Determinants of Vegetarianism and Partial Vegetarianism in Ireland

Eimear Leahya, Seán Lyonsa,b, Richard S.J. Tolab,c,d

Abstract: Vegetarianism is increasing in the western world. Anecdotally, this trend can be attributed to heightened health, environmental and animal welfare concerns. In this paper we investigate the factors associated with vegetarianism among adults in Ireland. Using the 2007 Survey of Lifestyles, Attitudes and Nutrition, we use a logit model to assess the relationship between vegetarianism and the socioeconomic and personal characteristics of the respondents. We also analyse the factors associated with varying levels of meat consumption using an ordered logit model. This paper adds to the existing literature as it is the first paper to estimate the determinants of vegetarianism and partial vegetarianism in Ireland.

Corresponding Author: eimear.leahy@esri.ie

a Economic and Social Research Institute, Dublin, Ireland
b Department of Economics, Trinity College, Dublin, Ireland
c Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
d Department of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands

ESRI working papers represent un-refereed work-in-progress by researchers who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.
Determinants of Vegetarianism and Partial Vegetarianism in Ireland

1. Introduction
Meat production is set to double by 2050 due to an increase in the world population and increased wealth in developing countries (FAO, 2010). At present, in less developed countries, low income levels force many people to follow vegetarian diets. In developed countries, where people are vegetarians by choice, vegetarianism is increasing (Leahy, Lyons and Tol, 2010a). The notion of partial vegetarianism is also becoming increasingly popular in developed nations. Catholics have long been urged to abstain from meat consumption on Fridays. However, the heightened interest in partial vegetarianism has been driven mainly by celebrity endorsed movements such as the Meatless Monday campaign which began in 2003. Concern for animal welfare and the environment are among the factors driving this trend. The relationship between meat consumption, especially red meat, and global environmental change has been acknowledged (FAO, 2006). Ruminant livestock are major emitters of methane, the second-most important anthropogenic greenhouse gas.

Meat consumption also has implications for an individual’s health. In developed countries, excessive meat consumption can be a health concern (Giovannucci et al., 2004, Drewnowski and Specter, 2004, Hu et al., 2000, Rose, Boyar, and Wynder, 1986, James et al., 1997). Barnard, Nicholson and Howard (1995) studied the medical costs associated with meat consumption in the USA. The authors estimate that costs of between $30-60 billion per year result due to the higher prevalence of hypertension, heart disease, cancer, diabetes, gallstones, obesity and food-borne illness among omnivores compared with vegetarians.

Leahy, Lyons and Tol, (2010c) examined the determinants of vegetarianism at an aggregate level. They find that there is a Kuznets-like relationship between income and meat expenditure. For the poor, an increase in income results in higher meat expenditure. However, at the global average income, meat consumption levels off and at very high levels of per capita income vegetarianism increases. Higher levels of education are also associated with increased vegetarianism and, in poor countries, vegetarianism is negatively associated with the per capita level of meat production.

Previous papers which aim to establish the motivations of vegetarians have usually been carried out on small or unrepresentative samples (Beardsworth and Bryman, 1999, Fox and Ward, 2008, Jabs, Devine and Sobal, 1998). To our knowledge, the most comprehensive study of the determinants of vegetarianism and partial vegetarianism was carried by Leahy
Lyons and Tol (2010b). The analysis is carried out using the 2008 Health Survey for England which is a large representative sample of adults and children in England. Results show that gender, ethnic origin, the region in which a person lives and their level of education are all significantly associated with vegetarianism. Consistent across both the adult and child analyses are the findings that both vegetarians and partial vegetarians are more likely to be female as opposed to male and Asian as opposed to White. Results also show that the larger the household, the more often meat is consumed.

While research on the determinants of vegetarianism is scarce, research into meat consumption has been extensive. The factors affecting meat demand have been studied at a micro level for example in Ireland by Newman, Henchion and Matthews (2001), in the USA by Nayga (1995), in the UK by Burton et al. (1994), in Japan by Chern et al. (2002) and in Mexico by Gould et al. (2002). Results suggest that the demand for meat is affected by factors such as income, household size, education level and professional status. Changing socio economic patterns have also resulted in changing the pattern of meat demand (Newman et al., 2002, Meat and Livestock Commission, 1996).

The majority of meat demand studies to date have used household expenditure surveys with which it is difficult to predict individual consumption patterns because data is collected at the household level. Also, such surveys do not usually contain detailed information about eating out. Expenditure does not necessary equal consumption (e.g., someone may buy meat for her dog). Expenditure surveys cannot distinguish between people who eat a lot of cheap meat and people who eat a little bit of expensive meat. There can also be problems with the accuracy of purchase recall and the frequency of purchase. All this makes expenditure surveys less suitable for studying the patterns of vegetarianism. While the paper by Newman, Henchion and Matthews (2001) provides useful information about the role of socio-economic characteristics in a household’s meat expenditure pattern, it fails to provide any information about those households that abstain from buying meat. In this paper, we focus our attention on the group of respondents that does not consume meat. Like Newman, Henchion and Matthews (2001), we also analyse the factors associated with varying levels of meat consumption. The advantage of this paper, however, is that the data we use is collected at the individual rather than at the household level and respondents are asked about general eating patterns as opposed to expenditure at a point in time.

Leahy, Lyons and Tol (2010a) find that the proportion of vegetarians in Ireland is increasing (see Figure 1). To our knowledge, this is the first empirical analysis of the determinants of vegetarianism and partial vegetarianism using Irish data. This should be of benefit to those
forecasting future numbers of vegetarians and the associated environmental or health benefits. Because partial vegetarianism can lead to important environmental and health benefits, we also assess the personal and household characteristics associated with varying levels of meat consumption.

The paper continues as follows. Section 2 describes the data and methods used and section 3 discusses the results. Section 4 provides a discussion and conclusion.

Figure 1. Vegetarianism in Ireland*

* 1987-2004 results are taken from Leahy, Lyons and Tol (2010a) and are based on data from the Household Budget Survey. The result for 2007 is estimated using SLÁN data.

2. Data and Methods

We follow the method of Leahy, Lyons and Tol (2010b). We used the anonymised data file of the 2007 Survey of Lifestyles, Attitudes and Nutrition (SLÁN) in Ireland (Health Promotion Unit of UCD, 2008). This is a nationally representative sample of 10,364 adults aged 18 and over. A response rate of 62% was achieved. Participants were asked a range of questions about general health, fruit and vegetable consumption, alcohol consumption, smoking, and physical activity. The survey includes additional anthropometric and other physical examination data from two sub-samples: 967 adults aged 18-44 years and 1,207 adults aged 45 years and over. SLÁN also contains information on income and other socio-economic variables which we use as explanatory variables in our models. Morgan et al., 2008 provide a detailed description of the SLÁN survey and findings.
9,223 adults (89% of sample) completed a food frequency questionnaire. Respondents are asked about average food consumption over the past year. Respondents are asked how often they consume medium sized portions\(^1\) of 21 meat items; less than once a month or never, one–three times per month, once a week, two–four times per week, 5–6 times per week, once a day, 2–3 times per day, 4–5 times per day or 6 or more times per day. We classify those who identify themselves as consuming any of the 21 meat items “less than once a month or never” as vegetarians. While this is not perfect, it is the best measure available to identify vegetarians.

