊂ X are complemented, we need
only consider the situation where both Y and the quotient X/Y are
infinite dimensional Fréchet spaces.

In the Banach space case Wilansky [25, p. 12] has a short argument
with basic sequences to prove the result. There is also a remark on
[25, p. 12] (ascribed to Kalton) that the same proof works for Fréchet
spaces X, as long as the case where Y is a minimal space is excluded.
In the absence of a complete reference, we provide some details.

Bessaga & Pelczynski [4] is one source for the existence of basic
sequences in Fréchet spaces, but something more specific is needed for
the argument.

We first consider the situation where the (subspace) topology on Y
coincides with the weak topology of Y . In this case, by Lemma 2.1,
Y ∼= KN, the Hahn-Banach theorem implies that Y is complemented in
X, and then the kernel of the projection is a closed subspace contained
in (X \ Y ) ∪ {0}. So we have spaceability of X \ Y in this case.

Assume then that the topology of Y is not the same as the weak
topology. As the topology of Y has a zero neighbourhood basis of
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closed convex sets (the closed unit balls in continuous seminorms), it
has a zero neighbourhood basis of weakly closed sets.

There is a weakly null net (yα)α in Y which is not strongly null.
Hence a strong neighbourhood U of the origin so that {α : yα /∈ U} is
cofinal, and we may pass to a subnet and assume yα /∈ U for all α. By
a result of Kalton [17, Theorem 3.2], there is a basic sequence (yn)∞n=1

in Y that is contained in the complement of U . This basic sequence is
then bounded away from 0, which means that it is known as a ‘regular’
basic sequence.

Applying the considerations above to the quotient X/Y , we can con-
clude that X/Y contains a basic sequence (xn +Y )∞n=1 (not necessarily
a regular one). We can alternatively reach this conclusion via [4].

From Kalton [17, Lemma 4.3], it follows that there are strictly pos-
itive scalars (tn)∞n=1 such that (yn + tnxn)∞n=1 is a basic sequence in
X. Now the argument of [25] can be used. Let Z denote the closed
linear span of (yn + tnxn)∞n=1. If x ∈ Z ∩ Y , then there are scalars
λn with x =

∑∞
n=1 λn(yn + tnxn). Considering the quotient, we have

0 = x + Y =
∑∞

n=1 λntn(xn + Y ) and so λn = 0 (∀n). Thus x = 0 and
Z ∩ Y = {0}. We have shown that X \ Y is spaceable. �

Remark 2.3. A counterexample of Kalton [18] shows that there is an
(infinite dimensional) F -space X with a one-dimensional subspace Y
that is contained in all closed infinite dimensional subspaces of X. Thus
X \Y is certainly not spaceable, and we cannot generalise Theorem 2.2
to the case of F -spaces X.

Proposition 2.4. Let X and Z be Fréchet spaces and T : Z → X a
continuous linear operator with range Y = T (Z) not closed. Then the
complement X \ Y is spaceable.

This is shown by Drewnowski [11] (see Theorem 5.6 (c) and the
reformulation of it). We use a variation on the proof from [11] in the
proof of Theorem 3.3 below.

As an application of the above proposition, we mention the following
answer to a question posed to us informally by R. M. Aron. This
question led to the current work and we would like to acknowledge the
motivation provided by his question.

Example 2.5. The complement in the disk algebra A(D) of the abso-
lutely convergent power series is spaceable.

Proof. Consider the map T : �1 → A(D) given by T ((an)∞n=1)(z) =∑∞
n=0 an−1z

n (for z ∈ D). The range T (�1) is the space of absolutely
convergent power series, which is well-known to be a proper subspace
(see [16, p. 122] or [14, 26, 21]). As T (�1) is dense in A(D) (since it
contains the polynomials), it is not closed. Hence we can apply Propo-
sition 2.4. �
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Remark 2.6. Clearly there are many similar examples of dense sub-
spaces of Banach or Fréchet spaces that are complete in their own
stronger metric where we can also invoke Proposition 2.4.

3. Countable unions

We now pass from considering the range of a single continuous linear
operator to the (algebraic) linear span of countably many such opera-
tors.

Proposition 3.1. Let Zn (n ∈ N) and X be Fréchet spaces and
Tn : Zn → X continuous linear operators. Let Y be the linear span
of

⋃
n∈N

Tn(Zn).

