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1. Introduction

Our understanding of the gauge/string duality [1] has recently improved due to new

ideas and techniques on both sides of the AdS/CFT correspondence. Even though the

duality is of strong/weak coupling type, it was proposed by Berenstein, Maldacena

and Nastase (BMN) [2] that energies of certain string states can be matched with

perturbative scaling dimensions of dual SYM operators. The BMN results were re-

interpreted in [3] as the semi-classical quantization near a point-like string carrying

large momentum J along the central circle of S5. The BMN proposal was then

generalized in [4] where it was found by using the semi-classical approach that there

exists a large sector of highly energetic string states on AdS5 × S5 which permits a

direct comparison with perturbative gauge theory. Any quantum “heavy” state can

be well approximated by a classical string. However, in most cases the string energy

turns out to be non-analytic in the ’t Hooft coupling constant λ [3], that precludes

a direct comparison with perturbative gauge theory.

Quite remarkably, as was shown in [4], energies of classical multi-spin strings

rapidly rotating in S5 admit an expansion in integer powers of the effective coupling

constant λ/L2, where L is the large, total spin on S5. Even though the coupling

λ is large in the semi-classical approach, this expansion is of the same form as in
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perturbative gauge theory, and, therefore, one may compare the energies of spinning

strings with perturbative scaling dimensions of gauge theory operators.

The multi-spin string solutions are completely determined by the bosonic part of

the Green-Schwarz superstring action [5]. In the conformal gauge the bosonic string

is described by the sigma model with the AdS5 × S5 target space, which is known

to be exactly solvable. A finite-dimensional reduction of the classical string sigma

model to an integrable system of the Neumann type [6] describes folded and circular

rigid strings. More general string solutions are described by integral equations of the

Bethe type. For strings moving in R × S3, AdS3 × S1 and R × S5 they were derived

in [7].

A related development in gauge theory was triggered by an important obser-

vation [8] that in the SO(6) subsector planar superconformal N = 4 SYM is an

integrable system in the one-loop approximation. This was generalized to the com-

plete dilatation operator in [9] and, the integrability, very likely, holds at higher

loops as well [10]. Integrable structures of QCD were previously observed in [11].

Integrability allows one to formulate a system of Bethe equations which is then used

to find anomalous dimensions of conformal operators. For a closed su(2) subsector

the one-loop Bethe ansatz of [8] is extended up to three loops [12] owing to the fact

that the corresponding three-loop dilatation operator [10] can be embedded into the

Inozemtsev long-range spin chain [13]. Recently the all-loop asymptotic Bethe ansatz

for the dilatation operator acting in the su(2) subsector was proposed in [14].

The spin chain Bethe equations were used in [15, 12] to demonstrate one- and

two-loop agreement between gauge and string theory predictions in the cases of folded

and circular rigid strings. Moreover, as was shown in [16], the eigenvalues of higher

local commuting charges also agree up to two-loop order, indicating a close relation

between integrable structures of gauge and string theories. Furthermore, up to the

second order of perturbation theory, the string Bethe equations [7] coincide with the

spin chain Bethe equations [12] thus leading to a proof of two-loop agreement of string

and gauge theory results in the su(2) subsector. The one- and two-loop agreement in

various subsectors of the gauge theory was also demonstrated in [17, 18, 19, 20, 21].

The other relevant aspects of the gauge/string duality have been investigated in

[22, 23].

At two leading orders of perturbation theory the matching between gauge and

string theory quantities was also observed for 1/L corrections to the BMN limit

[24, 25]. It was noticed, however, that it breaks down at three-loop order [25]. The

same pattern, i.e. the one- and two-loop agreement and disagreement starting at

three loops, was also found for spinning strings [12, 16]. Moreover, results of [26, 27]

indicate that 1/L corrections for spinning strings would disagree already at the one-

loop level. As was stressed in [12, 14], the origin of all these disagreements could

be due to neglecting on the gauge theory side the so-called wrapping interactions,

and the agreement might be restored after they would have been properly incorpo-
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rated. Let us also note that disagreement between gauge and string theories becomes

manifest if one compares the thermodynamic limit of the all-loop asymptotic Bethe

ansatz [14] describing (infinitely) long operators, and the string Bethe equations [7]

describing classical spinning strings.

Assuming the validity of the AdS/CFT correspondence one should expect exis-

tence of a Bethe ansatz for quantum strings which would serve as a discretization of

the integral (continuous) Bethe equations for classical strings and, from the gauge

theory perspective, include terms responsible for wrapping interactions. An interest-

ing discretization of the string Bethe equations was recently proposed in [28]. The

Bethe ansatz for quantum strings [28] reproduces the near BMN spectrum of [25],

the famous 4
√

λ behavior at strong coupling [29], and has a spin chain description at

weak coupling [30]. The general multi-impurity spectrum (in the su(2) subsector)

predicted in [28] has been recently reproduced from the quantized string theory in the

near plane-wave background [31]. Existence of a Bethe ansatz with such remarkable

properties provides a strong evidence in favor of integrability of quantum strings.

An interesting recent discussion of the quantum integrability for strings in the near

plane-wave background (1/J order) can be found in [32].