We construct a variable which represents the number of portions of different foods consumed each day, i.e. a total food consumption variable. It appears from this variable that some respondents report consuming incredibly high or low amounts of food. Based on this variable, we omit observations that are greater than the standard deviation above the mean and less than the standard deviation below the mean. We also assess respondents’ daily calorie intake. Even in the restricted sample, the daily calorie intake is impossibly high for some respondents and too low for others. Thus, we further restrict the sample based on the daily calorie intake variable. Again, we omit observations that are greater than the standard deviation above the mean and less than the standard deviation below the mean. We do this separately for male and female respondents. The sample is reduced to 6,893.

The analysis is made up of two parts. In the first part we use logit regression models to analyse the factors associated with vegetarianism. The dependent variable is a binary variable, equalling 1 if the respondent eats meat “rarely or never” and 0 if he/she eats any type of meat more often.\(^2\)

The independent variables are mostly individual and some household characteristics. The household income level is included as an explanatory variable and enables us to establish whether vegetarians are more likely to be found in higher income or lower income households. The income variable is not continuous; rather it is divided into 6 binary categories. A graph of the relationship between household income and the percentage of vegetarians is shown in Figure 2. Leahy, Lyons and Tol (2010c) found that at the aggregate (national) level there is a Kuznets-like relationship between income and vegetarianism. It appears that in Ireland, the level of vegetarianism is quite stable across income levels. The standard deviations, however, are quite large. We would be interested to know the

\(^1\) A medium sized portion of meat is taken to be about the size of a deck of cards.

\(^2\) The consumption of fish is not included in this analysis.
relationship between vegetarianism and relatively high levels of household income. Unfortunately, however, SLÁN does not specify income levels above €50,000.\(^3\)

Figure 2. Vegetarianism and income

![Graph showing vegetarianism and income by household income level]

We also control for the location of the household because the characteristics and eating patterns of Dublin residents may be very different to those of rural dwellers. We expect to find that vegetarians are more prevalent in urban areas (and in particular big cities) than in rural areas or small towns. We also control for household tenure because we are interested to see whether the dietary patterns of renters are different to those of home owners, for example. Also included is the age and gender of the respondent. Anecdotally, vegetarianism is becoming more prevalent among young adults in Ireland and females in particular. Leahy Lyons and Tol (2010b) found that in England females were two and a half times more likely to be vegetarians than males and the relationship between age and vegetarianism was negative. We wish to ascertain whether there is a link between vegetarians and the health conscious. The respondent’s body mass index (bmi) is measured and the number of portions

\[^3\] The 2004/05 Household Budget Survey for Ireland (CSO, 2007) shows that the average annual gross household income in Ireland is over €53,000 while the average annual disposable household income is over €42,000.
of fruit and vegetables consumed daily are counted. Respondents are also asked if they are physically active on a regular basis and whether they watch their weight or not. We expect to find a positive relationship between being weight conscious, having a relatively low BMI, and being physically active and vegetarianism. Other control variables include having any medical problems, because this may mean respondents are obliged to follow restricted diets. We also control for the respondents' own assessments of their health status and quality of life.

The explanatory variables also include smoking and alcohol intake. We expect to find that vegetarians are more health conscious, so alcohol intake might be lower than that of non-vegetarians. Similarly, we expect to find that non-smokers are more likely to be vegetarians than smokers.

We control for the social class and work status of the respondent. We expect to find that the rate of vegetarianism is higher among those who are employed compared to those who are out of work and, for those who are working, we expect that those in higher social class positions are more likely to be vegetarians than lower social class individuals. We include the education level of the individual in addition. Higher education was positively associated with vegetarianism at the aggregate level (Leahy, Lyons and Tol, 2010c) and also at the individual level in the UK (Leahy, Lyons and Tol, 2010b).

We control for the marital status of the individual. Pribis, Sabate and Fraser (1999) find no differences in marital status between vegetarians and non-vegetarians. However, the sample used was small (158 adults) and unrepresentative of the population. Leahy, Lyons and Tol (2010b) found that respondents who are divorced and cohabiting are more likely to be vegetarians than respondents that are married.

Finally, we include a variable which specifies whether respondents were born in Ireland, Northern Ireland, Great Britain or “other”. We would like to control for ethnic origin because this may influence meat eating patterns, particularly those of red meat, but unfortunately we are forced to lump together those of Polish, Indian and other extractions. We would also like to control for the number of other vegetarians in the household but this information is not provided in the dataset. Leahy, Lyons and Tol (2010b) found that household size was an important variable in both the vegetarian and partial vegetarian models. However, this information is not gathered in SLÁN. Also, questions regarding environmental or animal welfare concern or religious orientation would be useful in explaining the vegetarian decision but SLÁN does not include any such questions.

The second part of the analysis examines the factors associated with partial vegetarianism. We use an ordered logit model in which the dependent variable is the level of meat
consumption. We create a variable which specifies the equivalent daily servings of each of the 21 meat items. 0 indicates that the item is consumed less than once a month or never, 0.067 indicates that the item is consumed one–three times a month, 0.143 indicates that the item is consumed once a week, 0.429 indicates a consumption pattern of 2-4 times a week, and 0.786 reflects a consumption pattern of 5-6 times a week. 1 indicates that the meat item is consumed once a day, 2.5 indicates an item is consumed 2-3 times a day and 4.5 indicates a consumption pattern of 4-5 times a day. The maximum value per item is 6, indicating that the item is consumed at least 6 times per day. We then combine the daily serving equivalents for each type of meat for each respondent so that we have a composite meat consumption scale. In theory, the values could range between 0 and 126, however, no respondents report consuming all meat items 6 times per day. Having restricted the sample, the maximum meat consumption value is 8.6. The weighted mean is 1.59. 1.7% of the sample is vegetarian. We use the same explanatory variables as we do in part 1.

A list of the variables used in the model and some descriptive statistics on them can be found in Table 1. A list of the 21 meat items included in SLÁN can be found in Table A1 of the appendix.

3. Results

For both the logit and ordered logit models, we include all of the explanatory variables we believe may influence meat consumption. We then remove insignificant variables, testing for both individual and joint significance. Due to the large number of explanatory variables in our models, only the results of the more parsimonious models are presented. Full regression results are available on request from the authors.

3.1 Vegetarianism

The dependent variable equals 1 if the respondent is a vegetarian, 0 otherwise. For each categorical explanatory variable there is a reference category which acts as a baseline against which the characteristics of respondents, or their households, are compared. The results are presented in terms of odds ratios which reflect the probabilities that a respondent with a given characteristic will be a vegetarian, relative to the probability of those in the reference category. An odds ratio of 1 indicates that a respondent with that characteristic is equally likely to be a vegetarian as those in the reference category. An odds ratio greater than 1
indicates a higher probability that the respondent will be a vegetarian, while a ratio below 1 indicates that the probability is lower.

Table 2 displays the results of the parsimonious model which investigates the factors associated with vegetarianism among adults in Ireland.

