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Bose condensation in a model microcavity
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We study the equilibrium properties of a system of dipole-
active excitons coupled to a single photon mode at fixed total
excitation. Treating the presence or absence of a trapped ex-
citon as a two-level system produces a model that is exactly
soluble. It gives a simple description of the physics of polari-
ton condensation in optical cavities beyond the low-density
bosonic regime.
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The coupled exciton-photon modes of a microcavity
were first observed by Weisbuch et al. [1]. Since at low
densities excitons are bosons, at low densities coupled
exciton-photon modes are also bosons. These bosonic
excitations are known as cavity polaritons.

Considerable effort has been devoted to seeking ex-
perimental evidence for the bosonic nature of cavity po-
laritons. This evidence has been sought in the non-
equilibrium behavior of microcavities [2–8]. In this pa-
per we will consider the simpler equilibrium problem, in
particular the possibility of a Bose condensate of cavity
polaritons.

Polaritons are not conserved particles, so there is ul-
timately no equilibrium condensate. We may, however,
treat polaritons as conserved particles if their lifetime is
much longer than the time required to achieve thermal
equilibrium at a fixed polariton number. We will study
such a quasi-equilibrium limit in a model microcavity.

While the theory of weakly-interacting bosons is well
understood, it is far from obvious that this theory is ap-
propriate to the cavity polariton condensate. The con-
cept of a polariton [9] is only valid in linear response;
it is not valid for a substantial occupation of the exci-
tons. Finite exciton densities introduce saturation of the
electronic states, so the excitons cannot be treated as
bosons. In general, finite densities of excitons also lead to
exciton-exciton interactions, which can produce dephas-
ing and ionization of the excitons [10]. By considering a
situation in which neither dephasing nor ionization are
relevant, we will show how to generalize the concept of
a polariton to include saturation of the exciton states.
Saturation alone does not preclude Bose condensation.

We assume that the relevant electronic excitations in
the microcavity are localized, physically separated, single
excitons. Thus we can neglect the Coulomb interaction
between excitons localized on different sites. We further
assume that, because of the tiny effective mass of a cavity
photon(∼ 10−5me for a 1000 Å cavity), there is only a

single relevant photon mode in the cavity.
These assumptions lead us to consider the well-known

Dicke model [11]. This consists of a single mode of the
photon field, dipole coupled to a set of N localized two-
level oscillators. Each two-level oscillator represents one
exciton state, localized on site n with an energy Eg(n).
These exciton states are composed of conduction and va-
lence electrons with fermionic annihilation operators bn
and an respectively; these fermions are subject to the lo-
cal constraints b†nbn +a†nan = 1. For brevity, we suppress
the site index n on the fermion operators. Making the
rotating wave approximation, we consider the Hamilto-
nian

H =
∑ Eg(n)

2

(

b†b− a†a
)

+ ωcψ
†ψ (1)

+
g√
N

∑

(

b†aψ + ψ†a†b
)

.

ψ is the bosonic annihilation operator for the cavity mode
and the summations are over the site index n.

The operator σz = 1

2

∑

(b†b − a†a) measures the elec-
tronic excitation; such excitations are created by the op-
erator 1√

N

∑

b†a. They are approximately bosonic pro-

vided we remain near to the bare ground state, so that
〈σz〉 ≈ −N/2. In this limit equation (1) becomes two
coupled harmonic oscillators and we recover the usual
bosonic polaritons.

Away from 〈σz〉 = −N/2 saturation of the electronic
states becomes relevant and the excitations are no longer
bosonic. However, we can still define a polariton: it is
the quantum of excitation of the non-linear coupled sys-
tem. With this definition the polariton number operator
is L = ψ†ψ + σz, which is a conserved quantity for the
Hamiltonian (1).