If Y is closed, then there exists n ≥ 1 so that Y = span
(⋃n

j=1 Tj(Zj)
)
.

Proof. Let Wn =
⊕n

j=1 Zj with the product topology (so that Wn is a

Fréchet space) and define Sn : Wn → X by Sn((zj)
n
j=1) =

∑n
j=1 Tj(zj).

Then Y =
⋃∞

n=1 Sn(Wn). By the Baire category theorem, there is
n ≥ 1 so that Sn(Wn) is of second category in Y . By [19, Theorem
11.4], Sn(Wn) = Y . �
Remark 3.2. Proposition 3.1 cannot be extended to uncountable sets
of operators Tα : Zα → X.

For example, consider an arbitrary linear subspace Y of a Banach
space X such that there exists a closed subspace N ⊂ X with Y ∩N =
{0}, Y + N = X (for instance Y could be a non-closed hyperplane in
X, and N one dimensional). Then Y is the union of its 1-dimensional
subspaces. For each y ∈ Y we could take Ty to be the linear map from
the scalars to X given by Ty(λ) = λy. If we add the inclusion map
iN : N ↪→ X, we get an uncountable set {Ty : y ∈ Y } ∪ {iN} such that
the linear span of their ranges is X but no finite subset of the ranges
spans X.

Theorem 3.3. Let Zn (n ∈ N) be Banach spaces and X a Fréchet
space. Let Tn : Zn → X be continuous linear operators and Y the
linear span of

⋃
n∈N

Tn(Zn).
If Y is not closed in X, then the complement X \ Y is spaceable.

Proof. We retain the notation Sn : Wn → X from the proof of Propo-
sition 3.1. We take the �1 norm on Wn =

⊕n
j=1 Zj.

First Y must have infinite codimension. Otherwise Y has a finite
dimensional complement F in X. Let q : X → X/F be the quotient
map. Then the union of the ranges of q ◦Sn (for n ∈ N}) is all of X/F
(hence closed). Using Proposition 3.1, there is n with Y = Sn(Wn). As
a (Fréchet) operator range with closed complementary subspace F , Y
must be closed.

Next, it is sufficient to deal with the case where X is separable. Since
Y is not closed there is a sequence (yk)

∞
k=1 with limk→∞ yk = x 
∈ Y .
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Let X̃ be the closed linear span in X of {x} ∪ {yk : k ∈ N}, W̃n =

S−1
n (X̃), S̃n the restriction of Sn to W̃n, and Ỹ = Y ∩ X̃. We work

now with the Banach spaces W̃n and the sequence S̃n : W̃n → X̃ of
continuous operators with Ỹ =

⋃∞
n=1 S̃n(W̃n) an increasing union of

operator ranges. Of course X̃ is separable and Fréchet.
We know that Ỹ is not closed because of the sequence (yk)

∞
k=1 and so

Ỹ must have infinite codimension in X̃ (by the argument given above
for Y ).

If there are infinitely many n such that S̃n(W̃n) is closed in X̃, say
n1 < n2 < · · · , then we can write each S̃nj

(W̃nj
) \ {0} as a count-

able union
⋃∞

k=1 Cj,k of closed convex subsets of X̃. (To see this use
translates of open convex neighbourhoods of the origin in the subspace
to cover the set, taking care that 0 is not in the closures of any of
these translates. Then invoke the Lindelof property to get a countable
subcover.) Thus

Ỹ \ {0} =
∞⋃

k=1

S̃nj
(W̃nj

) \ {0} =
⋃
j,k

Cj,k

is a countable union of closed convex subsets of X̃. Since Ỹ is also
of infinite codimension in X̃, [11, Corollary 5.5] implies that X̃ \ Ỹ is

spaceable. Hence, using X̃ \ Ỹ = X̃ ∩ (X \ Y ), in this case X \ Y is
spaceable.

Thus we are left with the case where there are at most finitely many
n such that S̃n(W̃n) is closed. By discarding that finite number of n
and renumbering, we may assume that all fail to be closed.