Table 2

The odds ratio for female indicates that females are 55% more likely to be vegetarians than males in Ireland. This is consistent with anecdotal evidence. The relationship is not as strong as it is in England, however (Leahy, Lyons and Tol, 2010b). Also as expected is the finding that single people are 73% more likely to be vegetarians compared to people who are married. There are many reasons why this is the case. It could be that vegetarians like to live on their own or are hard to match, but it could also be that potential or one-time vegetarians are encouraged to eat meat when they live with meat eaters. Unfortunately, we do not have an instrumental variable with which we can solve this problem of simultaneity. The same problem arises with the “bmi” and “fruitveg” variables. The lower a person's bmi, the more likely it is that he/she will be a vegetarian. However, we cannot decipher whether vegetarians have a lower bmi because meat contains a higher fat content than many of its alternatives or if respondents with a low bmi choose to abstain from meat. Similarly, as the number of portions of fruit and vegetables that are consumed on a daily basis increases, so too does the probability that the respondent is a vegetarian. Perhaps vegetarians are more health conscious than their meat eating counterparts or it could be that vegetarians just consume more fruit and vegetables as part of their daily calorie intake.

The argument that many Irish people become vegetarian for health reasons is supported by the fact that those who consume alcohol rarely or never are significantly more likely to be vegetarians than those who consume alcohol 2-3 times a week. However, smoking was not significant.

Many of the work status variables are significant in the model. Self employed people are 2.25 times more likely to be vegetarians than employees. This supports the argument that being a vegetarian is not just a dietary but also a lifestyle choice. Those who cannot work because they are sick or disabled are almost 2.6 times more likely to be vegetarians that those who are employed. These people may be following specific diets of which meat does not play a role. We had also included a dummy variable which equals 1 if the respondent suffers from one or more medical conditions and 0 if not, but it was not significant. Interestingly, respondents who are involved in home duties are 76% more likely to be vegetarians than those in the
“employees” category. Again, this may be to do with certain lifestyle choices made by vegetarians but we would need more detailed data to tease out exactly why this is the case. As expected, vegetarians are more likely to live in Dublin than those in the reference category; “open country”. In fact, 2.6% of Dublin’s residents are vegetarian while only 1.5% of those living in the reference category are vegetarian. This may be because Dublin’s population is more culturally diverse than that of rural Ireland. Thus, some of Dublin’s residents may be vegetarians on religious or cultural grounds. Leahy Lyons and Tol (2010b) also showed that living in a capital city (London) is positively associated with vegetarianism. Leahy Lyons and Tol (2010c) found that at the aggregate level, in relatively rich countries, higher education is positively associated with vegetarianism, probably because people are more aware of the environmental, health or animal welfare benefits of following a meat free diet. We find that this is also the case at the individual level. Respondents who have completed certificates, diplomas, degrees or higher degrees are all significantly more likely to be vegetarians than respondents who left full time education after completing the Leaving Certificate. Respondents who left education after the Junior Certificate, on the other hand, are significantly less likely to be vegetarians.

We were not surprised by the fact that income does not play a significant role in explaining the vegetarian decision among adults in Ireland. Leahy Lyons and Tol (2010c) found that in very poor countries, the rate of vegetarianism can be high because people simply cannot afford meat. However, in developed countries such as Ireland, most people can afford to buy meat if they so wish. We were surprised, however, that none of the age variables were significant. It thus appears, that younger adults are not more likely to be vegetarians than their older counterparts in Ireland, as we had previously thought.

3.2 Partial Vegetarianism

Table 3 shows the results of the ordered logit model in which we investigate the factors associated with varying levels of meat consumption among adults in Ireland. The dependent variable represents the level of meat consumption on an average day and varies between 0 and 8.6. Again, we test for individual and joint significance of the insignificant variables and only the results of the parsimonious model are presented.

[Table 3 about here]

As expected, females eat meat on fewer occasions than males. If we assume that portion sizes are the same in each sitting, we can conclude that females eat less meat.
Many of the health related variables are significant in this model. It is intuitive that respondents who take exercise and who are weight conscious eat less meat than those who do not because meat has a relatively high fat content. Similarly, the higher a person’s bmi and the less fruit and vegetables he/she consumes, the more meat he/she eats. As was the case in the previous model, however, we cannot ascertain the direction of causation. Consistent with the health hypothesis is the finding that respondents who drink alcohol less than once a month or 3-4 times a month eat significantly less meat than those who consume alcohol 2-3 times a week. Furthermore, the more alcoholic drinks a person consumes each time he/she is drinking alcohol, the more meat he/she consumes. The odds ratio on smoker also supports the hypothesis that partial vegetarianism may be a health related decision. Smokers eat meat significantly more often than non smokers in our sample.

Respondents who were born in Great Britain eat 23% less meat than respondents who were born in Ireland. This is an interesting finding but we would need more information on their ethnic, religious, cultural, and class background to ascertain why this is the case. While the quality of life variables were not significant in the previous model, respondents who consider their quality of life to be very poor eat 34% less meat than those who have a good quality of life. It does not appear that this can be explained by a loss of appetite in general, however. The SLÁN data shows that the total food consumption variable is not lower for these respondents. The causation may be reversed, of course: Those that cannot afford to eat as much meat as they would want report a low quality of life.

As was the case in the vegetarian model, higher levels of education are associated with lower levels of meat consumption, probably because respondents who are relatively well educated are aware of health and environmental benefits of reducing the amount of meat they consume. However, the odds ratio on the “educatio~2” variable contradicts this hypothesis. These respondents left full time education after completing the Junior Certificate but we find that they eat significantly less meat than those who completed the Leaving Certificate. As we have also controlled for income, we cannot presume that these people eat less meat because of income constraints. In any case, cheap, but poor quality, meat items are available in Ireland.

Two of the work status variables are significant in the model. Farmers eat meat 62% more often than respondents in the reference category (employees) while those in the “other” category eat meat significantly less often. Consistent with our hypothesis that respondents in the higher social classes would consume less meat was the finding that professional or managerial workers eat significantly less meat than non manual and skilled manual workers.
The results for the age variables are interesting. We had expected to find that young people are more likely to be both vegetarians and partial vegetarians. However, respondents in the youngest age group eat 30% more meat than 30-44 year olds. Respondents in the third (45-64) and fourth (over 65) age groups eat significantly less meat, however. This may be a habituation effect. Older adults may consume less meat because of income constraints at some time in their past.

The income variables are again not significant. Figure 3 shows the relationship between meat consumption levels and household income. The standard deviations are also shown. The average person consumes meat 1.5 times a day and this does not vary much across income levels. Respondents in the highest income group eat meat on fewer occasions than any other income group. However, we do not know how meat consumption varies for levels of income higher than €50,000.

Figure 3. Meat consumption and income

![Figure 3. Meat consumption and income](image)

4. **Discussion and Conclusion**

In this paper, we investigate the factors associated with vegetarianism at the individual level. We find that sex, marital status, living in Dublin, level of education and work status are all significantly associated with vegetarianism. Some of the health related variables also prove
statistically significant in our model; bmi, daily fruit and vegetable consumption, and the frequency of alcohol consumption. The identification of causal relationships between some of the variables and vegetarianism is constrained by the data. We are unable to correct for problems of simultaneity due to the lack of suitable instrumental variables and because the data are cross sectional. Also, due to data limitations, we cannot test the hypotheses that people become vegetarians for heath, environmental or animal welfare reasons.

