
ar
X

iv
:h

ep
-t

h/
03

06
13

0v
5 

 1
 M

ay
 2

00
4
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Abstract

As was recently found in hep-th/0304255, there exists a simple classical solution de-
scribing a closed string rotating in S5 and located at the center of AdS5. It is parametrized
by the angular momentum J of the center of mass and two equal SO(6) angular momenta
J ′ in the two other orthogonal rotation planes. The corresponding dual N = 4 SYM op-
erators should be scalar operators in SU(4) representations [0, J − J ′, 2J ′] if J ≥ J ′, or
[J ′ − J, 0, J ′ + J ] if J ′ ≥ J . This solution is stable if J ′ ≤ 3

2J and for large J + 2J ′ its

classical energy admits an expansion in positive powers of λ
(J+2J ′)2 (

√
λ is proportional

to string tension): E = J + 2J ′ + λ
(J+2J ′)2

J ′ + .... This suggests a possibility of a direct

comparison with perturbative SYM results for the corresponding anomalous dimensions
in the sector with λ

(J+2J ′)2 ≪ 1, by analogy with the BMN case. We conjecture that

all quantum sigma model string corrections are then subleading at large J ′, so that the
classical formula for the energy is effectively exact to all orders in λ. It could then be
interpolated to weak coupling, representing a prediction for the anomalous dimensions on
the SYM side. We test this conjecture by computing the 1-loop superstring sigma model
correction to the classical energy.

06/03

∗ Also at Steklov Mathematical Institute, Moscow.
∗∗ Also at Lebedev Physics Institute, Moscow.

http://arXiv.org/abs/hep-th/0306130v5
http://arXiv.org/abs/hep-th/0304255


1. Introduction

Motivated by attempts [1,2] to extend AdS/CFT duality to non-BPS states we have

recently proposed [3] to study the AdS5 × S5 string – N = 4 SYM duality in a new sector

parametrised by several components of S5 spin or several “R-charges”.

We have found a new classical solution describing a circular closed string located at

the origin of AdS5 space and rotating in S5 with two equal angular momenta in the two

orthogonal planes: the rotating string moves on S3 within S5 just as in the case of a two-

spin flat-space solution where the string rotates in two orthogonal planes while always lying

on a 3-sphere in R4. In addition, the center of mass of the string may be rotating along

another circle of S5, leading to a particular string solution with all the three S5 charges

being non-zero (J1 = J, J2 = J3 = J ′). The point-like string case of [1] corresponds to the

special case of J ′ = 0, J 6= 0 when the energy of unexcited string is E = J . In another

special case of J = 0, J ′ 6= 0 when the string has maximal size (so that 2J ′ ≥
√
λ ) the

energy turns out to depend on J ′ in a remarkably simple way: E =
√

(2J ′)2 + λ. While

this solution with J = 0 appears to be unstable, there is always a non-trivial region of

stability when J 6= 0. As we shall show below, the solution is stable in the case which is

the most interesting from the point of view of the AdS/CFT comparison – when both J

and J ′ are large compared to
√
λ .

Let us start with a brief review of the basic features of this classical solution [3].

Written in terms of the AdS5 time coordinate t and the angles of S5 metric

(ds2)S5 = dγ2 + cos2 γ dϕ2
1 + sin2 γ (dψ2 + cos2 ψ dϕ2

2 + sin2 ψ dϕ2
3) , (1.1)

the solution is

t = κτ , γ = γ0 , ϕ1 = ντ , ϕ2 = ϕ3 = wτ , ψ = kσ , (1.2)

where κ, γ0, ν, w are constants, k is an integer1 and τ and σ ∈ (0, 2π) are the world-volume

(2-cylinder) coordinates. The equations of motion and the conformal gauge constraints

imply

w2 = ν2 + k2 , κ2 = ν2 + 2k2 sin2 γ0 , (1.3)

1 The standard range of the angles ψ, ϕ2, ϕ3 to cover S3 only once is 0 < ψ ≤ π
2
, 0 < ϕ2 ≤ 2π,

0 < ϕ3 ≤ 2π: then the S3 (γ = π
2
) embedding coordinates X = cosψ eiϕ2 , Y = sinψ eiϕ3 have

positive “radial” factors (their sign change can be compensated by ϕ2,3 → ϕ2,3 + π). However,

in the present case it is useful to choose a different range: 0 < ψ ≤ 2π, 0 < ϕ2 ≤ π, 0 < ϕ3 ≤ π.

Then the constant ϕ2, ϕ3 section of S3 will be the full circle (instead of its (0, π
2
) quarter), and

thus we will have a consistent map of the closed string into S3 for each given moment of time τ ,

as required by the closed string interpretation.
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so that there are only two continuous independent parameters – ν (or κ) and γ0, and one

discrete one – k.

The case of k = 0 corresponds to the point-like solution considered in [1] and inter-

preted in the context of semiclassical approximation in [2,4]. Then ϕ1 = ϕ2 = ϕ3 = ντ ,

and there is an O(6) rotation that transforms this solution into a null geodesic along a

canonical large circle of S5.

In what follows we shall be mostly interested in the minimal-energy sector with k = 1

but will keep the k dependence in some expressions for generality.

The non-zero SO(6) angular momentum components JMN then are J1 = J12, J2 =

J34 = J ′, J3 = J56 = J ′, where 2

J =
√
λ ν cos2 γ0 , J ′ =

1

2

√
λ

√

ν2 + k2 sin2 γ0 . (1.4)

√
λ = R2

α′ is the effective dimensionless string tension related to ‘t Hooft coupling. The

classical energy E =
√
λ κ =

√
λ E0(ν, γ0) is then E = E(J, J ′, λ). It can be expressed in

terms of the R-charge J ′ and the auxiliary “charge” V =
√
λ ν = 1

cos γ0
J :

E = V
√

1 +
2λk2

V2
(1 − J

V ) , (1.5)

where V = V(J, J ′, λ) is a solution of the (quartic) equation

V = J +
2J ′

√

1 + λk2

V2

. (1.6)

Note that at the classical level the dependence on k can be absorbed into the string tension√
λ .

As we shall see below, at large ν, this solution is stable under small perturbations

provided the spins are subject to a certain condition; for example, for k = 1, one needs to

require

J ′ ≤ 3

2
J , i.e.

J ′

J + 2J ′ ≤
3

8
. (1.7)

In the limit we will be interested in here when ν ≫ k (similar to the limit considered in

[1]), i.e. when
√

λ k
V ≪ 1, the expression for the energy may be formally written as an

expansion in positive powers of λ. More precisely, in the semiclassical approximation one

has, of course, λ≫ 1, but the expansion is in λk2

V2 ≪ 1.

2 Here it is assumed that k 6= 0; otherwise J ′ is to be multiplied by 2.
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Indeed, for large J + 2J ′ we can find V from (1.6) as a series in λk2

(J+2J ′)2
, i.e.