A necessary (but not always sufficient) condition for classical integrability of a

solvable model is the existence of a Lax pair. The Lax representation implies the

existence of an infinite number of local conserved charges that may allow one to solve

the system exactly. A Lax pair for the classical superstring theory on AdS5 ×S5 was

found in [33] (see also [34]). To analyze quantum integrability of the superstring

theory one would need to develop the Hamiltonian formalism. The Poisson bracket

of the L -operator entering the Lax pair determines a classical r-matrix which is

further used to find the Poisson algebra of the corresponding monodromy operator,

and to quantize the model. The knowledge of the Hamiltonian structure is also

crucial to exhibit commutativity of local integrals of motion. Unfortunately, the Lax

pair of [33] cannot be immediately used to find an r-matrix structure and, therefore,

to quantize the model because the local κ-symmetry has not been fixed, and, as the

consequence, the Poisson structure of the L -operator remains to be undefined. Also,

to find the Lax pair, the two-dimensional metric on the string world-sheet has been

fixed in a way equivalent to fixing the conformal gauge. It is well-known that in the

conformal gauge fixing κ-symmetry leads to a very complicated Poisson structure

for fermions which can be hardly used to quantize superstring even in flat space. Of

course, the standard way to overcome this difficulty is to further impose the light-

cone gauge. For string theory on a curved background, however, the usual conformal

gauge and the light-cone gauge are not necessary compatible, fixing the light-cone

gauge leads to a modification of the conformal gauge condition [35, 36].

Following the analogy with the Green-Schwarz superstring in flat space, it seems

reasonable to use a light-cone type gauge to address the problems of integrability and

quantization of superstring theory on AdS5 × S5. As a first step in this direction, in
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the present paper we consider the bosonic part of the superstring theory on AdS5×S5

in such a gauge.

As is known, the direct quantization of superstrings in the near plane-wave back-

ground can be performed [25, 24] by using exact solvability of the superstring theory

on plane waves [37]. In particular, the approach undertaken in [25] yields (pertur-

batively) the string Hamiltonian as a power series in 1/J . It appears, however, that

there is another choice of a gauge condition which enables one to determine the

bosonic part of the string Hamiltonian as an exact function of J . This gauge condi-

tion is similar to the uniform gauge used in [19] which is related to the static gauge

by a 2d duality transformation [20]. The uniform gauge uses the gauge freedom to

request that the target space-time would coincide with the world-sheet time, and

that one combination of the global R-symmetry charges would be homogeneously

distributed along the string. The only difference of our gauge choice from the one

used in [19] is that the authors of [19] distribute the total S5 angular momentum

J1 + J2 + J3, while we only distribute a single component J = J3 of the S5 angular

momentum. Therefore, in our gauge we study a sector of string states with one

angular momentum fixed, and in the large J limit we should expect to recover the

light-cone plane-wave Hamiltonian. The uniform gauge we use is in fact a proper

Hamiltonian version of the light-cone gauge of [25]. In our consideration we keep two

parameters J and λ finite. By this reason we can study not only short strings which

in the BMN limit, J → ∞, λ/J2 fixed, represent small fluctuations around the point-

like string carrying large momentum J along the central circle of S5, but also strings

which wind around a circle of S5 and remain long even in the BMN limit. Rigid long

string configuration were studied in [6]. In the sector of short strings the expansion

in 1/J of our Hamiltonian reproduces the plane-wave Hamiltonian and the 1/J and

1/J2 corrections obtained in [25, 38]. We believe that it should be possible to take

into account the fermionic degrees of freedom and obtain a finite J , λ Hamiltonian

in the uniform gauge for Green-Schwarz superstring on AdS5 × S5.

Since both parameters J and λ are finite one could try to consider the strong

coupling limit λ → ∞, J fixed. It turns out that the Hamiltonian does not have

any good large λ expansion neither in the sector of short strings nor in the sector of

long strings. Nevertheless, one can see the famous
4
√

λ leading behavior of the string

energy in the sector of short strings. The long strings, however, are much heavier in

the strong coupling limit, and their energy scales as
√

λ.

In our gauge the Hamiltonian is of the Nambu type,1 and it may seem diffi-

cult to obtain a Lax representation for it. On the other hand, in the conformal

gauge the string model is described as a reduction of the well-known principle sigma

model to the coset space AdS5 × S5. In the uniform gauge the world-sheet metric

is non-diagonal and depends non-trivially on the physical fields. Nevertheless, the

1A similar but different light-cone Hamiltonian of the square root type was also obtained for

some specific choice of the light-cone coordinates in the second paper of [25].
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Lax representation for the principle model on arbitrary 2d surface can be easily con-

structed and further used to derive the Lax pair for the uniform gauge Hamiltonian.

This proves the (kinematical) integrability of the Hamiltonian. We would like to

emphasize that our method is universal and can be applied to derive a Lax rep-

resentation for any gauge-fixed Hamiltonian, in particular, for the AdS5 light-cone

Hamiltonian obtained in [36].

The paper is organized as follows. In section 2 we derive the physical Hamiltonian

in the uniform gauge, and express the world-sheet metric in terms of physical degrees

of freedom. In section 3 we discuss the (near) BMN and strong coupling limits. In

section 4 we obtain the Lax representation for the physical Hamiltonian. In section 5

we discuss some general properties of the monodromy matrix. We show, in particular,

how some of the results obtained in [7] can be re-derived and generalized within our

approach. In appendices we collect some useful formulae. In particular, in appendix

B we specify our general treatment to the case of classical strings moving in R× S3.