We also investigate the factors driving the frequency of meat consumption. Being female, being born in Great Britain, having a poor quality of life, being in the professional or managerial social class, or having an education level higher than the Leaving Certificate are all negatively associated with meat consumption frequency. The health related variables are also significantly associated with the level of meat consumption. Having a relatively high bmi, being a smoker and consuming many units of alcohol in one sitting are all positively associated with meat consumption levels. On the other hand, eating a lot of fruit and vegetables, watching one’s weight, taking exercise and rarely or occasionally consuming alcohol are negatively related to a respondent’s meat consumption level.

Leahy Lyons and Tol (2010b) found that the larger the household, the more often meat is consumed. It thus appears that there are economies of scale in food consumption and small households may be deterred from consuming meat as often because of the associated cost, limited life span of meat, or the effort required in preparation. We were unable to include this variable in the models in this paper. Nor were we able to control for ethnicity, culture, religion or the number of other vegetarians living in the household, both of which could prove to be important factors in explaining vegetarianism and meat consumption frequency.

Vegetarianism is quite stable across relatively low levels of income. The level of vegetarianism is lowest among respondents belonging to the second lowest income group. Interestingly, however, these respondents eat meat on fewer occasions than respondents in most of the other income groups. We do not know how vegetarianism or meat consumption varies for income levels above €50,000. As expected, vegetarianism increases with education. Almost 2.9% of respondents with a higher degree are vegetarian while the figure is less than 1.0% for respondents with primary education or for those who are educated to Junior Certificate level.

This is probably because the well educated are aware of the health and environmental benefits that are associated with a low meat, if not a meat free, diet.
Acknowledgements
The Energy Policy Research Centre of the Economic and Social Research Institute provided financial support.

References

http://www.esri.ie/publications/search_for_a_working_pape/search_results/view/index.xml?id=3130

http://www.esri.ie/publications/search_for_a_working_pape/search_results/view/index.xml?id=3022

http://www.teagasc.ie/research/reports/foodprocessing/4607/eopr4607.asp

Table 1. Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vegetarian</td>
<td>1 if respondent is a vegetarian, 0 if not</td>
<td>6893</td>
<td>1.61%</td>
<td>12.59%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>meatfreq</td>
<td>Times per week respondent consumes meat</td>
<td>6893</td>
<td>1.54</td>
<td>0.82</td>
<td>0</td>
<td>8.57</td>
</tr>
<tr>
<td>Explanatory variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bmi</td>
<td>Body Mass Index</td>
<td>6504</td>
<td>25.66</td>
<td>4.49</td>
<td>11.24</td>
<td>60.28</td>
</tr>
<tr>
<td>fruitveg</td>
<td>Daily portions of fruit and vegetables</td>
<td>6893</td>
<td>6.95</td>
<td>3.39</td>
<td>0</td>
<td>30.08</td>
</tr>
<tr>
<td>alcohol</td>
<td>Typical number of drinks when drinking alcohol</td>
<td>5298</td>
<td>4.45</td>
<td>3.48</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>smoker</td>
<td>1 if respondent is a smoker, 0 if not</td>
<td>6893</td>
<td>0.26</td>
<td>0.44</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>female</td>
<td>1 if respondent is a female 0 if not</td>
<td>6893</td>
<td>0.59</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>active</td>
<td>1 if respondent is physically active regularly, 0 if not</td>
<td>6893</td>
<td>0.54</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>medicalprob</td>
<td>1 if respondent has medical problems, 0 if not</td>
<td>6893</td>
<td>0.09</td>
<td>0.29</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>watchweight</td>
<td>1 if respondent watches his/her weight, 0 if not</td>
<td>6893</td>
<td>0.45</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Frequency of alcohol consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>daysdrin~1</td>
<td>Never</td>
<td>6865</td>
<td>0.20</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>daysdrin~2</td>
<td>Monthly or less</td>
<td>6865</td>
<td>0.17</td>
<td>0.38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>daysdrin~3</td>
<td>3-4 times a month</td>
<td>6865</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>daysdrin~4</td>
<td>Reference category: 2-3 times a week</td>
<td>6865</td>
<td>0.29</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>daysdrin~5</td>
<td>At least 4 times a week</td>
<td>6865</td>
<td>0.08</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Health Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>healthst~1</td>
<td>Excellent</td>
<td>6874</td>
<td>0.22</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>healthst~2</td>
<td>Reference category: Very good</td>
<td>6893</td>
<td>0.36</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>healthst~3</td>
<td>Good</td>
<td>6874</td>
<td>0.29</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>healthst~4</td>
<td>Fair</td>
<td>6874</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>healthst~5</td>
<td>Poor</td>
<td>6874</td>
<td>0.03</td>
<td>0.16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>educatio~1</td>
<td>Primary not completed</td>
<td>6893</td>
<td>0.03</td>
<td>0.16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~2</td>
<td>Primary</td>
<td>6893</td>
<td>0.13</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~3</td>
<td>Junior Certificate</td>
<td>6893</td>
<td>0.20</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~4</td>
<td>Reference category: Leaving Certificate</td>
<td>6893</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~5</td>
<td>Diploma/Certificate</td>
<td>6893</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~6</td>
<td>Degree</td>
<td>6893</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>educatio~7</td>
<td>Higher degree</td>
<td>6893</td>
<td>0.10</td>
<td>0.30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Social status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>socialcl~1</td>
<td>Professional and managerial</td>
<td>6893</td>
<td>0.35</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>socialcl~2</td>
<td>Reference category: Non manual and skilled manual</td>
<td>6893</td>
<td>0.39</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>socialcl~3</td>
<td>Semi-skilled and unskilled</td>
<td>6893</td>
<td>0.15</td>
<td>0.36</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>socialcl~4</td>
<td>Unclassified</td>
<td>6893</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Work status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>workstat~1</td>
<td>Reference category: employee</td>
<td>6893</td>
<td>0.45</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~2</td>
<td>Self Employed</td>
<td>6865</td>
<td>0.08</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~3</td>
<td>Farmer</td>
<td>6865</td>
<td>0.03</td>
<td>0.18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~4</td>
<td>Student</td>
<td>6865</td>
<td>0.04</td>
<td>0.19</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Obs</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>workstat~5</td>
<td>Training Scheme</td>
<td>6865</td>
<td>0.01</td>
<td>0.08</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~6</td>
<td>Unemployed</td>
<td>6865</td>
<td>0.02</td>
<td>0.16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~7</td>
<td>Sick/Disabled</td>
<td>6865</td>
<td>0.03</td>
<td>0.18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~8</td>
<td>Home duties</td>
<td>6865</td>
<td>0.15</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~9</td>
<td>Retired</td>
<td>6865</td>
<td>0.17</td>
<td>0.38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>workstat~10</td>
<td>Other work status</td>
<td>6865</td>
<td>0.01</td>
<td>0.10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Household tenure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tenure_1</td>
<td>Mortgage holder</td>
<td>6846</td>
<td>0.39</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tenure_2</td>
<td>Renting from local authority</td>
<td>6846</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tenure_3</td>
<td>Renting privately</td>
<td>6846</td>
<td>0.12</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tenure_4</td>
<td>Reference category: Owned outright</td>
<td>6893</td>
<td>0.40</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tenure_5</td>
<td>Other tenure</td>
<td>6846</td>
<td>0.01</td>
<td>0.10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Location of household</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>location_1</td>
<td>Reference category: Open country</td>
<td>6893</td>
<td>0.32</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>location_2</td>
<td>Village</td>
<td>6812</td>
<td>0.12</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>location_3</td>
<td>Town</td>
<td>6812</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>location_4</td>
<td>City</td>
<td>6812</td>
<td>0.11</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>location_5</td>
<td>Dublin city or county</td>
<td>6812</td>
<td>0.20</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Location born</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>born1</td>
<td>Reference category: Ireland</td>
<td>6893</td>
<td>0.86</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>born2</td>
<td>Northern Ireland</td>
<td>6869</td>
<td>0.01</td>
<td>0.11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>born3</td>
<td>Great Britain</td>
<td>6869</td>
<td>0.07</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>born4</td>
<td>Other location</td>
<td>6869</td>
<td>0.05</td>
<td>0.23</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quality of life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lifequal_1</td>
<td>Very Poor</td>
<td>6850</td>
<td>0.01</td>
<td>0.12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lifequal_2</td>
<td>Poor</td>
<td>6850</td>
<td>0.02</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lifequal_3</td>
<td>Ok</td>
<td>6850</td>
<td>0.07</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lifequal_4</td>
<td>Reference category: Good</td>
<td>6893</td>
<td>0.49</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lifequal_5</td>
<td>Very good</td>
<td>6850</td>
<td>0.41</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>income_1</td>
<td>Under €10,000</td>
<td>6241</td>
<td>0.04</td>
<td>0.21</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income_2</td>
<td>€10,000-€19,999</td>
<td>6241</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income_3</td>
<td>€20,000-€29,999</td>
<td>6241</td>
<td>0.18</td>
<td>0.38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income_4</td>
<td>€30,000-€39,999</td>
<td>6241</td>
<td>0.16</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income_5</td>
<td>€40,000 - €40,999</td>
<td>6241</td>
<td>0.15</td>
<td>0.36</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income_6</td>
<td>Reference category: Over €50,000</td>
<td>6893</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age_1</td>
<td>18-29</td>
<td>6893</td>
<td>0.17</td>
<td>0.38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>age_2</td>
<td>Reference category: 30-44</td>
<td>6893</td>
<td>0.32</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>age_3</td>
<td>45-64</td>
<td>6893</td>
<td>0.32</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>age_4</td>
<td>65 or over</td>
<td>6893</td>
<td>0.19</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maritals~1</td>
<td>Single</td>
<td>6883</td>
<td>0.27</td>
<td>0.44</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maritals~2</td>
<td>Cohabiting</td>
<td>6883</td>
<td>0.06</td>
<td>0.24</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maritals~3</td>
<td>Reference category: Married</td>
<td>6893</td>
<td>0.52</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maritals~4</td>
<td>Separated</td>
<td>6883</td>
<td>0.04</td>
<td>0.20</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maritals~5</td>
<td>Divorced</td>
<td>6883</td>
<td>0.02</td>
<td>0.13</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>maritals~6</td>
<td>Widowed</td>
<td>6883</td>
<td>0.09</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Determinants of vegetarianism