V = J + 2J ′ − λk2J ′

(J + 2J ′)2
+ ... , (1.8)

so that

E = J + 2J ′ +
λ k2J ′

(J + 2J ′)2
+ ... , (1.9)

where the only requirement on J and J ′ is that J+2J ′ ≫
√
λ k. In addition to ν or J+2J ′,

the classical energy and quantum corrections to it depend also on another parameter – γ0,

which in the ν ≫ k limit is given by (cf. (1.4),(1.8))

sin2 γ0 =
2J ′

J + 2J ′ + ... . (1.10)

Note also that for J ≫ J ′ the energy (1.9) becomes

E = J + 2J ′(1 +
λ k2

2J2
+ ...) , (1.11)

which is consistent with the string oscillation spectrum in the sector with large J ≫
√
λ k

[1,5], i.e. with the “plane-wave” [6] spectrum, where J ′ represents the angular momentum

carried by string oscillations (similar expression is found if J ′ is replaced by spin in AdS5

directions).

In [3] it was suggested that the corresponding dual N = 4 SYM operators should be

of the form tr[(Φ1 + iΦ2)
J(Φ3 + iΦ4)

J ′
(Φ5 + iΦ6)

J ′
] + ..., where dots stand for appropriate

permutations of all J = 2J ′ scalar factors. These operators belong to the irreducible

representation of SU(4) with Young tableau labels (J, J ′, J ′) or with Dynkin labels [0, J −
J ′, 2J ′] if J ≥ J ′, and to the representation (J ′, J ′, J) or [J ′−J, 0, J ′+J ] if J ′ ≥ J . We do

not know if the solution with k = 1 should be dual to an operator having minimal canonical

dimension for given values of R-charges J and J ′.3 There might exist a more complicated

solution with less energy describing, for example, a rotating folded string lying entirely in

S5.

In the large N SYM perturbation theory (λ ≪ 1) one expects to find corrections to

the canonical dimension of these operators behaving as

∆(J, J ′, λ)λ≪1 = J + 2J ′ + λF1(J, J
′) +O(λ2) . (1.12)

3 The same formula (1.9) should be giving the conformal dimensions of the operators from

the two different ([0, J − J ′, 2J ′] or [J ′ − J, 0, J ′ + J ]) representations. This should be true not

only in the large λ limit but also in the weak-coupling perturbation theory.
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The semiclassical result (1.9) is a prediction for the anomalous dimensions in the opposite

λ≫ 1 limit when J +2J ′ ≫ 1. The dependence of the energy (1.9) on k may be reflecting

a band structure of anomalous dimensions of the SYM side. 4

Given a simple dependence of the energy E in (1.9) on λ in the limit J +2J ′ ≫
√
λ k,

it was conjectured in [3] that the expression (1.9) may be valid also at small values of λ if

J + 2J ′ is very large. More explicitly, one may expect that the general expression for the

anomalous dimension valid for any λ but with J + 2J ′ ≫
√
λ k (i.e. λ k2

(J+2J ′)2 ≪ 1) is

∆(J, J ′, λ)
J+2J′≫

√
λ k

= J + 2J ′ + f1(J
′)

λk2

(J + 2J ′)2
+O(

λ2k4

(J + 2J ′)4
) , (1.13)

where in the string perturbation theory limit (J ′ ∼
√
λ ≫ 1)

f1(J
′) = J ′ + b1 +O(

1

J ′ ) . (1.14)

Similar expression is then expected for λ≪ 1, i.e. in the SYM perturbation theory.

In addition to the limit J+2J ′ ≫
√
λ ≫ 1, another special case is J ≫ J ′, where one

may relate the resulting expression for the energy to the (non-perturbative) corrections to

the dimensions of particular operators in the sector studied in [1].

On general grounds, the string sigma model corrections to the classical energy will

have the following structure

E =
∞
∑

l=0

El =
√
λ E0(ν, γ0) + E1(ν, γ0) +

1√
λ

E2(ν, γ0) + ... , (1.15)

where E1, E2, E3, ... depend only on the parameters ν, γ0 (and k) of the classical solution

and should have, for ν ≫ k, an expansion in inverse powers of ν, i.e. in powers of
√

λ k
J+2J ′ .

For example,

E0(ν, γ0) = κ = ν +
1

ν
sin2 γ0 +O(

1

ν2
) , (1.16)

E1 =
∞
∑

m=−1

1

νm
em(γ0) , em = cm + dm sin2 γ0 + ... . (1.17)

4 These string solutions suggest that operators in these representations may be divided into

different sectors parametrized by the integer k. In each sector there is an operator with the lowest

conformal dimension that should be dual to the string solution, with other operators in the sector

dual to excitations near that classical string solution.
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Expressing this in terms of J + 2J ′ ≫ 1 and J ′

J+2J ′ using (1.4),(1.10) we find that the

correction would be of the form (1.13), (1.14) if: (i) the functions E1, E2, E3, ... vanish in

the limit ν → ∞; (ii) the expansion of E1 goes over only even powers of 1/ν and starts with

1/ν2; the expansion of E2 goes over only odd powers of 1/ν and starts with 1/ν3, etc. In

particular, the nonrenormalization of the leading J +2J ′ term in E requires the vanishing

the first three terms (m = −1, 0, 1) in (1.17).5 In that case all string corrections can be

written as functions of J, J ′ and λ with λ entering only in positive powers. This is very

similar to what was found in the case of ν 6= 0, k = 0 [3], i.e. in the BMN case. Assuming

that the expansion of E1 starts with the 1/ν2 term (as we shall indeed confirm below), one

concludes that the coefficient b1 in (1.14) is subleading at large J ′, and is equal to e2(γ0)

in (1.17). Indeed, we then have

E1 =
1

ν2
e2(γ0) +

1

ν4
e4(γ0) + ... = ē2(

J ′

J
)

λk2

(J + 2J ′)2
+ ē4(

J ′

J
)

λ2k4

(J + 2J ′)4
+ .. . (1.18)

Similarly, we expect that higher-order terms in (1.15) will have the structure

El =
1

(
√
λ )l−1

El(ν, γ0) =
1

(
√
λ ν)l−1

[
1

ν2
e2l(γ0) +

1

ν4
e4l(γ0) + ...]

=
1

(J + 2J ′)l−1

[

ē2l(
J ′

J
)

λk2

(J + 2J ′)2
+ ē4l(

J ′

J
)

λ2k4

(J + 2J ′)4
+ ..

]

. (1.19)

Thus, we expect that for large J and J ′ the classical expression for the energy (1.5) will

be giving the leading contribution at any order in λ, and thus should be representing

also the expression of the conformal dimension of the dual SYM operator computed in a

weak-coupling expansion.

That would mean, in particular, that the leading one-loop perturbative correction to

the dimension of the corresponding CFT operator dual to the string solution should indeed

be of order J ′

(J+2J ′)2 and not of order J + 2J ′. The non-renormalization of the leading J-

term in E = ∆ does take place for the ground state in the BMN (J ′ = 0) case, where

one expands near a point-like BPS state. In the present case of extended rotating string

5 Given that for ν ≫ k one has
√

λ k

J+2J′ ∼ k

ν
≪ 1 as another small parameter of semiclassical

expansion (in addition to 1√
λ

), one may expect, by analogy with the reasoning in [3,7], that the

leading J + 2J ′ term in E will not be renormalized to all orders in 1√
λ

. Corrections may be

suppressed in the large 2-d mass (large ν) limit on a 2-d cylinder. Note that all parameters in

(1.2),(1.3) scale as ν at large ν and there should be no parameter-independent constant terms in

Ei because of supersymmetry.
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solution the space-time supersymmetry is broken, but one may expect that it is in some

sense “restored” in the limit J +2J ′ ≫
√
λ k (when a closed rotating string is moving fast

along a circle in S5); that should then be an explanation for the non-renormalization of

the leading J + 2J ′ term in the energy.