2. Gauge-fixed Hamiltonian

In this section we develop the Hamiltonian formalism for strings in the uniform gauge.

We start with describing suitable parametrizations of the sphere and the AdS spaces.

The five-sphere can be parametrized by five variables: yi, i = 1, . . . , 4 and by the angle

variable φ. In terms of six real embedding coordinates YA, A = 1, . . . , 6 obeying the

condition Y 2
A = 1 the parametrization reads

Y1 ≡ Y1 + iY2 =
y1 + iy2

1 + y2

4

, Y2 ≡ Y3 + iY4 =
y3 + iy4

1 + y2

4

,

Y3 ≡ Y5 + iY6 =
1 − y2

4

1 + y2

4

exp(iφ) .

The metric induced on S5 from the flat metric of the embedding space is

dYAdYA =

(

1 − y2

4

1 + y2

4

)2

dφ2 +
dyidyi

(1 + y2

4
)2

.

Here and below we use the concise notation y2 = yiyi. Analogously to describe

the five-dimensional AdS space we introduce four coordinates zi and the global AdS

time t. The embedding coordinates ZA, which obey ηABZAZB = −1 with the metric

ηAB = (−1, 1, 1, 1, 1,−1), are now parametrized as

Z1 ≡ Z1 + iZ2 = −z1 + iz2

1 − z2

4

, Z2 ≡ Z3 + iZ4 = −z3 + iz4

1 − z2

4

,

Z3 ≡ Z0 + iZ5 =
1 + z2

4

1 − z2

4

exp(it) .
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For the induced metric one obtains

ηABdZAdZB = −
(

1 + z2

4

1 − z2

4

)2

dt2 +
dzidzi

(1 − z2

4
)2

.

The same parametrization of the AdS5 × S5 space was also discussed in the context

of AdS5 × S5 string quantization in the first paper of [4] and in [25].

Since we consider closed strings all the fields YA and ZA are assumed to be

periodic functions of the world-sheet coordinate 0 ≤ σ ≤ 2π. Periodicity implies

that the angle variable φ has to satisfy the constraint:

φ(2π) − φ(0) = −2πm , m ∈ Z . (2.1)

The integer number m represents the number of times the string winds around the

circle parametrized by φ.

Propagation of bosonic string is described by the sigma model with AdS5 × S5

target space. The corresponding Lagrangian density reads

L = −1

2

√
λ γαβ

(

−Gtt∂αt∂βt +
∂αzi∂βzi

(1 − z2

4
)2

+ Gφφ∂αφ∂βφ +
∂αyi∂βyi

(1 + y2

4
)2

)

. (2.2)

Here γαβ ≡
√
−hhαβ , where hαβ is a world-sheet metric with Minkowski signature.

We also introduced two functions Gtt and Gφφ:

Gtt =

(

1 + z2

4

1 − z2

4

)2

, Gφφ =

(

1 − y2

4

1 + y2

4

)2

. (2.3)

The string tension
√

λ is related to the radius R of S5 (AdS5) and the slope α′ of the

Regge trajectory as
√

λ = R2

α′
.

A consistent quantization procedure would require finding the true dynamical

(physical) variables for the string sigma model. The most elegant way to achieve

this goal is to use the Hamiltonian formulation. Deriving from eq.(2.2) the canonical

momenta for all the fields we recast the Lagrangian in the phase space form

L = ptṫ + pφφ̇ + pzi
żi + pyi

ẏi

− 1

2
√

λ γττ






p2
t

Gtt

−
p2

φ

Gφφ

+ λGttt
′2 − λGφφφ

′2

−
(

1 − z2

4

)2

p2
zi
−
(

1 +
y2

4

)2

p2
yi
− λz′2i
(

1 − z2

4

)2 − λy′2
i

(

1 + y2

4

)2






+
γτσ

γττ
(ptt

′ + pφφ
′ + pzi

z′i + pyi
y′

i) . (2.4)
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Here pt, pφ, pzi
and pyi

are the canonical momenta conjugate to t, φ, zi and yi

respectively. The dot means the derivative with respect to the world-sheet time τ

while prime denotes the derivative with respect to σ. Note also that to derive the

formula we used that the definition of γαβ implies det γ−1 = −1. In what follows we

will often use the shorthand notation for pairings: pzi
z′i = pzz

′, etc.

The uniform gauge we want to fix is of the type considered in [19, 20], and

consists in imposing the following two conditions

t = τ, pφ = J . (2.5)

Equations of motion for the phase space variables are found from eq.(2.4). Upon

further substitution of the gauge conditions (2.5) some of these equations turn into

the constraints. Solving the constraints allows one to exclude the gauge degrees of

freedom, and obtain the Hamiltonian for physical variables. Let us now discuss this

procedure in more detail.

