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Abstract 
There have been several proposals for the detection and reconstruction of missing data as it applies to the rgtoration 
of archived film and video. The essence of many of the schemes is that missing data can be characterised as impulsive 
distortion dong motion trajectories in an image sequence. This obsenmtion, coupled with a model of an image sequence 
leads to the design of both detection and correction schemes. This paper presents a single probabilistic &amework which 
unifies the principal issues in Blotch treatment. A number of schemes are examined within this famework and resnits 
are shown comparing the performance of a complete application of the hmework with previous schemes. The idea is to 
show haw a variety of merent approaches ate &ed within one pmbabiic h e w o r k ,  and that the implementation 
of the framework can be made practical. 

1 Introduction 

-Missing data and noise are common forms of degrada- 
tion in real film and video data. Missing datamanifests 
as dropout in the digital stream in the case of digitaI 
broadcasting. In the problem is caused by abra- 
sion of the 6lm material and the &e& is called "Dirt 
and Sparklen. 

It is possible to consider the removal of this arte- 
fact as a two stage process, first detect the missing 
locations 14,161 and then reconstruct the underlying 
image data [5] using a spatiotemporal image sequence 
interpolation process. The reconstruction stage may 
be further specified as a motion reconstruction followed 
by an image reconstruction stage [2]. The motion in- 
terpolation stage is a crucial step in generating useful 
interpolated data since in the regions of missing data 
motion estimates are completely unreliable. It is possi- 

known. However, the true motion of the missing area 
is not available since the data is of course missing. 

The first steps toward the full spec3cation were 
introduced in [3]. That paper employed a Bayesian 
framework to present a joint detection and reconstruc- 
tion methodology which linked the motion reconstruc- 
tion as an integral part of the process. 

This paper describes a generic framework for in- 
ference in the presence of missing data. This frame- 
work is then used to relate many of the schemes that 
have been previously presented for blotch treatment. 

The Solloweowing sections illustrate the broad con- 
cepts, introducing the various priors employed for the 
&owns. The book [8] contains an exhaustive dis- 
cussion of the joint detection and interpolation scheme. 
The paper concludes by emphasising the important as- 
pects of Blotch treatment which are revealed by the 
framework and in so doing points the way for future 

ble to pose the motion r&&ction and image kter- development- 
polation process as a joint problem [l], but this is an 
interim step towards a full specScation of the problem 

These problems of missing data detection, im- 
age interpolation and motion interpolation are all in- The observed degraded sequence may be modelled by a 
terlinked within the problem of blotch removal. For switching process such that the data that is the camp 
instance, one cannot reliably detect the extremities of tion is switched into the original clean data at spec& 
blotches unless the true motion of the missing area is sites. This switching process is monitored by the field 
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(or image) b(x). A corrupted site in b(x) is set to 1, 
otherwise the site is 0. The model for the observed, 
corrupted image G,,(x) is thus 

Gn(x) = (1 - b(x))In(x) + b(x)c(x) (1) 

Where In(x) is the intensity of a pixel at position x 
in the image frame n, and c(x) is the corruption data 
that is switched in whenever b(x) = 1. 

The missing data detection problem is that of 
estimating b(x) at each pixel site. The interpolation 
problem is that of estimating m(x) at locations where 
b(x) = 1. The replacement model was employed deter- 
ministically in [7, 61 for image sequences. This idea of 
employing ‘replacement noise’ in a Bayesian kamework 
for image sequences was kst employed by Morris and 
Fitzgerald (10, 12, 111. 

3 Modelling image sequence 
data 

It is typically assumed that the kames of an 
image sequence do not change much in terms of con- 
tent within a single shot. This implies that each frame 
within a shot could be constructed by somehow warp- 
ing the f is t  frame in the shot. The nature of this warp 
depends on the motion of the camera and the objects 
in the scene. Assuming purely translational motion, 
the simplest image sequence model is therefore 

I&) = In-l(x + &,,,-I) +e@) (2) 
where the pixel intensity In(x) in frame n is predicted 
simply as a copy of the data in frame n- 1 at a dis- 
placed location x + &,,,-I, where &,,,-I represents 
the motion of the pixel between the two W e -  e(-) 
is a sample of a white Gaussian noise process which 
could be used to account for small deviations from this 
model. 

In fact, this model is a special case of a much 
more general model; the 3D Autmegmsive process. 
This models the image sequence as follows. 