After a review of classical solution in terms of the embedding coordinates in Section 2,

we shall derive the general expression for the 1-loop corrections to the energy (1.9) coming

both from the bosons and the Green-Schwarz fermions (Section 3). We shall find the

quartic equations for the (squares of) characteristic bosonic and fermionic frequencies. In

Section 4 we shall study the large ν (or, equivalently, large κ) limit of the 1-loop correction

and confirm the structure of the 1-loop correction (1.18), computing the value of e2(γ0).

Some technical details will be given in Appendices A,B and C.

The relevant bosonic and fermionic quadratic fluctuation parts of the Green-Schwarz

AdS5 ×S5 action were already presented in [3] and will be reviewed and further simplified

below. In spite of the classical solution being dependent on τ and σ, the quadratic fluctu-

ation action can be put (after natural local “rotations” of fluctuation fields) in the form

where it describes a collection of bosons and fermions in flat 2 dimensional space all having

constant masses and coupled to constant (non)abelian 2-d gauge terms.6 Remarkably, the

form of this action is essentially the same as of the light-cone gauge superstring action

in a particular plane-wave background with an antisymmetric 2-form field. The problem

of finding the leading correction to the ground state energy and also of the spectrum of

string excitations near the three-spin solution is thus closely related to the corresponding

problem in the case of the “homogeneous” plane-wave backgrounds (cf. [8,9]).

2. Classical solution and bosonic part of quadratic fluctuation action

Written in terms of the 6 embedding coordinates of S5 into R6 (here we rename the

coordinates 5, 6 → 1, 2) (X2
1 + ...+X2

6 = 1) [3]

X = X1 + iX2 = sin γ cosψ eiϕ2 , Y = X3 + iX4 = sin γ sinψ eiϕ3 , (2.1)

Z = X5 + iX6 = cos γ eiϕ1 ,

6 The constant connection terms can be eliminated at the expense of making the mass terms

non-diagonal and τ and σ-dependent.
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the solution (1.2) is

X = sin γ0 cos kσ eiwτ , Y = sin γ0 sin kσ eiwτ , Z = cos γ0 e
iντ . (2.2)

The conformal gauge constraints are then satisfied provided the coefficient κ of the AdS5

coordinate t is related to the parameters as in (1.3).

This solution can be found directly by starting with the S5 (or O(6)) sigma model

action in conformal gauge (Λ is a Lagrange multiplier field, and ηab = (−,+))

IS5 =

√
λ

4π

∫

dτ

∫ 2π

0

dσ L ,
√
λ =

R2

α′ ,

L = −∂aXm∂
aXm − Λ(XmXm − 1) , m = 1, ..., 6 . (2.3)

The classical equations of motion then are

(−∂2 + Λ)Xm = 0 , XmXm = 1 , Λ = −∂aXm∂
aXm . (2.4)

They are satisfied by (2.2) with

w2 = ν2 + k2 , Λ = ν2 . (2.5)

This is an example of a special class of simple solutions of the non-linear equations (2.4)

for which Λ = const and Xm(τ, σ) can be represented as a product of commuting O(6)

transformations depending on τ or σ and applied to a constant unit 6-vector. Indeed, we

can write (2.2) as (X ≡ (Xm))

X(τ, σ) = O12+34(wτ) O13+24(kσ) O56(ντ) O15(
π
2 −γ0) X0 , X0 = (1, 0, 0, 0, 0, 0) , (2.6)

where

Opq(α) = e−αIpq = I + I2
pq(1 − cosα) − Ipq sinα , (2.7)

Opq+kl(α) = e−α(Ipq+Ikl) , (Ipq)mn = δpmδqn − δpnδqm ,

and Ipq is a generator of rotation in the (pq) plane in the fundamental representation of

O(6). Note that [I12 + I34, I13 + I24] = 0, [I12 + I34, I56] = 0, [I13 + I24, I56] = 0,

i.e. the non-constant rotations commute. This simplifies dramatically the form of the

small-fluctuation action.
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In general, the quadratic fluctuations near a solution of (2.4) are described by (Xm →
Xm + X̃m, Λ → Λ + Λ̃)

L2 = −∂aX̃m∂
aX̃m − ΛX̃mX̃m − 2Λ̃XmX̃m , (2.8)

i.e. they satisfy

[δmn −XmXn](−∂2X̃n + ΛX̃n) = 0 , (2.9)

XmX̃m = 0 . (2.10)

To find the action for the independent 5 fluctuations we are thus to solve the constraint

(2.10) and substitute the result into the “unconstrained” action

L̃2 = −∂aX̃m∂
aX̃m − ΛX̃mX̃m . (2.11)

Finally, one may solve the (relevant linear part of) the conformal gauge constraints,

−κ∂τ t̃+ ∂τXm∂τ X̃m + ∂σXm∂σX̃m = 0 , −κ∂σ t̃+ ∂τXm∂σX̃m = 0 , (2.12)

but this is not necessary in order to determine the non-trivial part of the spectrum. In

addition, one needs to include the contribution of 4 massive bosonic fluctuations in the

AdS5 directions [3]

LAdS5
= −∂ayl∂

ayl − κ2ylyl , l = 1, 2, 3, 4 . (2.13)

In the present case of the solution (2.6),(2.5) it is easy to solve (2.10) (i.e. XT X̃ = 0) by a

field redefinition on X̃m that “undoes” the rotation in (2.6), i.e.

X̃(τ, σ) = O12+34(wτ) O13+24(kσ) O56(ντ) O15(
π
2 − γ0) X̄(τ, σ) , (2.14)

where X̄m are the new (“tangent-space”) fluctuations now subject to the simple (τ, σ)-

independent condition X̄m(Xm)0 = 0, which is solved by setting

X̄1 = 0 . (2.15)

2.1. Fluctuation Lagrangian

Equivalently, that means, combining (2.6),(2.14),(2.15), that we parametrize the clas-

sical+fluctuation field as

X(τ, σ) = O12+34(wτ) O13+24(kσ) O56(ντ) O15(
π
2 − γ0) X̂(τ, σ) ,
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X̂ = (1, X̄2, X̄3, X̄4, X̄5, X̄6) . (2.16)

Doing the transformation (2.14) in (2.11) one ends up with the following simple fluctuation

Lagrangian with constant coefficients (determined essentially by the generators of O(6)

rotations in the classical solution):

L̃2 = (∂τX̄m)2 − (∂σX̄m)2

+ 4ν(cos γ0X̄1 + sin γ0 X̄5)∂τ X̄6 − 4w[(cos γ0 X̄5 − sin γ0X̄1)∂τX̄2 − X̄3∂τX̄4]

+ 4k[(cos γ0 X̄5 − sin γ0 X̄1)∂σX̄3 − X̄2∂σX̄4] , (2.17)

where we have used integration by parts. Here the dependence on γ0 could be rotated

away if not for the constraint (2.15) we still need to impose. As a result, the fluctuation

Lagrangian for the 5 independent fluctuation fields becomes (s = 2, 3, 4, 5, 6)

L2 = (∂τX̄s)
2 − (∂σX̄s)

2 + 4ν sin γ0 X̄5∂τ X̄6 − 4w(cos γ0 X̄5∂τX̄2 − X̄3∂τX̄4)

+ 4k(cos γ0 X̄5∂σX̄3 − X̄2∂σX̄4) . (2.18)

The point-like (BMN) limit corresponds to the case of k = 0 (then w = ν). The resulting

Lagrangian can be shown to be equivalent to the one found by expanding near a “canonical”

BMN solution L2 = −(∂aX̄5)
2 − (∂aX̃i)

2 − ν2X̃2
i , where i = 1, 2, 3, 4 (with the constraint

(2.15) now being X̄6 = 0).