First by varying the Lagrangian (2.4) with respect to γτσ we find an equation to

determine φ′ (note that t′ = 0):

φ′ = − 1

J
(pzz

′ + pyy
′) . (2.6)

Integrating this equation over σ and recalling eq.(2.1) we obtain a constraint

V = m J , (2.7)

where

V =

∫ 2π

0

dσ

2π
(pzz

′ + pyy
′) . (2.8)

In the string language this residual constraint is nothing else but the level-matching

condition. We will not try to solve eq.(2.7) in classical theory, rather, following the

analogy with the flat case, we will require eq.(2.7) to be satisfied by physical states

of the theory.

The variable pt conjugate to the global AdS time t is the density of the space-

time energy of string. On the other hand, fixing t = τ allows one to identify −pt

with the Hamiltonian density H for physical degrees of freedom:

H =

∫ 2π

0

dσ

2π
H . (2.9)

To obtain p2
t ≡ H2 one performs variation of eq.(2.4) with respect to γττ and use
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eq.(2.6). In this way we find the square of the Hamiltonian density H2

H2 =
Gtt

Gφφ

J2 +
λ

J2
GttGφφ(pzz

′ + pyy
′)2 +

+ Gtt

(

1 − z2

4

)2

p2
z + λ

Gtt
(

1 − z2

4

)2 z′2

+ Gtt

(

1 +
y2

4

)2

p2
y + λ

Gtt
(

1 + y2

4

)2y′2 . (2.10)

We therefore see that the physical variables of our theory are the eight coordinates

y, z and the corresponding conjugate momenta py, and pz. They are subject of the

canonical Poisson brackets

{pzi
(σ), zj(σ

′)} = 2πδijδ(σ − σ′)

{pyi
(σ), yj(σ

′)} = 2πδijδ(σ − σ′) . (2.11)

It is clear that the gauge-fixed theory is manifestly invariant under the SO(4)×SO(4)

subgroup of the R-symmetry group of the string theory. The Hamiltonian density is

given by the square root and, therefore, the physical Hamiltonian appears to be of

the Nambu type. It depends on two parameters, J and λ. Thus, we have completely

described the hamiltonian structure of the theory, the equation of motion for any

function Φ of physical variables is given by

Φ̇ = {H, Φ} . (2.12)

Let us note that we have not yet exploit all the information contained in eq.(2.4).

In particular, equation for pt allows one to solve for γττ . Indeed,

0 =
δL
δpt

= 1 − 1

γττ

pt√
λGtt

, (2.13)

i.e.

γττ =
pt√
λGtt

= − H√
λGtt

. (2.14)

Note again that to express the r.h.s. of the last formula via the Hamiltonian density

we picked up the negative root of the equation p2
t = H2. Such a prescription is

dictated by positivity of the physical Hamiltonian and by agreement with the plane-

wave limit as will be discussed below. Finally, we can exploit an equation for φ

d

dτ

δL
δφ̇

− δL
δφ

= −∂σ

(
√

λGφφ

γττ
φ′ + J

γτσ

γττ

)

= 0 (2.15)
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to solve for the metric component γτσ. One finds

γτσ = f(τ)
H√
λGtt

+

√
λ

J2
Gφφ(pzz

′ + pyy
′) , (2.16)

where f(τ) is an arbitrary function of τ . The presence of this function signals a

residual symmetry. Indeed, in the Lagrangian (2.7) we can shift the ratio γτσ

γττ by

any function f(τ). On the solutions of eq.(2.7) the Lagrangian remains invariant

under this shift. The function f(τ) plays the role of the Lagrangian multiplier to the

level-matching constraint V. Thus, keeping a non-trivial f(τ) requires the following

modification of the Hamiltonian

H → H + f(τ)(V − mJ) . (2.17)

Of course, on solutions of the level-matching constraint this Hamiltonian coincides

with the old one. In what follows we pick up f(τ) = 0, i.e.

γτσ =

√
λ

J2
Gφφ(pzz

′ + pyy
′) . (2.18)

Thus, the world-sheet metric is completely determined in terms of physical fields

which is equivalent to solving the Virasoro constraints. We see that fixing the uniform

gauge invokes a non-trivial gravitational field on the physical world-sheet. One can

easily check that the only constraint V, which we left unsolved, commutes with the

Hamiltonian:

{H,V} = 0 (2.19)

and is, in fact, a generator of residual symmetry that generates rigid rotations:

σ → ǫσ:

{V, y(σ)} = y′(σ) , {V, p(σ)} = p′(σ) . (2.20)

These equations are of the evolution type, cf. (2.12), where now σ plays the role of

the (compact) time variable and the “Hamiltonian” is V . Thus, H and V generate

two commuting Hamiltonian flows of the dynamical variables corresponding to the

times τ and σ.

Since the Hamiltonian commutes with the level-matching constraint V, the phys-

ical string states are divided into sectors labeled by the winding number m because

the eigenvalues of V are equal to mJ , in accord with (2.7). In what follows we will

loosely refer to strings with zero winding number as short strings, and to strings with

m 6= 0 as long strings. Let us note, however, that since we consider strings moving

in S5, a string with a nonzero winding number in the φ-direction may still be of a

small size if it is located near the pole of S5 (y2 ∼ 4).
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3. Near BMN and Strong Coupling Limits

In this section we use the gauge-fixed Hamiltonian to discuss the BMN limit, J →
∞ with λ/J2 fixed, and the strong coupling limit, λ → ∞ with J fixed. In the

uniform gauge we study a sector of string states with one S5 angular momentum

fixed, therefore, in the BMN limit we should expect to recover the light-cone plane-

wave Hamiltonian, and the 1/J and 1/J2 corrections obtained in [25, 38].