P 

In(x) = akln+qt (x + 4 + + e(x) (3) 
k=l 

Where the pixel intensie I,,(x) in h e  n is predicted 
by a heax combination of P pixels in a spatiwmqoral 
neighbourhood around I n ( X ) .  The geometry of this 
‘support’ is d&ed by the P o&set vectors Q = [$, d]  
where $ is the spatial component of the vector and d 
is the temporal componemt. The hear d c i e n t s  are 
the U&, and e(x) - N(O,4) is an excitation or resid- 
ual sequence. The motion o&t between h e s  n and 
the frame in which the required support pixel exists, is 

-givenby dn,nM- 

Setting P = 1, e = [O,O,-11 and 41 = 1.0, 
yields the simple model of equation 2. 

AR models are used to good effect in speech 
processing. In image sequence analysis it could be ex- 
pected that AR processes are a good model of ‘texture’. 
However the need for temponally evolving textures is 
limited and it is unclear whether using 3D AFt models 
gives any advantage other than optimal interpolation 
in the case of fraction motion of objects. Nevertheless 
it is important that optimal interpolation is possible 
with this model. 

4 Stating the problem 

The task is ultimately to estimate I,, given G,,. In 
other words, the problem is only to estimate the 
unknown data at the pixel sites that are missing. 
This implies Teyealing the hidden variables: motion, 
&,n-l(.), the AFt parameters, and the ‘detection’ 
field b c ) .  A Bayesian approach implies manipulating 
the joint posterior p(I.9 In-1 , In+i, Gns d, b, d) (for in- 

done through 
a c e )  to yidd P(~n,b,d,ealI,,-l,~,,+l,Gn)- % is 

p ( L ,  b, d, &I-) a P(GnlInn, b, +O&-l, In+l, ea) 

x P(b)P(dlP(c)P(a(x)) (4) 

where 8, represents a vector of parameters for the au- 
toregressive process. 

Note that an implicit assumption is that the 
data is never corrupted in the same location in consec- 
utive frames, therefore it is reasonable to assume that 
In-1 and In+l are available at the required locations. 

The unknowns may then be identified as those 
which maximize that conditional expression resulting 
in what will be called muximal estimates (encompass- 
ing both Maximum Likelihood (ML) or Maximum-a- 
Posteriori (MAP) estimates). Alte.matively random 
samples for the unknowns can be generated and used 
as typiccr2 estimates. Least Squares or MMSE estimates 
c8p be related to the ML or MAP solutions. 

The next sections show how variaus functional 
fom for each of these expressions can be derived, and 
in pa,rticular illustrates how the choice of prior distribu- 
tions p(b) p(d) p(c)  p(a(x)) a k t s  the overall solution. 

5 The Corruption likelihood 



The delta function is a direct consequence of the 
switching behaviour of the corruption process. 

5.1 The original (clean) data likelihood 

The second distribution in equation 4 is the likelihood 
of the original, clean image data at  position x, given 
its surrounding clean image data. It is derived directly 
from the model statement of equation 3. 

Using an AR process, the model coefEcients, 
a(x) are estimated in a blockwise fashion, thus the al- 
lowance for non-stationarity is on a block grid and not 
on a pixel grid. The likelihood can be written as 

P(ila(x),a,2,d(x),I*-1,I*+~) = 

where A is a matrix of cdcients ,  and i is a vector of 
raster scanned image data inside a block See [SI for 
more details. 

Using the simpler, translation only model, the 
likelihood is written simply as 

P ( 4 4 X ) l - l  0: 

The prior for &.,,-I (x), the motion vector map- 
ping the pixel at  x in frame n into frame n- 1, is as 
follows: 

where v is each vector in the neighbourhood repre- 
sented by S,(x), and X(v) is the weight associated with 
each clique. An &nearest neighbourhood is used. 

6.2 The priors for corruption and de- 
tection 

In practice, each region of missing data tends to have 
fairly constant intensity, therefore similar priors are 
used on both the binary field b(x) and the blotch 
value field c(x). In addition, edge information is in- 
corporated into these priors through the use of a zero- 
crossing edge detector which emphasises that edges in 
c, b must correspond to the extremities of a blotch. 
See [8] for more information. 

where x‘ is motion compensated. 
7 Solutions and Relationships 

6 The priors 

The remaining distributions encode the prior belief 
about the values of the various unknowns. For sim- 
plicity, a uniform prior is assigned to a. This encodes 
a notion of no bias on the estimation of the model co- 
efficients, and effectively remm p(a(x)) from equa- 
tion 4. The variance U: is assigned a non-intbrmative 
prior p ( 4 )  a 1/17:, following 1141. 