Eq. (2.18) is a special case of the following 2-d Lagrangian

L = (∂τxp)
2 − (∂σxp)

2 + 2fpqxp∂τxq − 2hpqxp∂σxq , (2.19)

where fpq and hpq are constant antisymmetric coefficient matrices. The latter can be

written also as (ignoring total derivative)

L = (∂τxp + fqpxq)
2 − (∂σxp + hqpxq)

2 − (fpqfkq − hpqhkq)xpxk , (2.20)

i.e. it represents a massive scalar 2-d theory coupled to a constant 2-d gauge field (which

can be “rotated away” at the expense of making the mass term τ and σ dependent). The

corresponding Hamiltonian is

H = (∂τxp)
2 + (∂σxp + hqpxq)

2 − hpqhkqxpxk . (2.21)
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In the case of (2.18) we find

H2 = (∂τ X̄2)
2 +(∂τ X̄3)

2 +(∂τ X̄4)
2 +(∂τ X̄5)

2 +(∂τ X̄6)
2 +(∂σX̄2−kX̄4)

2 +(∂σX̄4 +kX̄2)
2

+ (∂σX̄3 − k cos γ0X̄5)
2 + (∂σX̄5 + k cos γ0 X̄3)

2

− k2 cos2 γ0 (X̄2
3 + X̄2

5 ) − k2(X̄2
2 + X̄2

4 ) . (2.22)

While the Hamiltonian is always positive in the point-like case k = 0, it is not manifestly

so for k > 0, i.e. there is a potential for an instability. In general, the conclusion about

non-positivity and instability is not directly obvious on a cylinder; for example, we cannot

set ∂σX̄4+kX̄2 = 0 for constant X̄2 since then X̄4 will not be periodic in σ. The instability

is always present when γ0 = π
2
, i.e. when X̄6 and X̄2 are decoupled. As we shall argue

below, there is a range of parameters (large ν and sufficiently small γ0) for which the

solution is stable under small perturbations.

Let us note that the Lagrangian (2.19) can be also interpreted as a light-cone gauge

(u = τ) Lagrangian for the bosonic string sigma model L = −(ηabgmn +ǫabBmn)∂ax
m∂bx

n

in (in general, non-conformal) plane-wave background with the following metric and the

antisymmetric 2-form field (cf. [9])

ds2 = 2dudv + 2fpqxpdxqdu+ dxpdxp , B2 = 2hpqxpdxq ∧ du . (2.23)

The general form of (the linear part of) the conformal gauge constraints is

κ∂τ t̃ = κ2X̄1 − k2 sin 2γ0 X̄5 + k sin γ0 ∂σX̄3 + w sin γ0 ∂τy1 + ν cos γ0 ∂τ X̄6

κ∂s t̃ = 2kw sin γ0 X̄4 + k sin γ0 ∂τ X̄3 + w sin γ0 ∂σy2 + ν cos γ0 ∂σX̄6 . (2.24)

Adding −∂at̃∂
at̃ term and eliminating t from the resulting action implies cancellation also

of one (“massless”) combination of X̄s coordinates; after a field redefinition one ends up

with the following “reduced” Lagrangian for the remaining 4 non-trivial fluctuations:

L′
2 = (∂τ X̄s)

2 − (∂σX̄s)
2 − 4νC1X̄5∂τ X̄6 − 4κC2X̄5∂τ X̄2 + 4κC1X̄4∂σX̄2 + 4νC2X̄4∂σX̄6 ,

(2.25)

C1 = [
k2(1 + sin2 γ0)

ν2 + k2 sin2 γ0

]1/2 , C2 = [
ν2 + k2

ν2 + k2 sin2 γ0

]1/2 .

In the special case of ν = 0 this is equivalent to the fluctuation Lagrangian obtained in [3]

in the static gauge.

10



2.2. Characteristic frequences

To find the spectrum of characteristic frequencies corresponding to the action (2.18)

(for a general analysis of the theory (2.19) see [9]) we note that X̄s fields must be periodic

in σ (the rotations (2.14) we made preserve the periodicity) so that one can expand the

solution of the quadratic fluctuation equations in modes

X̄s =

∞
∑

n=−∞

8
∑

i=1

A(i)
sne

i(ωn,iτ + nσ) , (2.26)

where i labels different frequencies for a given value of n (we shall often suppress the index

i below). Plugging this into the classical equations that follow from (2.18) one finds the

following result for the determinant of the characteristic matrix

detM = −(n2 − Ω)B8(Ω) , Ω ≡ ω2
n ,

B8(Ω) = Ω4 − (6k2 + 8ν2 + 4n2 + 2k2 cos 2γ0) Ω3

+ [8k4 + 6k2n2 + 6n4 + 24k2ν2 + 16n2ν2 + 16ν4 + (8k4 + 2k2n2 + 8k2ν2) cos 2γ0] Ω2

+ [−16k4n2 + 6k2n4 − 4n6 − 8k2n2ν2 − 8n4ν2 + (−16k4n2 + 2k2n4 − 24k2n2ν2) cos 2γ0]Ω

+ n4(n2 − 4k2)(n2 − 2k2 − 2k2 cos 2γ0) . (2.27)

Setting detM = 0, we observe the existence of one decoupled massless scalar field corre-

sponding to the solution Ω = n2 of (2.27). The decoupled massless scalar is a reflection of

the conformal gauge choice we made. We also find a nontrivial quartic equation for the re-

maining modes, giving 4 (in general, different) values for |ωn|, i.e. 8 characteristic frequen-

cies ωn,i. Here k can be set to 1 (it can be restored by n→ n/k, ν → ν/k, ωn → ωn/k).

The same result for the characteristic determinant (but without the zero-mode factor)

is found by starting from the “reduced” action (2.25).

The BMN limit corresponds to setting k = 0 in the above formulae; while the fluctu-

ation Lagrangian (2.18) seems to depend on γ0, the spectrum, as one might expect, does

not: for k = 0 the determinant (2.27) becomes

k = 0 : B8 = (n2 − 2νωn − ω2
n)2(n2 + 2νωn − ω2

n)2 , (2.28)

and thus the roots are

ωn = ±ν ±
√

n2 + ν2 . (2.29)

11



Here the linear ν terms reflect the rotation of the fluctuations made in (2.14) while

±
√
n2 + ν2 are the standard “plane-wave” frequencies. Similar result is found also in

the fermionic sector discussed in the next section.