The authors of [25] set up a procedure to construct a perturbative large-curvature

expansion of the string Hamiltonian on AdS5 × S5 obtained in the light-cone gauge

around the pp-wave background. In particular, they explicitly obtained the quartic

and (even higher [38]) correction to the pp-wave Hamiltonian and studied the problem

of its diagonalization in quantum theory. The uniform gauge we chose is, in fact,

a proper Hamiltonian version of the light-cone gauge used in [2, 25] valid for finite

J, λ. To make a connection to the pp-wave limit we rescale the coordinates as

z → 1√
J

z, y → 1√
J

y, pz →
√

Jpz, py →
√

Jpy. (3.1)

This rescaling is a canonical transformation because it preserves the canonical Poisson

brackets (2.11). To write down the rescaled Hamiltonian density we introduce an

effective BMN coupling λ′

λ′ =
λ

J2
.

To take into account the level-matching condition (2.7) we write (pzz
′ + pyy

′)2 in the

Hamiltonian (2.10) as V2 + (pzz
′ + pyy

′)2
∗, where V = mJ is the zero mode, and the

second term with the subscript ∗ represents the terms depending on non-zero Fourier

modes of pzz
′ + pyy

′. Then the square of the density becomes

H2 =
Gtt

Gφφ

J2 + λ′m2J2GttGφφ + λ′GttGφφ(pzz
′ + pyy

′)2
∗ +

+ JGtt

(

1 − z2

4J

)2

p2
z + Jλ′ Gtt

(
1 − z2

4J

)2 z′2

+ JGtt

(

1 +
y2

4J

)2

p2
y + Jλ′ Gtt

(

1 + y2

4J

)2y′2 , (3.2)

where the rescaled functions Gtt and Gφφ are given by

Gtt =

(

1 + z2

4J

1 − z2

4J

)2

, Gφφ =

(

1 − y2

4J

1 + y2

4J

)2

. (3.3)

Now we see that there are two principally different cases: (i) the case of short strings

with the winding number around the circle parametrized by φ equal to zero, m = 0,
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and (ii) the case of long strings winding around the circle with m 6= 0. Then the

large-curvature expansion around pp-wave is obtained in the sector of short strings

by sending J → ∞, while keeping the BMN coupling λ′ finite. The leading terms of

the large J expansion are

H = J + Hpp + . . . , (3.4)

where the second term is a density for the pp-wave Hamiltonian

Hpp =
1

2
(p2

y + p2
z + y2 + z2 + λ′y′2 + λ′z′2) . (3.5)

Expanding further one can easily check that the terms of order 1/J and 1/J2 precisely

agree with those found in [25, 38]. Thus, the advantage of our approach is that it

allows us to obtain the physical Hamiltonian for finite J and, therefore, to study its

general properties, without appealing to perturbation theory. Also a perturbative

expansion becomes easy to handle as it is now encoded in the unique expression (3.2).

According to (3.4) in the pp-wave limit H → J and, therefore,

γττ → − 1√
λ′

, γτσ → 0 (3.6)

which is essentially the flat metric, as it should be. This also motivates our choice of

the sign in eq.(2.14).

In the sector of short strings the eigenvalues of the quadratic Hamiltonian Hpp

acting on physical states satisfying the level-matching constraint (2.7) are of order 1.

This is the reason why the 1/J perturbative expansion can be used in the sector of

short strings. On the other hand in the sector of long strings with the winding number

m 6= 0 the large J expansion cannot be used because in that case the corresponding

quadratic Hamiltonian has large eigenvalues of order J on the physical states, that

makes the formal 1/J expansion meaningless. A proper large J expansion in the

sector of long strings requires first to find a classical solution2 satisfying the level-

matching condition (2.7), and then expand around this solution following the lines

discussed in [4].

It is also of interest to consider the strong coupling limit, λ → ∞ with J fixed.

In this case we rescale the coordinates as

z → 1
4
√

λ
z, y → 1

4
√

λ
y, pz → 4

√
λpz, py → 4

√
λpy. (3.7)

This rescaling is clearly a canonical transformation.3 Then the square of the density

2A large class of long string configurations was found in the second paper of [6].
3This rescaling also induces the rescaling (3.1) if λ′ is finite.
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takes the form

H2 =
Gtt

Gφφ

J2 +
λ

J2
GttGφφ(pzz

′ + pyy
′)2 +

+
√

λGtt

(

1 − z2

4
√

λ

)2

p2
z +

√
λ

Gtt
(

1 − z2

4
√

λ

)2 z′2

+
√

λGtt

(

1 +
y2

4
√

λ

)2

p2
y +

√
λ

Gtt
(

1 + y2

4
√

λ

)2y′2 , (3.8)

where the rescaled functions Gtt and Gφφ are given by

Gtt =

(
1 + z2

4
√

λ

1 − z2

4
√

λ

)2

, Gφφ =

(
1 − y2

4
√

λ

1 + y2

4
√

λ

)2

. (3.9)

In the strong coupling limit the two leading terms of H2 are4

H2 ≈ λ

J2
(pzz

′ + pyy
′)2 +

√
λ

(

Hflat +
(z2 − y2)(pzz

′ + pyy
′)2

J2

)

. (3.10)

Here Hflat = p2
z + z′2 + p2

y + y′2 is the SO(8) invariant light-cone Hamiltonian density

for string in flat space. It is clear from eq.(3.10) that there is no well-defined expan-

sion in 1/
√

λ neither in the sector of short strings nor in the sector of long strings.