| | Odds Ratio | Std. Err. | z | P>|z| |
|--------------------------|------------|-----------|------|------|
| female | 1.55 | 0.4 | 1.68 | 0.092* |
| marital~1 | 1.73 | 0.4 | 2.37 | 0.018** |
| workstat~2 | 2.25 | 0.74 | 2.49 | 0.013** |
| workstat~7 | 2.57 | 1.25 | 1.94 | 0.052* |
| workstat~8 | 1.76 | 0.51 | 1.97 | 0.049** |
| location_5 | 1.62 | 0.37 | 2.13 | 0.033** |
| bmi | 0.94 | 0.02 | -2.41| 0.016** |
| fruitveg | 1.17 | 0.03 | 6.66 | 0*** |
| daysdrin~1 | 1.97 | 0.49 | 2.68 | 0.007*** |
| daysdrin~2 | 1.71 | 0.47 | 1.94 | 0.052* |
| educatio~3 | 0.25 | 0.14 | -2.56| 0.01*** |
| educatio~5 | 1.95 | 0.52 | 2.51 | 0.012** |
| educatio~6 | 1.93 | 0.61 | 2.08 | 0.038** |
| educatio~7 | 1.87 | 0.62 | 1.91 | 0.056* |

Number of observations: 6387

LR χ^2(14): 119.51

Prob > χ^2: 0

Pseudo R^2: 0.1161

AIC: 940.28

BIC: 1041.71
Table 3. Determinants of partial vegetarianism

| | Odds Ratio | Std. Err. | z | P>|z| |
|------------------|------------|-----------|--------|-------|
| female | 0.69 | 0.04 | -6.52 | 0.001***|
| smoker | 1.11 | 0.06 | 1.88 | 0.06* |
| daysdrin~2 | 0.86 | 0.06 | -2.23 | 0.026**|
| daysdrin~3 | 0.89 | 0.05 | -1.96 | 0.05** |
| alcohol | 1.03 | 0.01 | 3.81 | 0.0*** |
| active | 0.91 | 0.05 | -1.86 | 0.062* |
| watchweight | 0.84 | 0.05 | -3.21 | 0.001***|
| bmi | 1.02 | 0.01 | 3.78 | 0.0*** |
| fruitveg | 0.97 | 0.01 | -3.36 | 0.001***|
| born3 | 0.77 | 0.07 | -2.76 | 0.006***|
| lifequal_1 | 0.66 | 0.16 | -1.75 | 0.079* |
| educatio~2 | 0.83 | 0.07 | -2.05 | 0.04** |
| educatio~5 | 0.76 | 0.05 | -4.03 | 0.0*** |
| educatio~6 | 0.73 | 0.06 | -3.71 | 0.0*** |
| educatio~7 | 0.54 | 0.05 | -6.88 | 0.0*** |
| workstat~3 | 1.62 | 0.25 | 3.11 | 0.002***|
| worksta~10 | 0.44 | 0.11 | -3.29 | 0.001***|
| socialcl~1 | 0.75 | 0.04 | -5.2 | 0.0*** |
| age_1 | 1.31 | 0.1 | 3.64 | 0.0*** |
| age_3 | 0.81 | 0.05 | -3.37 | 0.001***|
| age_4 | 0.74 | 0.06 | -3.56 | 0.0*** |