Another special case is when γ0 is approaching π
2

γ0 =
π

2
: J = 0 , J ′ 6= 0 , E = 2J ′

√

1 +
λk2

(2J ′)2
. (2.30)

Setting γ0 = π
2

in (2.27) and solving B8 = 0 we find the following 4+4 frequencies

ω2
n = n2 + 2(ν2 + k2) ± 2

√

(ν2 + k2)2 + n2(ν2 + 2k2) , (2.31)

ωn = ±ν ±
√

n2 + ν2 . (2.32)

The condition of reality of ωn in (2.31) is n2(n2 − 4k2) ≥ 0, i.e. this solution has unstable

modes with n = ±1, · · · ,±(2k − 1), as was already found in [3] for k = 1.

J = 0 is found also when ν = 0 (see (1.4)); in this case

ν = 0 : J ′ =
1

2

√
λ k sin2 γ0 , J = 0 , E =

√

4
√
λ k J ′ , (2.33)

i.e. here J ′ bounded from above for fixed integer k (k = 1 case was discussed in [3]). Here

the non-trivial characteristic frequences are

ω2
n = n2 + 2k2(2 − sin2 γ0) ± 2k

√

2n2(2 − sin2 γ0) + k2 sin2 γ0 . (2.34)

The condition of reality of ωn here is (n2 − 4k2)(n2 − 4k2 + 4k2 sin2 γ0) ≥ 0, which is

satisfied for sin2 γ0 ≤ 4k−1
4k2 , i.e. J ′ ≤

√
λ 4k−1

8k . The same stability condition was found in

[3] in the special case of k = 1. Thus for ν = 0 the combination λ
J ′2 ≥ ( 8k

4k−1)2 cannot be

made small for any k.

For generic values of the parameters the expressions for the frequencies ωn,i cannot

be written in a useful form, but it is straightforward to determine their form in large ν

(or, equivalently, large κ) expansion. The results are presented in Appendix A.

The quartic equation B8 = 0 leads to 4 solutions for ω2
n. If all of them are non-

negative, the solution is stable. Let us analyse the stability condition in the large κ limit.

In this limit there are two different asymptotics of the different frequencies:

(i) ω2
n → h0

4κ2
+
h1

κ4
+ ... , (ii) ω2

n → 4κ2 + g0 +
g1
κ2

+ ... . (2.35)
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One finds (here we set k = 1 and n ≥ 0):

h0 = n2

[

n2 + 4 − 6 sin2 γ0 ± 2

√

4n2 cos2 γ0 − 8 sin2 γ0 + 9 sin4 γ0

]

. (2.36)

The condition of non-negativity of h0 is obtained at n = 1, and is sin2 γ0 ≤ 3
4 .7 This

implies the stability condition (1.7).

In general, for k2 > 1 (the analog of (2.36) in this case is found by replacing n→ n
k in

the bracket in (2.36) and adding overall factor of k) the stability condition is obtained by

requiring that (q2−4)(q2 −4 cos2 γ0) ≥ 0 as well as (3 cos2 γ0−1)2 +4 cos2 γ0 (q2 −1) ≥ 0,

where we set q = n
k . It is straightforward to show that for each value of q there is a range

of values of cos γ0 where these conditions are satisfied.

In the case (ii) one finds

ωn = 2κ+
1

2κ
[n2 + 1 − 5sin2 γ0 ±

√

4n2 cos2 γ0 + sin4 γ0] + ... . (2.37)

For comparison, a similar expansion of the frequencies
√
κ2 + n2 in the AdS5 directions in

(2.13) is

ωn = κ+
n2

2κ
− n4

8κ3
+ ... .

3. Fermionic part of the quadratic fluctuation action

Let us first recall the basic expressions for the quadratic fermionic action (see Ap-

pendix B in [3]) and then find the corresponding spectrum of fluctuations. The quadratic

part of the type IIB AdS5 ×S5 Green-Schwarz superstring action expanded near a partic-

ular bosonic string solution (with flat induced metric) is

LF = i(ηabδIJ − ǫabsIJ )θ̄I̺aDbθ
J , ̺a ≡ ΓAe

A
a , eA

a ≡ EA
M (X)∂aX

M , (3.1)

where I, J = 1, 2, sIJ =diag(1,-1), ̺a are projections of the 10-d Dirac matrices and XM

are the string coordinates corresponding to the AdS5 (M = 0, 1, 2, 3, 4) and S5 (M =

5, 6, 7, 8, 9) factors. The covariant derivative Da is

Daθ
I = (δIJDa − i

2
ǫIJΓ∗̺a)θJ , Γ∗ ≡ iΓ01234 , Γ2

∗ = 1 , (3.2)

7 Note that the limiting case sin2 γ0 = 3

4
corresponds to the value of the angle γ0 = π

3
and

may have some geometrical interpretation.
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Da = ∂a +
1

4
ωAB

a ΓAB , ωAB
a ≡ ∂aX

MωAB
M . (3.3)

Choosing the κ-symmetry gauge by equating the two Majorana-Weyl 10-d spinors,

θ1 = θ2 ≡ θ , (3.4)

we get

LF = 2iθ̄DF θ , DF = −̺aDa − i

2
ǫab̺aΓ∗̺b . (3.5)

In the case of the S5 solution (1.2) with k = 1 we shall label the tangent space coordinates

by A = 0, 5, 6, 7, 8, 9 corresponding to the t direction of AdS5 and γ, ϕ1, ψ, ϕ2, ϕ3 directions

of S5. Then [3]

̺0 = κΓ0 + ν cos γ0 Γ6 +w sin γ0 Γ̃8 , ̺1 = sin γ0 Γ7 , ̺(a̺b) = sin2 γ0 ηab , (3.6)

Γ̃8 ≡ cosσ Γ8 + sinσ Γ9 , Γ̃9 ≡ cosσ Γ9 − sinσ Γ8 . (3.7)

The projected Lorentz connection has the following non-zero components

ω65
0 = −ν sin γ0 , ω85

0 = w cos γ0 cosσ , ω95
0 = w cos γ0 sinσ ,

ω87
0 = −w sinσ , ω97

0 = w cosσ , ω75
1 = cos γ0 . (3.8)

To eliminate the σ dependence we shall first do a local rotation in the 89-plane:

θ = S(σ)θ̃, S = e−
1
2
σΓ89 , S−1Γ̃iS = Γi , i = 8, 9 . (3.9)

As a result, θ̃ will be antiperiodic in σ.

Then we get for the fermionic operator in (3.5)

DF = (κΓ0 + ν cos γ0 Γ6 + w sin γ0 Γ8)(∂τ − 1

2
ν sin γ0 Γ65 +

1

2
w cos γ0 Γ85 +

1

2
wΓ97)

− sin γ0 Γ7(∂σ +
1

2
cos γ0 Γ75 −

1

2
Γ89) + sin γ0Γ7(ν cos γ0 Γ6 + w sin γ0 Γ8)Γ01234 . (3.10)

We can put (3.10) in the form

DF = (κΓ0 + ν cos γ0 Γ6 + w sin γ0 Γ8)∂τ − sin γ0Γ7∂σ

+
1

2
Γ5(−νκ sin γ0 Γ06 + wκ cos γ0 Γ08 + νwΓ68) (3.11)

+
1

2
[κwΓ0 + νw cos γ0 Γ6 + (w2 + 1) sin γ0 Γ8]Γ79
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− sin γ0(ν cos γ0 Γ6 + w sin γ0 Γ8)Γ07Γ1234 .