Nevertheless, one can see that at strong coupling the energy of short strings scales as
4
√

λ and the energy of long strings scales as
√

λ. First of all we notice that if m 6= 0

then the Hamiltonian has the following expansion (assuming m > 0)

H ≈
√

λm +
1

2

∫ 2π

0

dσ

2π

Hflat + 1
J2 (z

2 − y2)(pzz
′ + pyy

′)2

1
J
(pzz′ + pyy′)

. (3.11)

Due to the non-polynomial structure of the second term the expansion cannot be

used in practice to develop perturbation theory in 1/
√

λ. However, one can see that

the contribution of the second term is subleading, and, therefore, the energy of a

generic long string scales as
√

λm in the strong coupling limit.

For m = 0 even such an expansion as eq.(3.11) becomes impossible. The Hamil-

tonian takes the form

H ≈
∫ 2π

0

dσ

2π

√

λ

J2
(pzz′ + pyy′)2 +

√
λ

(

Hflat +
(z2 − y2)(pzz′ + pyy′)2

J2

)

. (3.12)

This time the first term under the square root in eq.(3.12) is not the leading one.

Indeed, if we drop the second term, take the root, and integrate over σ we get zero.

4We thank Arkady Tseytlin for an important discussion of this point.
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We conclude, therefore, that in the strong coupling limit the energy of a generic short

string scales as 4
√

λ. Let us mention, however, that since we consider strings moving

in S5, strings which are considered to be long in the φ-direction may be of a small

size, and vice verse. Due to this reason there are states in the sector of long strings

whose energies scale as 4
√

λ, and there are states in the sector of short strings whose

energies scale as
√

λ in the strong coupling limit.

4. The Lax Representation

In this section we construct the Lax (zero-curvature) representation for the physical

Hamiltonian eqs.(2.9), (2.10), proving therefore that it defines a classical integrable

system.

The space-time we consider is a coset

AdS5 × S5= SO(4, 2) × SO(6) /
SO(5, 1) × SO(5)

and, therefore, the string sigma model must be intimately connected to sigma models

on group and coset manifolds. Since fixing the uniform gauge leads to appearance of

the gravitational field on the world-sheet it is natural to start with considering the

principle sigma model in presence of a non-trivial two-dimensional metric. The field

variable of the model is a matrix g and the action reads as

S =
1

2

∫

dτdσγαβTr
(

∂αgg−1∂βgg−1
)

. (4.1)

In the case of the flat world-sheet metric integrability of this model is a well-studied

subject [39, 40] and it is based on constructing the zero-curvature (Lax) representa-

tion for the equations of motion (see also [41]). It is not difficult to generalize this

construction to the case of an arbitrary world-sheet metric.

To construct the Lax representation for the principle sigma model with γαβ

arbitrary (but satisfying det γ = −1) let us introduce a current Aα (here α is σ or

τ):

Aα = ∂αgg−1

and its self- and anti-self dual projections

A±
α = (P±) β

α Aβ, (P±) β
α = δ β

α ∓ γαρǫ
ρβ . (4.2)

Defining the Lax operator which depends on a spectral parameter x as

Dα = ∂α − A+
α

2(1 − x)
− A−

α

2(1 + x)
≡ ∂α −Aα(x) (4.3)

one can see that equations of motion

∂α(γαβAβ) = 0 (4.4)
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are equivalent to the zero curvature condition

[Dα, Dβ] = 0 . (4.5)

It is now easy to generalize this construction to the coset space in hand. Let us

introduce the following matrix g

g =

(
ga 0

0 gs

)

. (4.6)

Here ga and gs are the following 4 × 4 matrices (cf. the second paper of [6])

ga =








0 Z3 −Z2 Z∗
1

−Z3 0 Z1 Z∗
2

Z2 −Z1 0 −Z∗
3

−Z∗
1 −Z∗

2 Z∗
3 0








, gs =








0 Y1 −Y2 Y∗
3

−Y1 0 Y3 Y∗
2

Y2 −Y3 0 Y∗
1

−Y∗
3 −Y∗

2 −Y∗
1 0








. (4.7)

To define these matrices we use the complex embedding coordinates Zk, k = 1, 2, 3

for the AdS space and Yk for the sphere. Let us discuss the properties of these

matrices in more detail.