The thermal equilibrium of the Dicke model was orig-
inally solved by Hepp and Lieb [12]. Here we are in-
terested in the quasi-equilibrium problem posed by (1)
at constant total excitation L, a generalization obtained
by adding a chemical potential to constrain L. Thus at
T = 0 the relevant free energy is 〈H − µexL〉, where µex

is the chemical potential for excitations.
To keep the number of parameters to a minimum

we restrict ourselves to the uniform case Eg(n) = Eg.
There are then only three parameters in the problem:
the temperature (kBβ)−1, the dimensionless detuning
∆ = (ωc−Eg)/g, and the excitation density ρex = 〈L〉/N .
Generalizing our solution to include a distribution of ex-
citon energies is straightforward.
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FIG. 1. Behavior of the zero-temperature condensed solu-
tion as a function of excitation density. Upper section (left
axis): chemical potential, for detunings ∆ = 0, 1 and 3. Lower
section (right axis): photon density(solid lines) and inversion
density 2〈σz〉/N(dotted lines), for the same three detunings.
The inversion increases with increasing ∆, while the photon
density decreases.

Following Kiry’anov and Yarunin’s work [13] on the
unconstrained problem, we solve the model using the
large-N expansion of a coherent-state path-integral. This
expansion is possible because all the exciton states cou-
ple to a single mode of the photon field. More detailed
derivations, as well as a variational approach based on
the work of Comte and Nozières [14] on the exciton con-
densate, will be presented in a future publication.

By integrating out the fermions and rescaling the pho-
ton field, the grand partition function for (1) can be
represented as an imaginary-time path-integral over the
photon field of the form Q ∝

∫

Dψ exp(−NSeff). In
the thermodynamic limit N → ∞ the partition func-
tion is dominated by those paths ψ0(τ) which minimize
the action Seff . The Euler-Lagrange equation for Seff is
a self-consistency condition which relates ψ0(τ) to the
equilibrium polarization of a two-level system in the self-
consistent field ψ0(τ). It takes the form

(∂τ + ω̃c)ψ0(τ) + g〈ā(τ)b(τ)〉 = 0, (2)

with ω̃c = ωc − µex.
The order parameter of the polariton condensate is the

polarization of either the photon field or the exciton field.
Although there are two physically distinct order param-
eters, we see from equation (2) that they are coupled by
the dipole interaction. It is the dipole interaction which
favors the formation of a condensate.

We assume that the extremal trajectories are indepen-
dent of τ , ψ0(τ) = ψ0. We can then use the familiar

eigenstates [15] of a two-level system in a static external
field to calculate the polarization term on the right of
equation (2). A constrained thermal population of these
renormalized eigenstates leads to a BCS-like equation for
ψ0,

ω̃cψ0 =
g2ψ0

2E
tanh(βE). (3)

Here E is the renormalized fermion energy E =
√

ε̃2 + g2|ψ0|2, with ε̃ = (Eg − µex)/2.
The chemical potential µex is related to the partition

function Q in the usual manner. For the condensed solu-
tions the leading term in the expansion of Q around the
extremal trajectories gives

ρex = |ψ0|2 −
1

g2
ε̃ω̃c, (4)

while for the normal solution we have ρex =
−[tanh(βε̃)]/2.

At zero temperature (3) and (4) always have a con-
densed solution ψ0 6= 0. This solution is illustrated in
Fig. 1. The upper part of Fig. 1 shows the chemical po-
tential as a function of excitation density for detunings
∆ = 0, 1 and 3. In the low density limit, ρex = −0.5, we
are describing a condensate of conventional bosonic po-
laritons, so the chemical potential is given by the usual
polariton energy µex = 1

2

(

(ωc + Eg) − g
√

∆2 + 4
)

. At
high densities the electronic states are saturated and fur-
ther excitation must be added as photons. Thus the
chemical potential approaches the energy of the cavity
mode. Between these two limits we find a discontinu-
ity at ρex = 0.5 if ∆ > 2. The lower part of Fig. 1
illustrates the composition of the condensate, again for
detunings ∆ = 0, 1 and 3. Increasing detuning increases
the electronic fraction of the condensate. In the high ex-
citation limit the inversion approaches zero. This gives
the maximum polarization of the electronic states and
hence minimizes the dipole energy.