6.1 The motion prior 

The motion field is typically smooth over small im- 
age patches. This smoothness constraint is violated at 
motion boundaries typically occurring at the edges of 
moving objects. In practice for this application, it is 
suEcient to encode the notion of smoothness in order 
to achieve implicit motion interpolation. 

The prior adopted for motion smoothness is as 
introduced by Konrad and Dubois [9] and Stiller [15]. 
To reduce the complexity of the finai sohtion the mo- 
tion field is block based, with one motion vector being 
employed for each spedfied block in the image. 

It is possible fa derive many systems for blotch treat- 
ment through Merent combinatioLls of priors as well 
as Merent treatment of equation 4. Recall that the 
idea is to solve for the unknowns given the observed 
images by “ k h g  or exploring equation 4. Only 
the broad concepts of various solutions are outlied here. 

7.1 BBC Systems (1982) 

Using the image model in equation 2, deleting any spa- 
tial priors for the blotches and corruption, and as- 
suming the motion is known; yields a motion com- 
pensated version of the Dirt Detector proposed by 
Richard Stm$ [16]. The prior for blotches used is 
exp(-X[l- b(x)sgn(f)sgn(b)]). Where f, b are motion 
compensated forward and backward dfd’s respectively. 
The solution is then to examine each pixel, evaluate 
p(b(x) = Ol-), p(b(x) = 11.) and choose the decision of 
higher probabiity. In effect, X will act (apprcacimately) 
as a threshold on the forward and backftmrd dfd‘s; and 
the prior encourages detection only when the sign of 
these dfd’s is the same. 

3Perhaps the 5rst <design and implement a system for Dirt detection and remavd. albeit non-motion oxnpgnsated. 
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7.2 MCMC approaches (19942000) site. At bbtched d-9 a simple a W M g  process was 
usedfor interpolation, driven m effect by the very same 

The most all encompassing solution solve for d, c, b, 1, Iikelihood expression 7. 
all at the same time. The most direct way to do this 

7.3 Bayesian Refinement 1998-2000 is to deploy an MCMC strategy like the Gibbs sam- 
pler (Kokaram [SI). In this process, samples for each 
variable are drawn in turn keeping aU other variables 
at current values. Thus the process cycles through 
c - p(cl-), b - p(bl-) etc. There are various issues 
to be considered in this solution with respect to the 
design of schemes for computationally ef€ect.jve sam- 
pling, these are explored in 181. This full solution is 
called JOMBADI Joint Model BAsed Detection and 
Interpolation for missing data. 

Iterations are cheapest when the sampler oper- 
ates on a pixel by puel basis. In that situation, draws 
for all the variables (excepting the AFL process param- 
eters) reduce to simple multiplications and additions 
only. To reduce computation further, there is the in- 
teresting notion that the search for the unknowns could 
be restricted over a limited space. For instance, it could 
be assumed that the correct motion vector is actually 
one which is just nearby in space. Therefore 8 nearest 
neighbour vectors are used as candidates for solving for 
the motion at the current site. 

The pixel based distributions required for solv- 
ing for b, i ,  c can be derived by integrating the posterior 
to yield 

P(WlB,  - * - 1 = 
pc(c = gal..  .)pb(b = 1(B) for b(x) = 1 
pj(i = gnl.. .)& = OlB) for b(x) = O 

p(~,(x)lb(x), . * * 1 = 
{N(k&) for b(x) = 1 

for b(x) = O 

P ( c ( ~ )  IW, in (x), - - - ) = 

for b(x) = 0 

(9) 

(10) 
d@n(X) -  in(^)) 

J(gn(4 - CO) for b(x) = 1 (11) { PC(C(X)lC) 

where B is the set of neighbourhood of detection indi- 
cators b(.) surrounding the sampled location, and a, 
is a vector of AR d a e n t s .  See [8] for details of the 
other distributions. 