This can be simplified further by making two constant rotations in the 68 and 06 planes

to transform κΓ0 + ν cos γ0 Γ6 + w sin γ0 Γ8 into sin γ0Γ0:

θ̃ = S68S06Ψ , S68 = e−
1
2
pΓ6Γ8 , S06 = e−

1
2
qΓ0Γ8 , (3.12)

cos p =
ν

a
cos γ0 , sin p =

w

a
sin γ0 , a ≡

√

ν2 + sin2 γ0 , (3.13)

cosh q =
κ

sin γ0
, sinh q =

a

sin γ0
.

Then rescaling Ψ by (sin γ0)
1/2 we finish with the following fermionic Lagrangian

LF = 2iΨ̄
[

− Γ0(∂0 +
κ cos γ0

2a
Γ65 +

wν

2a
Γ85)

+ Γ7(∂1 −
κw

2a
Γ69 −

ν cos γ0

2a
Γ89) − aΓ07Γ6Γ1234

]

Ψ , (3.14)

or

LF = 2iΨ̄
[

τ0(∂0 + A0) + τ1(∂1 +A1) − aτ3Γ6Π
]

Ψ , (3.15)

where

τa ≡ (Γ0,Γ7) , τ3 = τ0τ1 , Π = Γ1234 , Π2 = I , (3.16)

A0 =
1

2a
(κ cos γ0Γ6 + wνΓ8)Γ5 , A1 = − 1

2a
(κwΓ6 + ν cos γ0Γ8)Γ9 . (3.17)

This action may be interpreted as describing a collection of eight standard 2-d massive

Majorana fermions on a flat 2-d background coupled to a constant non-abelian 2-d gauge

field A0, A1. We may also split the fermions into the eigen-states of the projector P =
1
2
(I+Γ1234) (which commutes with the rest of the operator). If one chooses a representation

for ΓA where Γ0 and Γ7 are 2-d Dirac matrices times a unit 8 × 8 matrix one gets 4+4

species of 2-d Majorana fermions with masses ±a = ±
√

ν2 + sin2 γ0.

Note that in the large ν limit κ,w, a→ ν, i.e.

A0 → 1

2
νΓ8Γ5 , A1 → −1

2
νΓ6Γ9 , (3.18)

so the action (3.15) simplifies.

While the presence of the τ3 mass term in (3.14) has its origin in the coupling of the GS

fermions to the 5-form background [10], the presence of the Aa connection term in (3.15)

may be also interpreted as been due to the coupling to an effective NS-NS background in

(2.23). For example, the coupling of the GS fermions to HMNK field strength is through
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the term in the covariant derivative Daθ
1,2 = (∂a ± 1

8∂aX
KHKMNΓMN + ...)θ1,2. In

the gauge (3.4) the HKMN term contributes through the ǫab term in (3.5), i.e. we get

∼ θ̄ǫab̺a∂bX
KHKMNΓMNθ. For XK → u = τ we get extra term ∼ θ̺̄1HuMNΓMNθ

which for the background in (2.23) produces terms in A1 in (3.15). Thus expanding near

a circular classical string solution induces an effective HMNK background in both the

bosonic and the fermionic fluctuation sectors.

To solve the Dirac equation corresponding to (3.14) one should recall that while the

original GS spinor variable θ in (3.1) was periodic on the 2-d cylinder, the rotated fermion

θ̃ in (3.9) and thus Ψ in (3.12) is then anti-periodic, i.e. Ψ(τ, σ + 2π) = −Ψ(τ, σ). That

means one should look for solutions in the form

Ψ =
∑

r∈Z+ 1
2

8
∑

i=1

ψ(i)
r ei(ωr,iτ + rσ) . (3.19)

The frequences ωr can be found by solving the characteristic equation F8(ωr) = 0. The

latter can be obtained by multiplying the Dirac operator in (3.15) by its appropriate

“conjugations” or by using an explicit representation for 6 Dirac matrices Γ0,Γ5, ...,Γ9
8

(here Ω = ω2
r , k = 1, cf. (2.27))

F8 = Ω4 − (5 + 4 r2 + 6 ν2 − cos 2γ0) Ω3

+
[

6 + 6 r4 + 14 ν2 + 9 ν4 + 2 r2(2 + 7 ν2) + 2(1 + 5 r2 + 2 ν2) sin2 γ0 +
3

2
sin4 γ0

]

Ω2

−2
[

2 + 2 r6 + 5 ν2 + 5 ν4 + 2 ν6 + r4 (−2 + 5 ν2) + r2(−2 − 2 ν2 + 5 ν4)

+ [−1 + 7 r4 + ν4 + 2r2(1 + 6 ν2)] sin2 γ0 −
1

2
(1 − 7 r2 +

1

2
ν2) sin4 γ0 +

1

4
sin6 γ0

]

Ω

+ (r2 − 1)2 [r4 + 2r2(ν2 − 1) + (ν2 + 1)2] + 2(r2 − 1)[3 r4 + 2 r2(ν2 − 2) + (1 + ν2)2] sin2 γ0

+
1

2
[3+19 r4+5 ν2 +2 ν4 +r2 (−14+5 ν2)] sin4 γ0+

1

2
(−1+3 r2−ν2) sin6 γ0+

1

16
sin8 γ0 .

(3.20)

As in the bosonic case, while one cannot write down simple expressions for the frequencies

in general, one may expand ωr at large ν. The results are presented in Appendix B.

The expressions for the frequencies take simple form when ν = 0 (there is 4+4 degen-

eracy):

ν = 0 : ω2
r = r2 + 1 +

1

2
sin2 γ0 ±

√

2[(2 − sin2 γ0)r2 + sin2 γ0] . (3.21)

8 Since we only need their algebraic relations these Γm can be taken as Dirac matrices in 6

dimensions.
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Another special case is the one of the unstable solution (2.30) with γ0 = π
2 where we find

γ0 =
π

2
: ωr = ±1

2

[

ν ±
√

ν2 + 2 ± 2
√

r2 + ν2 + 1
]

. (3.22)

Let us mention also that to establish the connection to the point-like (BMN) case we need

first to restore the dependence of F8 in (3.20) on the discrete parameter k (which can be

done by the rescaling r → r/k, ν → ν/k, Ω → Ω/k2, F8 → k8F8) and then send k. As a

result, we find that F8 becomes (cf. (2.28))

k = 0 : F8 = (r2 + ν2 − ω2
r)2(r2 − 2νωr − ω2

r)(r2 + 2νωr − ω2
r) . (3.23)

Here one is also to replace r by n taking integer values, since in the k = 0 limit there is

no local rotation (3.9) of the fermions that changes their periodicity in σ. Thus, as for the

bosonic fluctuations (2.29), the roots of F8 = 0 are indeed the same (up to a τ -dependent

rotation contribution) as the “plane-wave” frequencies.