Consider the unit ball Un in W̃n. Then

Yn = span
(
S̃n(Un)

)
=

⋃
r>0

rS̃n(Un)

is not barrelled (in the induced topology from X̃). This follows by

an argument of Drewnowski [11, p. 388]. Since S̃n(Un) is a closed

absorbing balanced subset of Yn, if Yn were barrelled, S̃n(Un) would
contain a zero neighbourhood in Yn. By completeness of W̃n, then
S̃n(W̃n) = Yn and S̃n is open (see [24, Lemma III.2.1]). So S̃n induces a

linear isomorphism W̃n/ ker S̃n onto Yn. So Yn = S̃n(W̃n) is completely
metrizable, hence closed in X̃ — a contradiction.

We observe next that Yn\{0} has a countable cover by closed convex
subsets of X̃. Via the Lindelof argument mentioned above (and given in

[11, p. 398]), we can write X̃\{0} =
⋃∞

k=1 Ak where Ak are convex open

sets in X̃ with 0 /∈ Āk (∀k). Then Yn\{0} =
⋃

j,k∈N

(
Āk ∩

(
jS̃n(Un)

))
.

By the constructions involved, the reader may verify that we have
S̃n(Un) ⊂ S̃n+1(Un+1) and so Yn ⊂ Yn+1.
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Notice that the union Y∞ =
⋃

n Yn is a linear subspace of X̃. As

each Yn is not barrelled, each one has infinite codimension in X̃ ([23]).
We claim that Y∞ has infinite codimension also. If not consider a finite
dimensional subspace F ⊂ X̃ with F∩Y∞ = {0}, F+Y∞ = X̃, and take

the quotient map q : X̃ → X̃/F . Then, by the Baire category theorem,
there must be n so that q(Yn) is a subspace of second category in X̃/F .
As

q(Yn) =
⋃
k∈N

k q
(
S̃n(Un)

)
⊂

⋃
k∈N

k q(S̃n(Un)),

q(S̃n(Un)) must have nonempty interior in X̃/F and so q ◦ S̃n is sur-
jective by [24, Lemma III.2.1]. Thus Yn = Y∞, but this contradicts
infinite codimension of Yn.

As Y∞ has infinite codimension, there is an infinite dimensional sub-
space of X̃ intersecting Y∞ only in 0. As Y∞ \ {0} =

⋃
n(Yn \ {0})

can be expressed as a countable union of closed convex subsets of X̃,
we can invoke [11, Corollary 5.5] to conclude that X̃ \Y∞ is spaceable.
Since

X̃ \ Y∞ ⊂ X̃ \ Ỹ = X̃ ∩ (X \ Y ),

we can see that X \ Y must be spaceable. �

Remark 3.4. It would be interesting to know if the above result can be
extended to allow Zn to be Fréchet spaces.

4. Application to non p-summing operators

Motivated by the study of lineability, conditions were given in [22]
on X and Y sufficient to ensure lineability of B(X, Y ) \Π1(X, Y ). The
question posed in [22, Problem 2.4] was whether super-reflexivity of
X (and infinite dimension of Y ) is sufficient to ensure lineability of
B(X, Y ) \ Πp(X, Y ) for each p. Botelho et. al. [5, 6] obtained posi-
tive answers using conditions relating to existence of subspaces of X
or of Y with unconditional basis (and required that the subspace be
complemented in the case of X). In fact they obtained a subspace in
(K(X, Y ) \ Πp(X, Y )) ∪ {0} vector space isomorphic to �1 (hence of
uncountable dimension) in [6].

We improve on these results (and answer [22, Problem 2.4]) by es-
tablishing spaceability, and indeed a single infinite dimensional closed
subpace valid for all p.

Theorem 4.1. Let X and Y be infinite dimensional Banach spaces
and assume that X is super-reflexive. Then

S = K(X, Y ) \
⋃

1≤p<∞
Πp(X, Y )

is spaceable (as a subset of K(X, Y )).
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Proof. Let πp(·) denote the p-summing norm (in which Πp(X, Y ) is
known to be a Banach space). It is also known that ‖s‖ ≤ πq(s) ≤ πp(s)
and Πp(X, Y ) ⊆ Πq(X, Y ) for s ∈ Πp(X, Y ), p < q < ∞. Since
K(X, Y ) is closed in the operator norm, it follows that Πp(X, Y ) ∩
K(X, Y ) is closed in Πp(X, Y ), hence a Banach space in the norm πp(·).
Note that Πp(X, Y ) ∩ K(X, Y ) is an operator range (via the inclusion
map) in K(X, Y ).