We study the stability of the solutions to (3) by consid-
ering the quadratic term S2 in the functional Taylor series
expansion of Seff around the extremal trajectory ψ0. The
kernel of S2, G−1, is the inverse matrix Green’s function
for fluctuations of the photon field. We find G−1 by tak-
ing two functional derivatives of Seff and evaluating the
result on the extremal trajectory ψ0. This amounts to
solving the Dyson-Beliaev equations [16] for the photon
Green’s functions. The self-energies are provided by the
polarizability of a two-level system in the self-consistent
field ψ0.

The resulting expression for G−1 in the condensed
phase is somewhat lengthy, so we do not reproduce
it here. We find that the eigenvalues of G−1 in the
condensed phase are, apart from the Goldstone mode,
strictly positive provided ω̃c > 0. This condition is auto-
matically satisfied by the condensed solutions to (3).
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FIG. 2. Phase boundaries between the normal and con-
densed states for ∆ = 0 (solid line), ∆ = 1 (dashed line),
and ∆ = 2 (dot-dashed lines). The regions which include the
lower left corner of the figure are normal.

To determine the phase diagram we assume a continu-
ous transition between the normal and condensed states.
The transition temperature (kBβc)

−1 is determined by
requiring (3) and (4) to have a repeated root ψ0 = 0.
This gives two transition temperatures

βcg =
4 tanh−1(2ρex)

∆ ±
√

∆2 − 8ρex

. (5)

We also obtain (5) as the temperature corresponding to
the onset of a low frequency instability of the normal
state. Thus our assumption of a continuous transition is
correct.

The phase boundary (5) is illustrated in Fig. 2 for
detunings ∆ = 0, 1 and 2. For ∆ ≤ 0 the phase diagram
is straightforward. The transition temperature increases
monotonically with density, reaching infinity at ρex = 0.
For ∆ > 0 there is a region in which the condensate
exists on both the high and low temperature sides of the
normal state. When ∆ ≥ 2 the condensate exists in two
disconnected regions of the phase diagram.

This unusual phase diagram can be understood by con-
sidering the excitations of the normal state. The excita-
tion energies follow in the usual manner from the loca-
tions of the poles of the Green’s function. We write the
action for fluctuations of the photon field about the nor-
mal state as S2 = β

∑

ωn

δψ̄(ωn)G−1

N (ωn)δψ(ωn), where
ωn is a bosonic Matsubara frequency. The normal-state
Green’s function GN takes the form

GN (ωn) =
C+

iωn + E+

+
C−

iωn + E−
, (6)

with E± = [(ωc + Eg) ± g
√

∆2 − 8ρex]/2 − µex and
C± = ±(2ε̃− E±)/(E− − E+). The excitation energies,
measured from the chemical potential µex, are E±.

The normal-state excitations are polaritons in the
sense of Hopfield [9]: coupled modes involving the linear
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FIG. 3. Normal state excitation energies Eex for ∆ = 0
(solid curve), ∆ = 1 (dashed curve), and ∆ = 2 (dot-dashed
curve), relative to the exciton energy Eg. The dotted curve
is the normal state chemical potential for βg = 1 on the same
scale. The arrows mark the crossings which correspond to the
onset of condensation for these three detunings at βg = 1.

response of the electronic system around its equilibrium
state. The gap in the spectrum is increased over the bare
detuning ∆ owing to the dipole coupling between the ex-
citons and the cavity mode. The presence of excitation
in the ground state, either driven by finite temperatures
or by finite µex, causes the two polariton branches to at-
tract. This attraction can be understood in terms of an
angular momentum representation [11] for the collective
states of the electronic system. The excitation of the
electronic states σz forms the z-component of an angular
momentum and their polarization forms a raising opera-
tor σ+. Thus the polarizability of the electronic states is
a maximum at 〈σz〉 = −N/2.

Figure 3 illustrates the excitation energies Eex = E±+
µex obtained from equation (6), for detunings ∆ = 0, 1
and 2. On the same axis we plot the normal state chemi-
cal potential, given by the expression immediately below
equation (4), for βg = 1. Figure 3 should be compared
with the βg = 1 line of the phase diagram in Fig. 2.