The matrix ga is an element of the group SU(2, 2), i.e. it obeys

g†
aEga = E, E = diag(−1,−1, 1, 1), (4.8)

provided the following condition is satisfied

Z∗
1Z1 + Z∗

2Z2 − Z∗
3Z3 = −1 . (4.9)

In fact ga describes an embedding of an element of the coset space SO(4, 2)/SO(5, 1)

into the group SU(2, 2) which is locally isomorphic to SO(4, 2). We use this isomor-

phism to work with 4×4 matrices rather then with 6×6 ones. Quite analogously, gs

is unitary: gsg
†
s = 1 given that the embedding fields satisfy Y∗

kYk = 1. This matrix

describes an embedding of an element of the coset SO(6)/SO(5) into SU(4) the latter

being isomorphic to SO(6).

The next step consists in expressing the embedding coordinates Zk and Yk in

terms of physical coordinates and momenta. In particular, Y3 contains the unphysical

field φ whose evolution equation is

φ̇ =
Gtt

H

(
J

Gφφ

− λ

J3
Gφφ(pzz + pyy)2

)

. (4.10)

Thus, we have a pair of differential equations, (2.6) and (4.10), to determine φ via

the physical variables. Integrating (2.6) we get

φ(σ, τ) = φ(0, τ) − 2π

J

∫ σ

0

dζ

2π
(pzz

′ + pyy
′) . (4.11)
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Here φ(0, τ) can be found (up to time-independent constant) by substituting eq.(4.11)

into eq.(4.10). Even without solving for φ(0, τ) we observe that the field φ(σ, τ)

possesses a non-trivial monodromy

φ(2π, τ) − φ(0, τ) = −2π

J
V . (4.12)

As the consequence, the matrix gs, and, therefore, g have the monodromy which can

be written in the form

gs(2π) = Mgs(0)M , (4.13)

where M is a diagonal matrix

M = diag
(

e
iπ

J
V , e−

iπ

J
V , e−

iπ

J
V , e

iπ

J
V
)

. (4.14)

Using the group element g expressed in terms of physical coordinates and mo-

menta we construct the Lax connection (4.3) which is also block-diagonal

Aα =

(Aa
α 0

0 As
α

)

. (4.15)

Now we come to the most important point of our construction. One can check

that the dynamical equations (4.4) are identically satisfied provided that we use

for the world-sheet metric our solution (2.14), (2.18) and differentiate φ according

to eqs.(2.6) and (4.10). The calculation is straightforward but rather tedious and,

therefore, we refrain from presenting it here. Perhaps, a simplified proof can be found

by using the approach of [42]. Thus, we have found the Lax representation for the

Hamiltonian (2.9), (2.10).

Let us note that the Lax connection we obtained is non-local because it explicitly

contains the non-local field φ. Moreover, the sphere component As
α of the current

Aα is a quasi-periodic function of σ,

As
α(2π) = MAs

α(0)M−1 . (4.16)

These both pathologies can be cured as follows. Consideration of the structure of

Aα shows that the current can be written in the following way

As
α = M(σ)Âs

αM(σ)−1 , (4.17)

where the σ-dependent matrix M is given by

M(σ) = diag
(

e−
i

2
φ(σ,τ), e

i

2
φ(σ,τ), e

i

2
φ(σ,τ), e−

i

2
φ(σ,τ)

)

(4.18)
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and Âα is local (does not contain φ(σ, τ)). Since the zero-curvature representa-

tion (4.5) is invariant under gauge transformations we can gauge the non-local φ-

dependence away. The local Lax connection arising in this way is given by

L
s
α = M−1(σ)As

αM(σ) − M−1(σ)∂αM(σ) = Âs
α +

i

2
∂αφ Ω , (4.19)

where Ω = diag(1,−1,−1, 1). Here the derivatives of φ should be substituted from

eqs.(2.6) and (4.10). The new Lax connection is a periodic function of σ since it is

a local expression in terms of periodic string coordinates. Let us also note that the

original Lax connection (4.3) has poles at x = ±1 and vanishes at infinity. The gauge

transformed connection (4.19) has the same poles but does not vanish at infinity. In

particular, the Lax component L s
α which will be used in the next section has the

following structure

L
s
σ (x) =

L +

2(1 − x)
+

L −

2(1 + x)
− i

2J
(pzz

′ + pyy
′)Ω . (4.20)

The (left) Lax representation we consider has also a dual formulation in terms

of the right conserved currents Rα = −γαβg−1∂βg. The relation between these two

formulations is a gauge transformation by the group element g together with the

change x → 1/x [44]

g−1Dαg = ∂α − R+
α

2
(

1 − 1
x

) − R−
α

2
(

1 + 1
x

) . (4.21)

5. General Properties of Monodromy

An important object in the theory of integrable systems is the monodromy matrix

T(x). It is defined as the path-ordered exponential of the Lax component Lσ(x)

T(x) = P exp

∫ 2π

0

dσ Lσ(x) . (5.1)

The key property of the monodromy matrix is the time conservation of all its spectral

invariants. The trace TrT(x), in particular, generates an infinite set of integrals of

motion5. This stems from the fact that the time evolution of the monodromy is of

the Heisenberg type

Ṫ(x) = [Lτ (0, τ), T(x)] . (5.2)

5One can also define the monodromy matrix by using the quasi-periodic Lax connection Aσ:

Tnl(x) = P exp
∫

2π

0
dσ Aσ(x). However, the spectral invariants of Tnl and T will coincide only on

solutions of constraint (2.7). In general the spectral invariants of Tnl(x) are not conserved.
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We also recall the Poisson bracket of T(x) with the constraint V:

{T(x),V} = [Lσ(0, τ), T(x)] . (5.3)

Thus, trace of the monodromy as well as all its spectral invariants also Poisson

commute with the remaining constraint. The Jacobi identity {H, {V, T}}+ perm. is

satisfied by virtue of the Lax representation for L .

