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Abstract 
 
The Theory of Critical Distances (TCD) is the name which I use to describe a group of 
methods employed for the prediction of failure in cases where stress concentrations are 
present and where the failure mode involves cracking, such as fatigue and brittle fracture. 
Some of these methods are more than fifty years old, some very recent. Precise predictions 
are possible in cases where accurate stress field information is available, for example using 
finite element analysis (FEA). In the present paper, however, I concentrate on the use of the 
TCD for approximate, order-of-magnitude predictions, because these can be very useful 
during failure analysis.  
 
Two material constants are required: the critical distance L and (depending on which method 
is used) either a critical stress σo or a critical stress intensity KC. Values of L in engineering 
materials can vary from microns to centimetres. The critical stress may be equal to the plain 
specimen strength (static or cyclic) but is often significantly higher.  
 
In what follows I show through a series of examples and case studies how knowledge of the 
approximate values of L and σo  can be very useful when conducting a failure analysis, in 
assessing the significance of defects and design features. I propose, for the first time in this 
article, a series of dimensionless numbers, composed of material constants and design 
variables, which I believe could usefully be adopted in fracture mechanics in the same spirit 
as they have been in other branches of engineering, such as fluid mechanics.  
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Introduction 
 
When conducting a failure analysis many factors have to be taken into account in order to 
arrive at the cause of the failure. Common causes of failure are defects such as pores or 
cracks introduced during manufacturing, and inappropriate design features which cause 
excessive stress concentration, such as sharp corners and poorly-designed joints. Failure can 
also occur due to local contact creating, for example, fretting fatigue. A common factor in all 
these causes is that they create high local stresses and also stress gradients, the stress 
decreasing with distance from the feature. 
 
The Theory of Critical Distances (TCD) is a method for the prediction of failure arising from 
such situations. Failure commonly occurs due to the initiation and growth of a crack, through 
mechanisms such as brittle fracture, fatigue and stress corrosion cracking. In these cases it is 



  

well known that both the maximum stress and the stress gradient are important in determining 
whether failure will occur. It is also well known that materials possess inherent length scales 
which are related (in complex ways) to their microstructure and modes of deformation and 
damage. The interaction between the length scale and the stress gradient determines whether 
failure will occur from a given feature.  
 
In recent years, many methods have been proposed to model this situation. The TCD is a 
name which I have given to a group of methods, some going back more than fifty years. 
These methods have one feature in common: the use of a material parameter with the units of 
length: the so-called critical distance L. This distance is taken to represent, in a simplified 
way, the inherent length scaling in the material as regards the fracture process under 
consideration. It can be used in various ways, which divide into two types of analysis. The 
first type are stress-based methods which consider the stress close to the feature of interest, 
e.g. the notch, corner or defect. Usually (though not always) a linear elastic stress analysis is 
conducted (e.g. using FEA) and the effective stress parameter is defined as either the stress at 
a given distance from the notch or the average stress over a line reaching out from the notch. 
These two methods we call the Point Method and Line Method. Failure is assumed to occur if 
the effective stress is greater than some material constant value σo or, in the case of fatigue 
failure, a stress range ∆σo . The second type of analysis consists of some stress-intensity 
based methods in which standard fracture mechanics are used and the value of L appears as 
an imaginary crack or as a unit of crack extension. 
 
I do not propose to deal in any more detail with the theory or its practical application, since 
this information can be found in many previous publications. A comprehensive treatment can 
be found in a recent book [1] and a brief overview in a recent journal article [2]. Suffice it to 
say that the theory has been tested against experimental data for many different materials, 
features and loading regimes; all of which has shown that it is capable of making precise 
predictions of failure, provided an accurate stress analysis is available. The method is 
becoming increasingly feasible for industrial components thanks to the power of modern 
computers and numerical methods. 
 
In the present paper however I am concerned not with the precise use of the TCD, but with its 
approximate use. The failure analyst is not always in a position to carry out a detailed stress 
analysis, but nevertheless I will argue that knowledge of the TCD parameters, L and σo, can 
be very useful in arriving at an  opinion as to the cause of failure. In the present article I will 
illustrate this point through various examples and, building on this experience, I will show 
that some useful dimensionless numbers can be obtained by normalizing the TCD 
parameters, allowing one to predict regimes of behaviour for different failure modes. 
 