In the proof of [8, Theorem], it is shown that the norm induced by
Πp(X, Y ) on the finite rank operators is not equivalent to the operator
norm (under the given hypothesis on X) for 1 ≤ p < ∞. This implies
that Πp(X, Y ) ∩ K(X, Y ) is not closed in K(X, Y ).

As
⋃

1≤p<∞
Πp(X, Y ) ∩ K(X, Y ) =

⋃
p∈N

Πp(X, Y ) ∩ K(X, Y )

is a countable union of increasing operator ranges, Proposition 3.1 im-
plies that the union is not closed and the result then follows from
Theorem 3.3. �

Note that the same proof applies if we assume instead that X does
not contain �n

1 uniformly for large n (in view of the proof of [8, Theorem
B]).

One might ask for conditions on X and Y so that

Πq(X, Y ) \ Πp(X, Y ) ⊂ Πq(X, Y )

is spaceable (for given p < q), but observe that, by Proposition 2.4,
this is always true if Πp(X, Y ) fails to be closed in Πq(X, Y ).

The referee has kindly pointed out that recent considerations of
Botelho, Pellegrino and Rueda [7] are relevant to seeking further re-
sults. We note that [5, §1] provides an example of a proper operator
ideal in B(X) which has finite codimension in B(X) (with X heredi-
tarily indecomposable).

The key idea we need from [7] is that the techniques in [8] can be
rephrased in terms of the ideal A(X, Y ) in B(X, Y ) of approximable
operators, defined as the closure of the finite ranks in the operator
norm. Assume I(X, Y ) is a nonzero operator ideal in B(X, Y ) complete
in its own intrinsic norm ‖ · ‖I and satisfying ‖x‖ ≤ ‖x‖I for x ∈
I(X, Y ). Then I(X, Y ) must contain the finite ranks. In [7] it is
observed that the norm ‖ · ‖I is equivalent to ‖ · ‖ on finite ranks if and
only if A(X, Y ) ⊆ I(X, Y ). It follows from Proposition 2.4 then that
if A(X, Y ) 
⊂ I(X, Y ), then A(X, Y )\I(X, Y ) is spaceable in A(X, Y )
(or in K(X, Y )).

In [7, Corollary 2.6] it is shown that if X is infinite dimensional and Y
has cotype cot(Y ) > 2, then A(X, Y ) 
⊂ Πr(X, Y ) for 1 ≤ r < cot(Y ).
As in the proof of Theorem 4.1, it follows that for X and Y satisfying
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these conditions

A(X, Y ) \
⋃

1≤p<cot(Y )

Πp(X, Y )

is spaceable in A(X, Y ).

5. Ascent and descent of countable sets

We now recall some notation and terminology from [20]. If A is
a nonempty subset of the (continuous) linear operators on a (Fréchet)
space X, N(A) =

⋂
T∈A ker T and R(A) = span

⋃
T∈A T (X). For r ∈ N,

Ar denotes the set of all products a1a2 · · ·ar of elements a1, a2, . . . , ar ∈
A, while A0 means the singleton set containing the identity operator.
The ascent α(A) of A is the smallest r ≥ 0 such that N(A) ∩R(Ar) =
{0}, taken to be ∞ if no such r exists. The descent δ(A) is the smallest
r ≥ 0 with N(Ar) + R(A) = X. It is shown in [20] that finiteness of
both α(A) and δ(A) implies equality α(A) = δ(A) and also that there
is an algebraic direct sum decomposition X = N(Ar) ⊕ R(Ar) (where
R(Ar) need not be closed, as the following example shows).

Example 5.1. We can modify the construction in Remark 3.2 to exhibit
uncountable sets A of operators so that α(A) = δ(A) = 1 but R(A) is
not closed.

As in Remark 3.2, we take an arbitrary linear subspace Y of a Banach
space X such that there exists a closed N ⊂ X with Y ∩ N = {0},
Y + N = X. Consider bounded linear operators Tφ,y : X → X with
φ ∈ X∗, y ∈ Y given by Tφ,y(x) = φ(x)y.

Now A = {Tφ,y : y ∈ Y, φ ∈ N⊥} is a collection of bounded operators
on X which has N(A) = N and R(A) = Y .