Number of observations: 4597

LR χ^2 (21): 468.27

Prob $> \chi^2$: 0

Pseudo R2: 0.0076

AIC: 62830.66

BIC: 69547.49
Table A1. List of meat items included in SLÁN

- Beef roast
- Beef: steak
- Beef: mince
- Beef: stew
- Beef burger
- Pork: roast
- Pork: chops
- Pork: slices/escalopes
- Lamb: roast
- Lamb: chops
- Lamb: stew
- Chicken portion or other poultry e.g. turkey roast
- Breaded chicken, chicken nuggets, chicken burger
- Bacon
- Ham
- Corned beef, spam, luncheon meats
- Sausages, frankfurters
- Savoury pies (e.g. meat pie, pork pie, steak & kidney pie, sausage rolls
- Liver, heart, kidney
- Liver paté
- Meat based lasagne
<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Title/ Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td>ESRI Authors/ Co-authors Italicised</td>
</tr>
</tbody>
</table>
| | 368 | Modified Ramsey Discounting for Climate Change
Richard S.J. Tol |
| | 367 | A Cost-Benefit Analysis of the EU 20/20/2020 Package
Richard S.J. Tol |
| | 366 | The Distributional Effects of Value Added Tax in Ireland
Eimear Leahy, Seán Lyons, Richard S.J. Tol |
| **2010** | | |
| | 365 | Explaining International Differences in Rates of Overeducation in Europe
Maria A. Davia, Seamus McGuinness and Philip, J. O’Connell |
| | 364 | The Research Output of Business Schools and Business Scholars in Ireland
Richard S.J. Tol |
| | 363 | The Effects of the Internationalisation of Firms on Innovation and Productivity
Iulia Siedschlag, Xiaoheng Zhang and Brian Cahill |
| | 362 | Too much of a good thing? Gender, ‘Concerted cultivation’ and unequal achievement in primary education
Selina McCoy, Delma Byrne, Joanne Banks |
| | 361 | Timing and Determinants of Local Residential Broadband Adoption: Evidence from Ireland
Seán Lyons |
| | 360 | Determinants of Vegetarianism and Partial Vegetarianism in the United Kingdom
Eimear Leahy, Seán Lyons and Richard S.J. Tol |
| | 359 | From Data to Policy Analysis: Tax-Benefit Modelling using SILC 2008
Tim Callan, Claire Keane, John R. Walsh and Marguerita Lane |
Towards a Better and Sustainable Health Care System – Resource Allocation and Financing Issues for Ireland
Frances Ruane

An Estimate of the Value of Lost Load for Ireland
Eimear Leahy and Richard S.J. Tol

Public Policy Towards the Sale of State Assets in Troubled Times: Lessons from the Irish Experience
Paul K Gorecki, Sean Lyons and Richard S. J. Tol

The Impact of Ireland’s Recession on the Labour Market Outcomes of its Immigrants
Alan Barrett and Elish Kelly

Research and Policy Making
Frances Ruane

Market Regulation and Competition; Law in Conflict: A View from Ireland, Implications of the Panda Judgment
Philip Andrews and Paul K Gorecki

Designing a property tax without property values: Analysis in the case of Ireland
Karen Mayor, Seán Lyons and Richard S.J. Tol

Civil War, Climate Change and Development: A Scenario Study for Sub-Saharan Africa
Conor Devitt and Richard S.J. Tol

Regulating Knowledge Monopolies: The Case of the IPCC
Richard S.J. Tol

The Impact of Tax Reform on New Car Purchases in Ireland
Hugh Hennessy and Richard S.J. Tol

Climate Policy under Fat-Tailed Risk:
An Application of FUND
David Anthoff and Richard S.J. Tol

Corporate Expenditure on Environmental Protection
Stefanie A. Haller and Liam Murphy

Female Labour Supply and Divorce: New Evidence from Ireland
Olivier Bargain, Libertad González, Claire Keane and Berkay Özcan
345 A Statistical Profiling Model of Long-Term Unemployment Risk in Ireland
Philip J. O’Connell, Seamus McGuinness, Elish Kelly

344 The Economic Crisis, Public Sector Pay, and the Income Distribution
Tim Callan, Brian Nolan (UCD) and John Walsh

343 Estimating the Impact of Access Conditions on Service Quality in Post
Gregory Swinand, Conor O’Toole and Seán Lyons

342 The Impact of Climate Policy on Private Car Ownership in Ireland
Hugh Hennessy and Richard S.J. Tol

341 National Determinants of Vegetarianism
Eimear Leahy, Seán Lyons and Richard S.J. Tol

340 An Estimate of the Number of Vegetarians in the World
Eimear Leahy, Seán Lyons and Richard S.J. Tol

339 International Migration in Ireland, 2009
Philip J O’Connell and Corona Joyce

338 The Euro Through the Looking-Glass: Perceived Inflation Following the 2002 Currency Changeover
Pete Lunn and David Duffy

337 Returning to the Question of a Wage Premium for Returning Migrants
Alan Barrett and Jean Goggin

2009

336 What Determines the Location Choice of Multinational Firms in the ICT Sector?
Iulia Siedschlag, Xiaoheng Zhang, Donal Smith

335 Cost-benefit analysis of the introduction of weight-based charges for domestic waste – West Cork’s experience
Sue Scott and Dorothy Watson

334 The Likely Economic Impact of Increasing Investment in Wind on the Island of Ireland
Conor Devitt, Seán Diffney, John Fitz Gerald, Seán Lyons and Laura Malaguzzi Valeri

333 Estimating Historical Landfill Quantities to Predict Methane
Emissions
Seán Lyons, Liam Murphy and Richard S.J. Tol

International Climate Policy and Regional Welfare Weights
Daiju Narita, Richard S. J. Tol, and David Anthoff

A Hedonic Analysis of the Value of Parks and Green Spaces in the Dublin Area
Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol

Measuring International Technology Spillovers and Progress Towards the European Research Area
Iulia Siedschlag

Climate Policy and Corporate Behaviour
Nicola Commins, Seán Lyons, Marc Schiffbauer, and Richard S.J. Tol

The Association Between Income Inequality and Mental Health: Social Cohesion or Social Infrastructure
Richard Layte and Bertrand Maître

A Computational Theory of Exchange: Willingness to pay, willingness to accept and the endowment effect
Pete Lunn and Mary Lunn

Fiscal Policy for Recovery
John Fitz Gerald

The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment
Christoph Böhringer, Thomas F. Rutherford, and Richard S.J. Tol

Counting Only the Hits? The Risk of Underestimating the Costs of Stringent Climate Policy
Massimo Tavoni, Richard S.J. Tol

International Cooperation on Climate Change Adaptation from an Economic Perspective
Kelly C. de Bruin, Rob B. Dellink and Richard S.J. Tol

What Role for Property Taxes in Ireland?
T. Callan, C. Keane and J.R. Walsh

The Public-Private Sector Pay Gap in Ireland: What Lies Beneath?
Elish Kelly, Seamus McGuinness, Philip O’Connell

320 A Code of Practice for Grocery Goods Undertakings and An Ombudsman: How to Do a Lot of Harm by Trying to Do a Little Good
Paul K Gorecki

319 Negative Equity in the Irish Housing Market
David Duffy

318 Estimating the Impact of Immigration on Wages in Ireland
Alan Barrett, Adele Bergin and Elish Kelly

Seamus McGuinness, Elish Kelly, Philip O’Connell, Tim Callan

316 Mismatch in the Graduate Labour Market Among Immigrants and Second-Generation Ethnic Minority Groups
Delma Byrne and Seamus McGuinness