Comparing L to Defect Size 
 
When examining a fracture surface one frequently observes defects such as casting pores, 
inclusions or contraction cracks (fig.1) and one may be able to deduce that a defect was 
located at the origin of the crack which caused the failure. However, this does not necessarily 
mean that the defect was the cause of failure. Cracks will of course tend to initiate from 
defects if they are present, but removing the defect (or reducing its size) will not necessarily 
improve the material’s resistance to failure. An example of this phenomenon is the short 
crack effect, which has been very extensively studied. Fig.2 shows an example of data 
illustrating how the fatigue limit of a specimen changes with the length of a pre-existing 
crack. For large cracks the data lie on a line corresponding to the predictions of linear elastic 



  

fracture mechanics (LEFM), controlled by the stress intensity threshold for crack growth, 
∆Kth. For very small cracks the crack has no effect, the fatigue limit being the same as that of 
a plain specimen, ∆σo. For intermediate crack lengths the data curves between these two 
types of behaviour. Now it turns out that the value of L lies exactly in the middle of this 
curved region, as shown on fig.2. Thus we can say that if the crack length is very much less 
than L, the crack has no effect, i.e. a defect exists but the defect is harmless. If on the other 
hand the crack length is much greater than L, we can analyse the crack using standard LEFM 
procedures. For crack lengths similar to L neither approach works and a more detailed 
analysis using the TCD will be needed to give us an estimate of the safe working stress range. 
 
It is very interesting to note that exactly the same type of behaviour, giving a graph of very 
similar appearance, occurs if we plot the strength of brittle ceramic specimens containing pre-
existing cracks and defects, despite the fact that the physical mechanisms controlling failure 
in this case are very different from those controlling short fatigue crack growth. More details 
of this analysis can be found in a previous paper [3]. In this case again, L can be used to give 
an idea of the significance of the defect. The same approach also works if the defect is not a 
crack but a feature of some other shape, such as a circular hole, as shown by Whitney and 
Nuismer many years ago for the failure of fibre composite materials [4]. 
 
I have found the above to be very useful in my own failure analysis work, enabling me to 
make a quick assessment of the possible importance of a defect on a fracture surface and 
preventing me from jumping to conclusions at an early stage. 
 
Comparing L to Notch Root Radius 
 
Useful information can also be obtained by comparing the value of L to the root radius ρ of 
the notch or other stress concentration feature (e.g. the fillet radius at a corner) at which 
failure occurred. Some notches, even though they have a finite root radius, still behave as if 
they were cracks: this can be seen from the data on measured values of fracture toughness KIC 
from specimens containing notches of different root radii. As shown for example in fig.3, if 
the root radius lies below a critical value then the result is the same as for a perfectly sharp 
crack. This critical value is given approximately by L, independently of the overall shape of 
the feature. For simple notches, the feature can be analysed by calculating the stress intensity 
factor K, for a crack of the same length. For other features, such as corners, an equivalent K 
factor can be estimated using a technique known as the Crack Modelling Method [5].  If, on 
the other hand, the root radius is much larger than L, then fatigue and brittle fracture loads 
can be predicted by simply using the elastic stress concentration factor, Kt. For intermediate 
values of ρ the load to failure would be greater than that for a crack of the same length but 
less than would be predicted by using Kt. A detailed TCD analysis will give the precise value 
in all cases, but simply knowing L and ρ without doing a detailed analysis can be very useful, 
as illustrated by the following examples: 
 
Example 1: Failure of a Cast Iron Component 
This analysis was reported in full in a previous publication in this journal [6]. It concerned a 
cast iron engine casing from a ship. Fatigue failure occurred from a corner which had a very 
small root radius of 0.3mm. The design was improved by increasing the radius to 3.2mm, but 
fatigue failures continued to occur. Normally such an increase in radius would be effective: 
the reason for the difficulty in the present case was that the value of L for high-cycle fatigue 
in this material turned out to be 3.8mm. This is a particularly large value, one of the largest 
which I have encountered for a metallic material. Typical mild steels have L values an order 



  

of magnitude smaller than this. So for this particular case a root radius significantly larger 
than 3.8mm would be needed in order to affect the fatigue strength. 
 
Example 2: Notches in Bone 
Orthopaedic surgeons often introduce stress concentrations into bone during operations. For 
example, an operation to replace a torn anterior cruciate ligament involves cutting a piece of 
bone from the patella (knee cap) of the other knee. Typically the surgeon will cut out the 
piece in such a way as to leave two sharp corners in the patella (fig.4); cracks will sometimes 
form at the these locations later on as a result of cyclic loading or impacts. We found that the 
critical distance for brittle fracture in bone is 0.35mm [7], so we advised  that the bone should 
be cut in such a way as to leave rounded corners of radius 1mm or more. We confirmed, by 
impact tests carried out on pigs, that this significantly increased the strength of the remaining 
patella [8]. 
 