4. One-loop string sigma model correction to the energy

In this section we use the bosonic and fermionic spectrum to compute the one-loop

sigma model correction to the energy of the solution. As in the static gauge t = κτ in

[4], the space-time energy and the 2-d energy (sum of 1
2ω for all oscillator frequencies) are

related by

E =
1

κ
E2−d . (4.1)

Then the 1-loop correction is given by the standard sum of the oscillator frequencies sums

E = E0 +E1 + ... , E1 =
1

2κ

(

∑

n∈Z

ωB
n −

∑

r∈Z+ 1
2

ωF
r

)

, (4.2)

where ωB
n and ωF

r are bosonic and fermionic contributions, respectively:

ωB
n =

8
∑

i=1

ωB
n,i , ωF

r =

8
∑

i=1

ωF
r,i , (4.3)

where the index i labels the characteristic frequencies. This expression is UV fi-

nite, as one can show directly from the expression for the total fluctuation Lagrangian

(2.13),(2.18),(3.15), or from the large n and large r expansions of the frequencies given in

Appendices A and B (see also [3]).
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One can check that the 1-loop correction vanishes in the “point-particle” limit k = 0,

in agreement with the non-renormalization of the energy of this BPS state dual to a gauge

theory operator with protected conformal dimension [1]. In what follows we shall set k = 1.

We would like to compute (4.2) as an expansion in 1
κ in the large κ limit. In the large

κ limit there will be also exponentially small terms which we shall disregard. To estimate

the value of the sums we shall approximate them by integrals as explained in Appendix C.

As discussed in Appendices A and B, the bosonic and fermionic frequencies ωB
n,i and

ωF
r,i admit the following large κ expansion

ωB
n,i = καB

−1,i(
n

κ
) + αB

0,i(
n

κ
) +

1

κ
αB

1,i(
n

κ
) + · · · , (4.4)

ωF
r,i = καF

−1,i(
r

κ
) + αF

0,i(
r

κ
) +

1

κ
αF

1,i(
r

κ
) + · · · , (4.5)

where we keep n
κ

and r
κ

fixed in the expansion. The values αa,i(
m
κ

) can be considered as

values of the functions αa,i(x) at points xm = m
κ , where m ∈ Z for bosons, and m ∈ Z+ 1

2

for fermions, and ∆ ≡ xm+1 − xm = 1
κ
.

We also need to regularize the bosonic and fermionic sums. This can be done by

multiplying each term in the sums by, e.g. e−|xm|ǫ. Since the fermionic functions αF
a,i(x)

are smooth for all values of x, the sums over r ∈ Z+ 1
2 are replaced by integrals from −∞ to

+∞. However, not all of the bosonic functions αB
a,i(x) are smooth at x = − 2

κ ,− 1
κ , 0,

1
κ ,

2
κ .

Therefore, we obtain the following formula for the bosonic contribution in (4.2)

1

2κ

∑

n∈Z

ωB
n =

1

2κ

(

ωB
0 + 2ωB

1 + 2ωB
2

)

− 1

2

∫ 3/κ

−2/κ

dx
[

καB
−1(x) +

1

κ
αB

1 (x) + ...
]

+
1

2

∫ ∞

−∞
dx

[

καB
−1(x) +

1

κ
αB

1 (x) + ...
]

. (4.6)

Here we have taken into account that ωB
−n = ωB

n , αB
0 = αF

0 = 0, and used the result of

Appendix C to replace the two sums,
∑−3

−∞ and
∑∞

3 , by the integrals.

As can be shown by a straightforward computation, the functions αB
−1 and αF

−1, and

αB
1 and αF

1 , are equal to each other and are given by

αB
−1(x) = αF

−1(x) = 8
√

x2 + 1 , (4.7)

αB
1 (x) = αF

1 (x) = −2
(

−1 + 3 sin2 γ0 + 2 x2 sin2 γ0

)

√

(x2 + 1)
3

. (4.8)

18



Therefore, the bosonic and fermionic integrals from −∞ to +∞ cancel each other up to

the order 1
κ2 , and the correction to the energy is given by the first line in (4.6).

To compute the correction we need to know the large κ expansions of the bosonic

frequencies at fixed n (here we set k = 1). They are given up to the order 1
κ by the

formulas (A.4)–(A.8) of Appendix A. Using them, we get the following result

E1 =
1

κ2
e1(γ0) , (4.9)

e1(γ0) ≡
1

2
[5 sin2 γ0 − 9 +

√

9 − 12 sin2 γ0 + 4

√

4 − 3 sin2 γ0] . (4.10)

Taking into account that at large κ

1

κ2
=

λ

(J + 2J ′)2
+ ... , (4.11)

we can rewrite (4.9) in the following form

E1 =
λ

(J + 2J ′)2
e1(γ0) + ... . (4.12)

At large κ we can also express sin2 γ0 through the angular momenta J and J ′

sin2 γ0 ≈ 2J ′

J + 2J ′ ≤
3

4
. (4.13)

At small values of γ0 or J ′ ≪ J we thus get e1(γ0) ≈ 1, i.e. 9

E1 ≈ λ

(J + 2J ′)2
. (4.14)

Combining (4.9) with the classical result for the energy (1.9), we obtain the following

expression (cf. (1.17))

E = J + 2J ′ +
λ

(J + 2J ′)2
[J ′ + e1(γ0) + ..] . (4.15)

9 Note that the correction thus does not vanish for J ′ = 0. This may look as contradicting to

the fact that at γ0 = 0 our solution should be representing a BPS state – a point particle rotating

along a big circle of S5. As already mentioned above, to recover the point-like case one should

actually set k to 0, while (4.9) was derived assuming k = 1. In general, the γ0 → 0 limit is subtle:

expansion near a point-like string is not a limit of expansion near an extended string. This is clear

from a comparison of the fluctuation Lagrangians in the two cases (cf. (2.18)). A smooth limit is

found by keeping γ0 arbitrary while sending k = 0: in this case we are dealing with “off-diagonal”

plane of rotation of a point-like string and both J and J ′ are non-zero.
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We conclude that the term J + 2J ′ is not modified by the one-loop sigma model correc-

tion. As was discussed above, J ′ ∼
√
λ is large in the semiclassical approximation, and,

therefore, the one-loop sigma model correction is subleading at least at the first order in λ.

Since the correction admits an asymptotic expansion in 1
κ2m with coefficients depending

only on sin2 γ0, the one-loop sigma model correction is also subleading at any order in λ.

It is tempting then to conjecture that all higher-loop sigma model string corrections

are also subleading at large J ′, and, therefore, in this regime the classical formula for the

energy (1.9) is exact to all orders in λ. It should then be true also at weak coupling and

thus should represent a prediction for the corresponding anomalous dimensions on the

SYM side. It should be possible to check it using the methods of [11,12,13].
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Appendix A. Bosonic frequencies

Bosonic spectrum of physical fluctuations is determined by zeros of the determinant

(2.27) of the characteristic matrix. There are also 4 bosons with masses m2 = κ2 coming

(2.13) from the AdS5 part of the background. In what follows k will be set to 1. The

dependence on k can be restored by rescaling n→ n/k, ν → ν/k, ωn → ωn/k.