When ∆ = 0 and ρex = −0.5 the system is in the nor-
mal state. Increasing ρex populates the electronic exci-
tations, increasing the chemical potential and decreasing
the polariton splitting. Eventually the chemical poten-
tial crosses the lower polariton branch from below and
the system condenses. In contrast, for ∆ = 1 and 2 the
chemical potential crosses the lower polariton branch at
ρex = 0 without the condensate appearing. It is not until
the chemical potential crosses the upper polariton branch
that the transition occurs. This can be understood by
considering the signs of the quasiparticle weights C±. A
positive quasiparticle weight corresponds to absorption
of an external field(particle-like excitations), whereas a
negative quasiparticle weight corresponds to gain(hole-
like excitations). For ρex > 0, the lower polariton branch
has a negative weight: it has become hole-like, and must
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be below the chemical potential for stability. Note that
for large ∆ there is a particle-hole symmetry, so the re-
gion −0.5 < ρex < 0.5 of the phase diagram is symmetric
about ρex = 0.

In the condensed phase we find excitations with
energies relative to the chemical potential E± =
±

√

(ω̃c + 2ǫ̃)2 + g2|ψ0|2, along with a Goldstone mode.
The polariton condensate will produce incoherent lumi-
nescence or absorption at the energies E± + µex and co-
herent emission at µex.

Since we expect polariton condensates to produce co-
herent light, a major issue experimentally will be dis-
tinguishing polariton condensates from semiconductor
lasers. In semiconductor lasers excitons are convention-
ally assumed to be ionized. We list some aspects of
the present work which should help to distinguish po-
lariton condensation from lasing: (1)From Fig. 1, we see
that the polariton condensate can exist without an inver-
sion of the electronic system. (2)Approaching the con-
densation transition by increasing the excitation density
we may observe a reduction of the normal-state excita-
tion gap owing to the fermionic structure of the exci-
tons. (3)The fermionic structure of the excitons shifts
the coherent emission from the condensate away from
the bosonic polariton energy. (4)The incoherent lumines-
cence and absorption from the condensate exhibits a gap
induced by the coherent photon field. In a conventional
laser, this gap is destroyed by the very short relaxation
time of the electronic polarization. Following [17], pro-
cesses which destroy the electronic polarization could be
incorporated into our solution. In superconductors, such
processes produce a regime of gapless superconductivity
[18,19] where the order parameter survives without a gap
in the excitation spectrum.

The applicability of our results to real microcavities
is restricted by our neglect of exciton states with a sig-
nificant wavefunction overlap. We have assumed that
these states are at infinitely large energies. In reality,
these states exist above an energy Em. Thus our ther-
modynamic results are only valid when Em −µex is large
compared with β−1 and g. By considering Fig. 3, we de-
duce that realizing the phase diagram of Fig. 2 requires
an energy gap ∆E = Em − E0 ≫ g. This could occur
in highly disordered materials with Frenkel-like excitons,
such as organic semiconductors [20,21]. An energy gap
∆E could exist in inorganic quantum wells if the exci-
tons move in a potential containing deep, well-separated
traps, perhaps associated with interface islands [22–24].
However, in both these cases it is likely that there will be
several exciton states on each site, rather than the single
state we have assumed.

If ∆E is small compared with g then the phase bound-
ary (5) will only be realized when ∆ ≪ 0 and the temper-
ature is low. In the normal state under these conditions
both the exciton occupation and the effects of the dipole
interaction are negligible. The transition temperature

(5) then corresponds to non-interacting bosons with an
unusual density of states.

To summarize, we have presented a theory of polariton
condensation in the Dicke model. By studying the model
at fixed excitation, we have generalized the concept of a
polariton condensate from the low-density regime. We
have found two states: a normal state of excitons and
a condensate of polaritons. The polariton condensate is
a superposition of a BCS-like state of the excitons and
a coherent state of the photon field, and is favored over
the normal state by the dipole coupling. We recover con-
ventional polaritons both as the low-density limit of the
condensate and as the linear-response excitations of the
normal state.

This work was supported by funding from the Engi-
neering and Physical Sciences Research Council, UK.
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