Example 3: The Modelling of Welded Joints 
The assessment of fatigue failure in welded joints is a common problem in failure analysis, 
which in recent years has been greatly aided by the development of comprehensive standards 
such as the recent Eurocodes for welded steel and aluminium. However, cases often arise 
where the welded joint design is very different from anything found in the standards, and one 
must resort to a detailed analysis using FEA. But how to interpret the results? There are many 
different proposals regarding the creation of the model and its post-processing. One issue 
which arises is how accurately one must model the details of the weld. Cracking frequently 
starts at the point where the weld bead meets the base metal (fig.5): at this point the radius of 
curvature is small, but not zero, and if one models it to be zero then a singularity is created in 
the FE model, giving rise to stress values at that point which are meaningless. However, if 
using the TCD this is not important because we are not relying on the stress at that particular 
point, and provided the radius of curvature in the actual weld is less than L, we are allowed to 
use a zero radius in the model without affecting the results. For low and medium strength 
steels we found that the appropriate value of L is 0.43mm [9], so this simplification is 
allowable in most cases. 
 
Comparing L to Body Size 
Another length parameter which we might compare to the critical distance is the size of the 
entire body. A useful relevant parameter might be the width W of the specimen (or of the 
cross section of a component) in the direction of expected crack growth. One can easily 
appreciate that something strange will happen in cases where we attempt to use the TCD if W 
is the same as L, or smaller. In fact the TCD cannot be used in those cases, because we would 
be considering stresses at points which lie outside the body itself, which is obviously not 
appropriate. However we have developed a modified form of the TCD which can be used in 
these cases. The approach is more complex and involves a value of L which is no longer 
constant but varies with body size. This situation arises in cases where either the component 
itself is very small (e.g. small medical devices made from metallic materials) or the L value is 
particularly large (e.g. concrete) [1; 10]. 
 
Comparing σσσσo to Material Strength 
So far we have been thinking about the critical distance L. We now turn our attention to the 
other TCD parameter: the critical stress σo (or, for the case of fatigue, the stress range ∆σo). 
In some cases this critical stress is simply equal to the strength of the material as measured in 
tests on plain (i.e. unnotched) samples. This is true for metal fatigue and for the static fracture 
of brittle ceramics (as implied in figs 1 and 2); it is also true for the static fracture of fibre 



  

composites [4]. However, for other cases the value of the critical stress is larger than the 
plain-specimen strength σu: these cases include fracture of polymers and metals and fatigue 
of polymers (though in the latter case we only have data for one polymer, PMMA). The fact 
that σo is larger than σu leads to some predictions which at first sight appear strange: for 
notches with Kt factors less than the ratio σo/σu the predicted strength of the notched 
specimen is greater than that of the plain specimen. This obviously cannot happen and in 
practice we find that the strength of these notches is identical to that of the plain specimen, as 
shown in fig.6. This gives rise to an interesting class of harmless notches, i.e. notches which 
do not affect the strength of the part. In the case of PMMA the ratio σo/σu is equal to 2, and in 
some other materials it can rise much higher. When we examine failed components in which 
failure occurred from some stress concentrating feature, it is common to blame the designer 
for introducing the feature in the first place, but sometimes we would be wrong, because 
some notches are harmless, as we see here, and this is a very useful thing to know. 
 
Finding the Values of L and ∆σ∆σ∆σ∆σo 
In order to find the exact values of the two critical parameters, some experiments must be 
conducted, but these are relatively simple. Test results are needed from a minimum of two 
different specimen types, e.g. specimens with two different notches, one of which can be a 
crack. In cases where σo/σu = 1 the plain specimen can be used as one of the two specimen 
types. Some simple analysis shows that there is a relationship between L, σo and Kc as 
follows: 
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This relationship also applies in fatigue, so if one knows the plain-specimen fatigue limit and 
crack propagation threshold for the material, L can be found without the need for further 
testing. However given the current controversy over the measurement of ∆Kth, where it seems 
that widely varying results can be obtained even when testing according to current standards, 
I would advise that endurance tests carried out on sharply-notched specimens give a more 
reliable and relevant estimate of the threshold and thus of L. Values of the TCD parameters 
have already been obtained for many materials and failure modes [1], so often a reasonable 
guess can be made for the material in question even without carrying out the tests. 
 