In particular, if we take Y ⊂ X to be a non-closed hyperplane, and
N the span of a single nonzero x ∈ X \Y , then A has α(A) = δ(A) = 1
(which means N(A) ∩ R(A) = {0}, N(A) + R(A) = X, {0} 
= N(A)
and R(A) 
= X). However R(A) is not closed.

Proposition 5.2. Let Wn, Zn (n ∈ N) and X be Fréchet spaces. Let
Sn : Wn → X and Tn : Zn → X be continuous linear operators. Let
Y1 be the linear span of

⋃
n∈N

Sn(Wn) and let Y2 be the linear span of⋃
n∈N

Tn(Zn). If Y1 ∩ Y2 = {0} and Y1 + Y2 = X then Y1 and Y2 are
both closed.

Proof. By Proposition 3.1 (applied to operators Sj and Tj) there must

be finite sets {S1, . . . , Sn} and {T1, . . . , Tm} so that X = Ỹ1 + Ỹ2

where Ỹ1 is the linear span of
⋃n

j=1 Sj(Wj) and Ỹ2 is the linear span of⋃m
j=1 Tj(Zj). Let W =

⊕n
j=1 Wj and Z =

⊕m
j=1 Zj. We now consider

S : W → X given by S(x1, x2, . . . , xn) =
∑n

j=1 Sj(xj) and T : Z → X

given by T (x1, x2, . . . , xm) =
∑m

j=1 Tj(xj). Note that the range of S is

Y1 and the range of T is Y2. We may assume S and T are injective (by
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passing to quotient spaces). Now the map (w, z) �→ S(w) + T (z) is a
bijective linear operator from W ⊕ Z onto X and hence has a contin-
uous inverse. It follows that S(W ) = Y1 is closed and T (Z) = Y2 is
closed. �
Proposition 5.3. Consider a (nonempty) set A of continuous linear
operators on a Fréchet space X. If A is countable with α(A) < ∞ and
δ(A) < ∞ then R(Ak) is closed for k ≥ min(α(A), δ(A)).

Proof. From [20], α(A) = δ(A) and we let r = α(A). Moreover,
R(Ak) = R(Ar) for all k > r. We have an algebraic direct sum
N(Ar) ⊕ R(Ar) = X which satisfies the hypothesis of Proposition 5.2.
Hence R(Ar) must be closed. �
Lemma 5.4. Let X be a (Hausdorff) locally convex topological vector
space, A a nonempty set of continuous linear operators on X and Āwot

the closure of A in the weak operator topology (that is, the topology
generated by the seminorms T �→ φ(Tx) with x ∈ X and φ ∈ X∗). If
A ⊆ B ⊆ Āwot, then α(A) ≤ α(B) and δ(A) ≥ δ(B).

Proof. First, for all k ∈ N, N(Ak) ⊇ N(Bk) and R(Ak) ⊆ R(Bk). In
fact N(Ak) = N(Bk), since if there is x ∈ N(Ak) \ N(Bk), then there
are b1, b2, . . . , bk ∈ B with b1b2 · · · bkx 
= 0. Choosing φ ∈ X∗ with
φ(b1b2 · · · bkx) 
= 0, we can show by induction that

φ(b1 · · · bjaj+1 · · ·akx) = 0 (0 ≤ j ≤ k),

a contradiction.
If r = α(B) < ∞ then N(B)∩R(Br) = {0}. Hence N(A)∩R(Ar) =

{0} and so α(A) ≤ r. If s = δ(A) < ∞ then N(As) + R(A) = X.
Hence N(Bs) + R(B) = X and so δ(B) ≤ s. �

The following example shows that we cannot always expect equality
in Lemma 5.4.

Example 5.5. Let X = �2 and denote by (ej)j∈N the usual basis in �2.
Let v be the bounded operator given by v(e1) = 0 and v(en) = e2n−3

for n ≥ 2. Define bounded operators bk by bk(en) = 0 if n 
= 2 and

bk(e2) = (1/2k)
∑k

j=1 e2j . Then let ak = bk + v and A = {ak : k =

1, 2, . . .}. We claim that A has finite ascent but the norm closure Ā of

A has infinite ascent. Note that ‖bk‖ =
√

k/2k and so bk → 0. Hence
ak → v and v ∈ Ā. Now if x =

∑∞
j=1 λjej ∈ �2 then

akx = bk(x) + v(x) = λ2
1

2k

k∑
j=1

e2j +

∞∑
j=2

λje2j−3.