Morris (41 (1994) used a data likelihood ap- 
proximately similar to equation 7 and also sepa- 
rated the problems into detection followed by re- 
moval. mere  was no use of p(~), but the spatial 
part of p(b) in the prior was augmented with p(b) a 
P b ( b - 1 )  eXp(-abn-l). The idea was to introduce two 
indicator fields bn-1, b,,+l between the bmes n, n - 1 
and n, n + 1. This in a way was an occlusion detec- 
tor. Blotches were cited when both the forward and 
backward indicator fields were set to 1 at a particuIar 

In order to reduce complexity further, it is possible 
to restrict the operation of a stochastic scheme like 
the Gibbs sampler or ICM, to a few options for the 
unlmowns. For instance, one could use a simple, de- 
terministic blotch detection scheme like SDIa, SDIp 
([SI) to generate a superset of sites which are missing. 
Then within that limited set of sites, a more complete 
MCMC strategy could be used to solve for motion as 
well. In &e& this limits the application of the more 
complex models only to those areas where it is cer- 
tainly necessary. This is the kind of approach used in 
JOMBADI to improve the starting point for the Gibbs 
sampler and to reduce dramatically the number of sites 
visited. 

A good example of this is the work by Roos- 
malen et al. (131. Here, it is assumed from the outset 
that cut-and-paste from surrounding frames will give 
a good interpolation most of the time. Therefore, one 
could restrict the search of interpolants to this set of 
values and thus both reduce the computational load, 
and also guarantees a good reconstruction. 

8 SomeResults 

Results comparing interpolation strategies can be 
found at wuu-mee. tcd. ie\'ack, as the reproduction 
quality is not expected to be good enough in the 
printed prooeedings. F i i  1 shows a comparison of 
detection performance with seveTal detectors applied 
to a real degraded image. Only the degraded image 
is shown in the top left quadrant, the sequence shows 
small vertical motion. 

What is immediately apparent is that the de- 
tectors which use little or no prior information about 
blotches, e.g. SDIp, ROD perform the worst, with 
many false akrms at a scale of one pixel. These talse 
alarms occur mainly where there are moving edges, for 
instance in the background of the moving leaves and 
the hand and flower in the foreground. At such edges, 
the motion field is not well defined and so apparent 
temporal discontinuities are introduced. 

The Morris detector does incorporate spatial in- 
formation about blotches, by encouraging the detection 

continuities. It clwly perfoms better by being able 
to reject most of the false aarmS. H-, there is 
still a problem in the motion of the narrow petals of 
the flower. 

of large mainly ht areas which represent temporal dis- 
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JOMBADI, however solves fir all u r j k n a  a d  
uses spatial priors on both the motion field and the de- 
tection indicator variables, b(x). It therefore is able to 
reject all false alarms and also detects blotches which 
are too low contrast to excite the Morris detector. 

3D AR models and MRF motion priors. In Europe4n 
confmnce on Computer Vision 1996, pages 613-624. 
Springer-verlag, April 1996- 

[3] A. Kokaram and S. Godsii. Joint detection, inter- 
polation, motion and parameter e s t h a t i  on for im- 

As far as unnputationfperformance tradeoff is 
mncemed however, the Morris detector seems to be the 
best compromise. The principally temporal SDIp and 
ROD are too sensitive to poor motion estimation, and 
the JOMBADI algorithm is perhaps too heavy handed 
in this case of relatively low corruption level. A combi- 
nation of JOMBADI and Morris would work very well 
here. 

9 Final Comments 

This paper has introduced a framework for the treat- 
ment of blotches and considered the relationships be- 
ween a number of processes that have previously been 
proposed. It is to be noted however that all the expres- 
sions and models proposed here are based on pixel ma- 
nipulation over a small number of frames. For severely 
degraded sequences, more temporal information is cer- 
tainly necessary. This can be achieved by extending 
the temporal window of the motion priors, as well as 
turning to Object based analysis of image sequences. 

What is interesting however, is that alI the p m  
cesses shown here operate s u d y  only if the un- 
derlying image model is correct e.g. equation 2. This 
implies that the motion of the objects in the sequence 
must be well understood. In practice, for se- 
quences typically encountered in motion picture film, 
there is always some motion which cannot be mod- 
elled. Typid examples of this would be motion of 
textiles (clothes), water, snow, kst/complicated mo- 
tion. When this occurs, the results are generally catas- 
trophic. 
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Figure 1: Top row: Real Degraded Frame, Detection with ROD, Middle h. Detection with SDIp, Morris. 
Bottom RDW: Detection with JOMBADI, Estimated c(x) 