Some Dimensionless Numbers 
Dimensionless numbers are of great value in certain branches of engineering, such as the 
Reynolds number and other parameters in fluid mechanics. To date, such numbers have not 
been proposed in fracture mechanics, except the brittleness number suggested by Carpinteri 
[11] which is almost the same as L, normalized by the size of the body. Here I propose four 
dimensionless parameters obtained by using the TCD parameters as normalizing variables: 
 
Normalised Defect Size: The length a of a crack (or other defect) normalized by L. If 
a/L<<1 then the defect is harmless and will not reduce the strength of the body. If a/L>>1 
then the defect exerts its full effect: if it is a crack, we can use fracture mechanics, otherwise 
we can use its Kt factor (though see below regarding the limits on root radius). A suitable 
name for this parameter could be the ElHaddad number, since the critical length concept was 
first identified in a paper on short crack fatigue by ElHaddad et al [12], who called it ao. 
 



  

Normalised Notch Root Radius: The root radius ρ normalized by L. If ρ/L<1 then the notch 
will behave as a crack of the same length. If ρ/L>>1 then the notch can be analysed simply 
using its Kt factor. We might call this the Neuber number, since it was Neuber’s pioneering 
work which first established the TCD for notches, in the form of the Line Method [13]. 
 
Normalised Body Size: A relevant body dimension such as the remaining ligament width W, 
normalized by L. If W/L>>1 then the TCD in its normal forms can be used, otherwise a 
modified form of the analysis is required. This number might be named after Carpinteri, 
given its similarity to his brittleness number. 
 
Normalised Material Strength: The plain-specimen strength (in static loading or in cyclic 
loading) normalized by the critical stress σo (or ∆σo). Notches having Kt less than this 
number are harmless. I would like to suggest a name for this parameter, but modesty forbids 
me! 
 
Conclusions 
 
1) Defects which are much smaller in size than the critical distance L can be assumed to be 
harmless, having no effect on the failure loads for the failure mechanism under consideration. 
Defects much larger than L can be treated using standard techniques such as LEFM for 
cracks or the stress  concentration factor Kt for notches. A dimensionless number obtained by 
divided the linear size of the defect by L is thus useful in assessing defects. 
 
2) Notches (and other stress concentration features in components) which have root radii 
smaller than L can be regarded as cracks. Features with root radii much larger than L exert 
the full effect of their Kt factor. A dimensionless number obtained by dividing the root radius 
by L is thus useful in assessing the effect of stress concentrations. 
 
3) If the size of the body (defined by a relevant linear dimension) is similar to or less than L, 
the normal TCD methods cannot be used, and the failure behaviour can be expected to differ 
from that of larger bodies. Thus a dimensionless number consisting of the body size divided 
by L will be useful. 
 
4) If the critical stress σo as used in the linear elastic TCD is greater than the plain-specimen 
strength of the material (in the cyclic or static loading modes as appropriate) then a notch 
having a Kt factor equal to or less than the ratio of critical stress to material strength will be 
harmless. Thus this ratio is a useful dimensionless number. 
 
 
 
Figure Captions 
 
Fig.1: The fracture surface of a component, made from a brittle polymer, showing a defect in 
the form of a spherical pore. 
 
Fig.2: Experimental data showing the effect of initial crack size on fatigue strength for 
cyclically loaded specimens of a Cr-Mo steel: data taken from Lucas and Kunz [14]. The 
value of the critical distance L is indicated. 
 



  

Fig.3: Experimental data showing the effect of notch root radius on the measured value of 
fracture toughness of a low alloy steel failing by brittle cleavage fracture at low temperature 
(original data from Malkin and Tetelman, reported by Hedner [15]). The value of L and the 
predictions of the point method (PM) and line method (LM) are shown. 
 
Fig.4: The human patella, showing the sharp notches created when a piece is removed during 
surgery (black lines). 
 
Fig.5: Welded joints frequently fail by fatigue cracking which initiates from the corner where 
the weld bead meets the base metal, as indicated here on this finite element model. In the 
TCD approach this corner can be modeled with zero root radius provided the actual root 
radius is less than L, which it usually is. 
 
Fig.6: Data on the static strength of PMMA specimens containing notches, normalized by the 
static strength of the material (UTS, σu), as a function of the Kt factor for the notch. The 
prediction line for the TCD crosses the static strength at a Kt value below which notches are 
harmless. This occurs at Kt = σo/σu 
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