315 Managing Housing Bubbles in Regional Economies under EMU: Ireland and Spain
Thomas Conefrey and John Fitz Gerald

314 Job Mismatches and Labour Market Outcomes
Kostas Mavromaras, Seamus McGuinness, Nigel O’Leary, Peter Sloane and Yin King Fok

313 Immigrants and Employer-provided Training
Alan Barrett, Séamus McGuinness, Martin O’Brien and Philip O’Connell

312 Did the Celtic Tiger Decrease Socio-Economic Differentials in Perinatal Mortality in Ireland?
Richard Layte and Barbara Clyne

311 Exploring International Differences in Rates of Return to Education: Evidence from EU SILC
Maria A. Davia, Seamus McGuinness and Philip, J. O’Connell

310 Car Ownership and Mode of Transport to Work in Ireland
Nicola Commins and Anne Nolan

309 Recent Trends in the Caesarean Section Rate in Ireland
1999-2006
Aoife Brick and *Richard Layte*

308 Price Inflation and Income Distribution
Anne Jennings, Seán Lyons and *Richard S.J. Tol*

307 Overskilling Dynamics and Education Pathways
Kostas Mavromaras, Seamus McGuinness, Yin King Fok

306 What Determines the Attractiveness of the European Union to the Location of R&D Multinational Firms?
Iulia Siedschlag, Donal Smith, Camelia Turcu, Xiaoheng Zhang

305 Do Foreign Mergers and Acquisitions Boost Firm Productivity?
Marc Schiffbauer, Iulia Siedschlag, Frances Ruane

304 Inclusion or Diversion in Higher Education in the Republic of Ireland?
Delma Byrne

303 Welfare Regime and Social Class Variation in Poverty and Economic Vulnerability in Europe: An Analysis of EU-SILC
Christopher T. Whelan and *Bertrand Maître*

302 Understanding the Socio-Economic Distribution and Consequences of Patterns of Multiple Deprivation: An Application of Self-Organising Maps
Christopher T. Whelan, Mario Lucchini, Maurizio Pisati and *Bertrand Maître*

301 Estimating the Impact of Metro North
Edgar Morgenroth

300 Explaining Structural Change in Cardiovascular Mortality in Ireland 1995-2005: A Time Series Analysis
Richard Layte, Sinead O’Hara and *Kathleen Bennett*

299 EU Climate Change Policy 2013-2020: Using the Clean Development Mechanism More Effectively
Paul K Gorecki, Seán Lyons and *Richard S.J. Tol*

298 Irish Public Capital Spending in a Recession
Edgar Morgenroth

297 Exporting and Ownership Contributions to Irish Manufacturing Productivity Growth
Anne Marie Gleeson, Frances Ruane
296 Eligibility for Free Primary Care and Avoidable Hospitalisations in Ireland
Anne Nolan

295 Managing Household Waste in Ireland: Behavioural Parameters and Policy Options
John Curtis, Seán Lyons and Abigail O’Callaghan-Platt

294 Labour Market Mismatch Among UK Graduates; An Analysis Using REFLEX Data
Seamus McGuinness and Peter J. Sloane

293 Towards Regional Environmental Accounts for Ireland
Richard S.J. Tol, Nicola Commins, Niamh Crilly, Sean Lyons and Edgar Morgenroth

292 EU Climate Change Policy 2013-2020: Thoughts on Property Rights and Market Choices
Paul K. Gorecki, Sean Lyons and Richard S.J. Tol

291 Measuring House Price Change
David Duffy

290 Intra-and Extra-Union Flexibility in Meeting the European Union’s Emission Reduction Targets
Richard S.J. Tol

289 The Determinants and Effects of Training at Work: Bringing the Workplace Back In
Philip J. O’Connell and Delma Byrne

288 Climate Feedbacks on the Terrestrial Biosphere and the Economics of Climate Policy: An Application of FUND
Richard S.J. Tol

287 The Behaviour of the Irish Economy: Insights from the HERMES macro-economic model
Adele Bergin, Thomas Conefrey, John FitzGerald and Ide Kearney

286 Mapping Patterns of Multiple Deprivation Using Self-Organising Maps: An Application to EU-SILC Data for Ireland
Maurizio Pisati, Christopher T. Whelan, Mario Lucchini and Bertrand Maitre

285 The Feasibility of Low Concentration Targets:
An Application of FUND
Richard S.J. Tol

Policy Options to Reduce Ireland’s GHG Emissions
Instrument choice: the pros and cons of alternative policy instruments
Thomas Legge and Sue Scott

Accounting for Taste: An Examination of Socioeconomic Gradients in Attendance at Arts Events
Pete Lunn and Elish Kelly

The Economic Impact of Ocean Acidification on Coral Reefs

Assessing the impact of biodiversity on tourism flows: A model for tourist behaviour and its policy implications
Giulia Macagno, Maria Loureiro, Paulo A.L.D. Nunes and Richard S.J. Tol

Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption
Seán Diffney, Seán Lyons and Laura Malaguzzi Valeri

International Transmission of Business Cycles Between Ireland and its Trading Partners
Jean Goggin and Iulia Siedschlag

Optimal Global Dynamic Carbon Taxation
David Anthoff

Energy Use and Appliance Ownership in Ireland
Eimear Leahy and Seán Lyons

Discounting for Climate Change
David Anthoff, Richard S.J. Tol and Gary W. Yohe

Projecting the Future Numbers of Migrant Workers in the Health and Social Care Sectors in Ireland
Alan Barrett and Anna Rust

Economic Costs of Extratropical Storms under Climate Change: An application of FUND
Daiju Narita, Richard S.J. Tol, David Anthoff

The Macro-Economic Impact of Changing the Rate of Corporation Tax
Thomas Conefrey and John D. Fitz Gerald

272 The Games We Used to Play
An Application of Survival Analysis to the Sporting Life-course
Pete Lunn

2008

271 Exploring the Economic Geography of Ireland
Edgar Morgenroth

270 Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public-Private Sector Wage Gap in Ireland
Elish Kelly, Seamus McGuinness, Philip O’Connell

269 A Dynamic Analysis of Household Car Ownership in Ireland
Anne Nolan

268 The Determinants of Mode of Transport to Work in the Greater Dublin Area
Nicola Commins and Anne Nolan

267 Resonances from Economic Development for Current Economic Policymaking
Frances Ruane

266 The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland
Seamus McGuinness, Elish Kelly and Philip O’Connell

265 Poverty in Ireland in Comparative European Perspective
Christopher T. Whelan and Bertrand Maître

264 A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area
Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol

263 Comparing Poverty Indicators in an Enlarged EU
Christopher T. Whelan and Bertrand Maître

262 Fuel Poverty in Ireland: Extent, Affected Groups and Policy Issues
Sue Scott, Seán Lyons, Claire Keane, Donal McCarthy and Richard S.J. Tol

261 The Misperception of Inflation by Irish Consumers
David Duffy and Pete Lunn
260 The Direct Impact of Climate Change on Regional Labour Productivity

259 Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities:
An Application of FUND
Daiju Narita, Richard S. J. Tol and David Anthoff