We have ker ak = Ce1 for all k and N(A) = Ce1. Suppose e1 ∈ R(A).
Then e1 = ak1x1 + · · · + aknxn for some k1, . . . , kn ∈ N and some
x1, . . . , xn ∈ X. We assume k1 < k2 < . . . < kn. Writing xi =
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∑∞
j=1 λi,jej and considering coefficients of e1 we obtain λ1,2+· · ·+λn,2 =

1. However, looking at the even terms we obtain the equation

λ1,2
1

2k1

k1∑
j=1

e2j + · · ·+ λn,2
1

2kn

kn∑
j=1

e2j = 0.

The resulting system of equations can be expressed in the following
form,

⎛
⎜⎜⎝

1/2k1 1/2k2 · · · 1/2kn

0 1/2k2 · · · 1/2kn

...
. . .

. . .
...

0 · · · 0 1/2kn

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1,2

λ2,2
...

λn,2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎠ .

Solving this system of equations we find that λ1,2 = · · · = λn,2 = 0
which is a contradiction. Hence e1 /∈ R(A) and so N(A)∩R(A) = {0}.
As N(A) 
= {0}, this implies that α(A) = 1. The norm closure Ā of A
includes v and v(e2) = e1. Thus N(Ā) = N(A) has nonzero intersection
with R(Ā) and so α(Ā) > 1. In fact, e1 ∈ vk(�2) ⊆ R((Ā)k) for all
k ∈ N and so N(Ā) ∩ R((Ā)k) 
= {0}. Hence α(Ā) = ∞.

In our discussion below, an ‘algebra’ of operators is not required to
have an identity.

Theorem 5.6. Let A be a countable collection of continuous linear
operators on a Fréchet space X.

Let A denote the weak operator topology closure of the algebra gen-
erated by A and suppose A ⊆ B ⊆ A.

If A has finite ascent and finite descent and r denotes their common
value then

i) B has finite ascent and finite descent with r = α(B) = δ(B);
ii) N(Ar) = N(Br) and R(Ar) = R(Br);
iii) X = N(Br) ⊕ R(Br) is a topological direct sum decomposition of

B-invariant subspaces.

Proof. We know X = N(Ar)⊕R(Ar) (algebraically). Since A is count-
able, R(Ar) is closed by Proposition 5.3 and hence we have a topological
direct sum (as N(Ar) is also closed).

Let 〈A〉 denote the algebra generated by A (which is the linear span
of

⋃∞
j=1 Aj). Note that R(Ak) = R(〈A〉k) and N(Ak) = N(〈A〉k) for all

k. As in the proof of Lemma 5.4, N(〈A〉k) = N(Bk) (all k).
Clearly R(Ar) ⊆ R(Br). By closure of R(Ar), if there is x ∈

R(Br) \ R(Ar), then there is φ ∈ X∗ with φ(x) = 1 but φ(y) = 0
for all y ∈ R(Ar) = R(〈A〉k). Thus for c1, c2, . . . cr ∈ 〈A〉 and z ∈ X,
φ(c1c2 · · · crz) = 0. By induction we conclude φ(b1 · · · bjcj+1 · · · crz) = 0
for b1, . . . , bj ∈ B, cj+1, . . . , cr ∈ 〈A〉, 0 ≤ j ≤ k. As x is a finite lin-
ear combination of terms b1b2 · · · brz, this gives a contradiction. Hence
R(Br) = R(Ar) is closed.
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Thus X = N(Br) ⊕ R(Br) and so B has finite ascent and finite
descent (at most r). From Lemma 5.4 α(B) = δ(B) = α(A) = r.
Finally, it is evident from their definitions that N(Br) and R(Br) are
B-invariant. �

Note that the theorem applies in particular to the norm closure B of
a countable set A of bounded operators on a Banach space X, if A has
finite ascent and descent. Closures other than the norm closure may
also be used. From Example 5.1, starting with B satisfying α(B) =
δ(B) < ∞, we cannot always find a countable dense subset A of finite
ascent and descent.
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