A.1. Expansion at large n

To check the ultra-violet finiteness of the model we need to know the large n expansion

of the frequencies up to the order 1/n. There are 4 different non-negative frequencies

corresponding to 4 choices of the signs of the two square roots in the frequency below

ωn = |n| ±
√

2 + ν2 ±
√

(1 + cos2 γ0)2 + 4ν2cos2 γ0 +
ν2

2|n| + ... , |n| ≫ ν , (A.1)

and 4 frequencies of the AdS5 fluctuations (κ2 = ν2 + 2 sin2 γ0)

ωAdS
n = |n| + κ2

2|n| + ... , |n| ≫ ν . (A.2)

20



Summing up the contributions of these 4+4=8 frequencies, we get

8
∑

i=1

ωB
n,i = 8|n| + 4

ν2 + sin2 γ0

|n| + ... . (A.3)

A.2. Expansion at large κ and fixed n

To compute the one-loop correction to the vacuum energy we need the expansion of the

frequencies at large κ (or, equivalently, large ν) and fixed n. It is given, up to the order

1/κ, by the following expressions

ωB
n,1, ω

B
n,2 =

1

κ

|n|
2

√

4 + n2 − 6 sin2 γ0 ± 2

√

4n2 cos2 γ0 − 8 sin2 γ0 + 9 sin4 γ0 , (A.4)

ωB
n,3, ω

B
n,4 = 2κ+

1

2κ

(

2 + n2 − 5 sin2 γ0 ±
√

4n2 cos2 γ0 + sin4 γ0

)

, (A.5)

ωB
n,i = κ+

n2

2κ
, i = 5, 6, 7, 8 . (A.6)

A.3. Expansion at large κ and fixed n
κ

The one-loop computation also requires the knowledge of the expansion at large κ and

fixed n
κ
. Introducing x = n

κ
, and keeping it fixed, we obtain the following expansion for

κ≫ 1

ωB
n,1, ω

B
n,2 = κ(1+

√

x2 + 1)±|x| cos γ0√
x2 + 1

+
1

κ

[1

2
cos 2γ0 − 2x2sin2 γ0 + 3sin2 γ0 − 1

2
√

(x2 + 1)3

]

, (A.7)

ωB
n,3, ω

B
n,4 = κ(−1 +

√

x2 + 1)± |x| cos γ0√
x2 + 1

+
1

κ

[

− 1

2
cos 2γ0 − 2x2sin2 γ0 + 3sin2 γ0 − 1

2
√

(x2 + 1)3

]

,

(A.8)

ωB
n,i = κ

√

x2 + 1 , i = 5, 6, 7, 8 . (A.9)

Summing up all the 8 frequencies, we get

8
∑

i=1

ωB
n,i = 8κ

√

x2 + 1 − 1

κ

2(2x2sin2 γ0 + 3sin2 γ0 − 1)
√

(x2 + 1)3
+ ... . (A.10)

Appendix B. Fermionic frequencies

Fermionic spectrum of physical fluctuations is determined (for k = 1) by zeros of the

determinant (3.20) of the characteristic matrix. The dependence on k can be restored

again by rescaling r → r/k, ν → ν/k, ωr → ωr/k.
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B.1. Expansion at large r

To check that the UV divergences coming from the bosonic sector (cf. (A.3)) and cancelled

by the fermions we need to know the large r expansion of the frequencies up to the order

1/r. Among the 8 fermionic frequencies there are only 4 different corresponding to 4

choices of the signs of the 2 square roots in the expression (r = ±1
2 , ...)

ωr = |r|±
√

1 + ν2 + cos2 γ0 ± ν

√

ν2 + 2sin2 γ0 +
ν2 + sin2 γ0

2|r| + ... , |r| ≫ ν . (B.1)

Summing up these 8 frequencies, we get

8
∑

i=1

ωF
r,i = 8|r| + 4

ν2 + sin2 γ0

|r| + ... . (B.2)

Comparing this expression with the sum of the bosonic contributions (A.3), we find that

indeed the 2-d UV cancel in the 1-loop correction to the energy (4.2).

B.2. Expansion at large κ and fixed r

Even though we do not need the expansion of the fermionic frequencies at large κ and fixed

r to compute the one-loop correction to the vacuum energy, we present here this expansion

for completeness

ωF
r,1 =

1

2κ
|r2 − cos2 γ0| , (B.3)

ωF
r,2, ω

F
r,3 = κ+

1

2κ

(

r2 + cos 2γ0 ±
√

4n2 cos2 γ0 + sin4 γ0

)

, (B.4)

ωF
r,4 = 2κ+

1

2κ

(

1 + r2 − 3 sin2 γ0

)

. (B.5)

B.3. Expansion at large κ and fixed r
κ

The one-loop computation requires knowledge of the expansion of the fermionic frequencies

at large κ and fixed r/κ. Introducing x = r/κ, and keeping it fixed, we obtain the following

expansion

ωF
r,1, ω

F
r,2 = κ

√

x2 + 1 ± |x| cos γ0√
x2 + 1

− 1

κ

x2sin2 γ0 + 2sin2 γ0 − 1

2
√

(x2 + 1)3
, (B.6)

ωF
r,3, ω

F
r,4 = κ

(

±1 +
√

x2 + 1
)

+
1

κ

(

±1

2
cos 2γ0 − sin2 γ0

2
√
x2 + 1

)

. (B.7)

Summing up all the eight fermionic frequencies, we get

8
∑

i=1

ωF
r,i = 8κ

√

x2 + 1 − 1

κ

2(2x2sin2 γ0 + 3sin2 γ0 − 1)
√

(x2 + 1)3
+ ... . (B.8)

Remarkably, this expression coincides with the sum of the bosonic frequencies (A.10).
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Appendix C. Approximation of an infinite sum by an integral

Let us recall how sums of the form (4.2) can be replaced by integrals. Assume that we

are given a smooth function f(x) and its values at points xi, i = 1, · · · , N ; xi+1 −xi = ∆.

We are to find a function g(x) such that the following formula is valid

N
∑

i=1

f(xi) =
1

∆

∫ xN+1

x1

dx g(x) +O(∆5) =
1

∆

N
∑

i=1

∫ xi+1

xi

dx g(x) +O(∆5) . (C.1)

We see that g(x) should satisfy

f(xi) =
1

∆

∫ xi+1

xi

dx g(x) = gi +
∆

2
g′i +

∆2

6
g′′i +

∆3

24
g
(3)
i +

∆4

120
g
(4)
i +O(∆5) ,

where gi = g(xi), g
′
i = d

dxg(xi), g
(k)
i = dk

dxk g(xi), and so on. It is not difficult to check

that this formula will be fulfilled if we choose g(x) to be

g(x) = − 2

15
f(x− ∆) +

6

5
f(x− ∆

2
) +

1

30
f(x) − 2

15
f(x+

∆

2
) +

1

30
f(x+ ∆) . (C.2)

If we are interested in computing the sum in (C.1) only up to the order ∆2 then a simpler

formula can be used

g(x) =
1

3
f(x− ∆) +

5

6
f(x) − 1

6
f(x+ ∆) . (C.3)

Note that to use these expressions, the function f(x) has to be smooth in the interval

[x1, xN ].
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