258 Are Over-educated People Insiders or Outsiders?
A Case of Job Search Methods and Over-education in UK
Aleksander Kucel, Delma Byrne

257 Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework
Richard S.J. Tol, Terje K. Berntsen, Brian C. O'Neill, Jan S. Fuglestvedt, Keith P. Shine, Yves Balkanski and Laszlo Makra

256 Intra-Union Flexibility of Non-ETS Emission Reduction Obligations in the European Union
Richard S.J. Tol

255 The Economic Impact of Climate Change
Richard S.J. Tol

254 Measuring International Inequity Aversion
Richard S.J. Tol

253 Using a Census to Assess the Reliability of a National Household Survey for Migration Research: The Case of Ireland
Alan Barrett and Elish Kelly

David Anthoff, Richard S.J. Tol and Gary W. Yohe

251 The Impact of a Carbon Tax on Economic Growth and Carbon Dioxide Emissions in Ireland
Thomas Conefrey, John D. Fitz Gerald, Laura Malaguzzi Valeri and Richard S.J. Tol

250 The Distributional Implications of a Carbon Tax in Ireland
Tim Callan, Sean Lyons, Susan Scott, Richard S.J. Tol and Stefano Verde
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>Measuring Material Deprivation in the Enlarged EU</td>
<td>Christopher T. Whelan, Brian Nolan and Bertrand Maître</td>
</tr>
<tr>
<td>246</td>
<td>A Carton Tax for Ireland</td>
<td>Richard S.J. Tol, Tim Callan, Thomas Conefrey, John D. Fitz Gerald, Seán Lyons, Laura Malaguzzi Valeri and Susan Scott</td>
</tr>
<tr>
<td>245</td>
<td>Non-cash Benefits and the Distribution of Economic Welfare</td>
<td>Tim Callan and Claire Keane</td>
</tr>
<tr>
<td>244</td>
<td>Scenarios of Carbon Dioxide Emissions from Aviation</td>
<td>Karen Mayor and Richard S.J. Tol</td>
</tr>
<tr>
<td>243</td>
<td>The Effect of the Euro on Export Patterns: Empirical Evidence from Industry Data</td>
<td>Gavin Murphy and Iulia Siedschlag</td>
</tr>
<tr>
<td>242</td>
<td>The Economic Returns to Field of Study and Competencies Among Higher Education Graduates in Ireland</td>
<td>Elish Kelly, Philip O'Connell and Emer Smyth</td>
</tr>
<tr>
<td>241</td>
<td>European Climate Policy and Aviation Emissions</td>
<td>Karen Mayor and Richard S.J. Tol</td>
</tr>
<tr>
<td>240</td>
<td>Aviation and the Environment in the Context of the EU-US Open Skies Agreement</td>
<td>Karen Mayor and Richard S.J. Tol</td>
</tr>
<tr>
<td>239</td>
<td>Yuppie Kvetch? Work-life Conflict and Social Class in Western Europe</td>
<td>Frances McGinnity and Emma Calvert</td>
</tr>
</tbody>
</table>
237 How Local is Hospital Treatment? An Exploratory Analysis of Public/Private Variation in Location of Treatment in Irish Acute Public Hospitals
Jacqueline O’Reilly and Miriam M. Wiley

236 The Immigrant Earnings Disadvantage Across the Earnings and Skills Distributions: The Case of Immigrants from the EU’s New Member States in Ireland
Alan Barrett, Seamus McGuinness and Martin O’Brien

235 Europeanisation of Inequality and European Reference Groups
Christopher T. Whelan and Bertrand Maître

234 Managing Capital Flows: Experiences from Central and Eastern Europe
Jürgen von Hagen and Iulia Siedschlag

Charlie Karlsson, Gunther Maier, Michaela Trippl, Iulia Siedschlag, Robert Owen and Gavin Murphy

232 Welfare and Competition Effects of Electricity Interconnection between Great Britain and Ireland
Laura Malaguzzi Valeri

231 Is FDI into China Crowding Out the FDI into the European Union?
Laura Resmini and Iulia Siedschlag

230 Estimating the Economic Cost of Disability in Ireland
John Cullinan, Brenda Gannon and Seán Lyons

229 Controlling the Cost of Controlling the Climate: The Irish Government’s Climate Change Strategy
Colm McCarthy, Sue Scott

228 The Impact of Climate Change on the Balanced-Growth-Equivalent: An Application of FUND
David Anthoff, Richard S.J. Tol

227 Changing Returns to Education During a Boom? The Case of Ireland
Seamus McGuinness, Frances McGinnity, Philip O’Connell
226 ‘New’ and ‘Old’ Social Risks: Life Cycle and Social Class Perspectives on Social Exclusion in Ireland
Christopher T. Whelan and Bertrand Maître

225 The Climate Preferences of Irish Tourists by Purpose of Travel
Seán Lyons, Karen Mayor and Richard S.J. Tol

224 A Hirsch Measure for the Quality of Research Supervision, and an Illustration with Trade Economists
Frances P. Ruane and Richard S.J. Tol

223 Environmental Accounts for the Republic of Ireland: 1990-2005
Seán Lyons, Karen Mayor and Richard S.J. Tol

2007
222 Assessing Vulnerability of Selected Sectors under Environmental Tax Reform: The issue of pricing power
J. Fitz Gerald, M. Keeney and S. Scott

221 Climate Policy Versus Development Aid
Richard S.J. Tol

220 Exports and Productivity – Comparable Evidence for 14 Countries
The International Study Group on Exports and Productivity

219 Energy-Using Appliances and Energy-Saving Features: Determinants of Ownership in Ireland
Joe O’Doherty, Seán Lyons and Richard S.J. Tol

218 The Public/Private Mix in Irish Acute Public Hospitals: Trends and Implications
Jacqueline O’Reilly and Miriam M. Wiley

217 Regret About the Timing of First Sexual Intercourse: The Role of Age and Context
Richard Layte, Hannah McGee

216 Determinants of Water Connection Type and Ownership of Water-Using Appliances in Ireland
Joe O’Doherty, Seán Lyons and Richard S.J. Tol

215 Unemployment – Stage or Stigma?
Being Unemployed During an Economic Boom
Emer Smyth

214 The Value of Lost Load
Richard S.J. Tol

213 Adolescents’ Educational Attainment and School Experiences in Contemporary Ireland
Merike Darmody, Selina McCoy, Emer Smyth

212 Acting Up or Opting Out? Truancy in Irish Secondary Schools
Merike Darmody, Emer Smyth and Selina McCoy

211 Where do MNEs Expand Production: Location Choices of the Pharmaceutical Industry in Europe after 1992
Frances P. Ruane, Xiaoheng Zhang

210 Holiday Destinations: Understanding the Travel Choices of Irish Tourists
Seán Lyons, Karen Mayor and Richard S.J. Tol

209 The Effectiveness of Competition Policy and the Price-Cost Margin: Evidence from Panel Data
Patrick McCloughan, Seán Lyons and William Batt

208 Tax Structure and Female Labour Market Participation: Evidence from Ireland
Tim Callan, A. Van Soest, J.R. Walsh