To study the analytic properties of the monodromy it is useful to denote the

eigenvalues of T as exp(ipk(x)), where in our case k = 1, . . . , 8. The function pk(x)

is known as the quasi-momentum (the Floquet function) and it plays an important

role in the (quantum) inverse scattering method [43].

As is well known in the theory of integrable PDEs, the local integrals of motion

are obtained by expanding the eigenvalues of T(x) around the poles of the Lax

connection, which in our case are at x = ±1. It is, therefore, interesting to look at

the first non-trivial integral arising in the expansion around x = ±1.

Around x → 1 one can use a regular gauge transformation to bring L
+ to the

diagonal form (up to permutations of eigenvalues). We find the following result

L
+ → i

2
√

λ
diag

(

κ+,−κ+, κ+,−κ+
︸ ︷︷ ︸

AdS

; κ+,−κ+, κ+,−κ+
︸ ︷︷ ︸

Sphere

)

. (5.4)

The fact that all the eigenvalues appear to be proportional to one and the same value

κ+ is a consequence of a peculiar form of the matrices ga and gs (and the associated

currents Lα) – they have a special property of being skew-symmetric. After some

computation we find

κ2
+ =

J2

Gφφ

+
λ

J2
Gφφ(pyy

′ + pzz
′)2 − 2

√
λ (pzz

′) +
(

1 +
y2

4

)2

p2
y +

λy′2
(

1 + y2

4

)2 .

This expression can be also rewritten in a more compact form

κ2
+ =

H2

Gtt

−
[(

1 − z2

4

)

pzk
+

√
λ z′k

(

1 − z2

4

)

]2

. (5.5)

Given this result one can directly verify that the integral

∫ 2π

0

dσ

2π
κ+ (5.6)

is conserved. Interestingly enough it does not coincide with the Hamiltonian H.

However, if we reduce the classical string theory to the one on R×S5, which amounts

to putting zk = 0 = pzk
, this integral becomes the string Hamiltonian.
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In complete analogy to the previous consideration we determine the asymptotic

behavior of the monodromy around x = −1. We find

L
− → i

2
√

λ
diag

(

κ−,−κ−, κ−,−κ−
︸ ︷︷ ︸

AdS

; κ−,−κ−, κ−,−κ−
︸ ︷︷ ︸

Sphere

)

, (5.7)

where κ− is

κ2
− =

H2

Gtt

−
[(

1 − z2

4

)

pzk
−

√
λ z′k

(

1 − z2

4

)

]2

. (5.8)

Thus, we observe that two infinite series of local integrals of motion obtained by

expanding the Lax connection around two different poles are different, they merge

under the reduction of string motion to R×S5. Since trace of the monodromy matrix

is gauge invariant our results are not specific to the uniform gauge we use but also

hold, e.g., in the conformal gauge. Therefore, in the general case of AdS5 × S5 the

asymptotic behavior of quasi-momentum around x = ±1 is related to the string

energy H in a very complicated way, quite opposite to what happens in cases of

string theory on R × S3 and R × S5 [7].

Finally, it is interesting to consider the reduction to AdS5×S1, which corresponds

to taking all yk = 0 = pyk
. Remarkably, in this case the κ2

± become the perfect squares

and we therefore obtain

κ± = J ∓
√

λ

J
pzz

′ . (5.9)

Thus, around x → ±1 the quasi-moment behaves as (up to the sign ambiguity)

p(x) =
1

x ∓ 1

∫ 2π

0

dσ

2
√

λ

(

J ∓
√

λ

J
pzz

′
)

+ . . . =
π

x ∓ 1

( J√
λ
∓ m

)

+ . . . , (5.10)

where we made use of the constraint (2.7). This asymptotic expansion perfectly

agrees with the one obtained for the string sigma model on AdS3 × S1 by Kazakov

and Zarembo [7].

To complete our discussion of the asymptotic properties of the quasi-momentum,

we also exhibit, in the spirit of [7], the asymptotic behavior of pk(x) around x → 0

and x → ∞. To this end we assume that the classical solutions we consider carry

only the Cartan (abelian) charges of the unbroken symmetry group SO(4) × SO(4):

two AdS charges S1 and S2, and another two charges J1 and J2, which together

with J are the angular momentum components of string rotating in S5. The explicit

form of these charges in terms of physical variables is given in Appendix A. We also

assume the fulfillment of the constraint (2.7).

In the case x → 0 we find

TrT(x) = 8 − x2 8π2

λ

[

H2 + S2
1 + S2

2 + J2 + J2
1 + J2

2

]

+ . . . , (5.11)
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while the individual quasi-momenta exhibit the following asymptotics (up to shifts

by integer multiples of 2π)

AdS Sphere

p1(x) = x 2π√
λ
(H + S1 − S2), p5(x) = x 2π√

λ
(−J + J1 + J2),

p2(x) = x 2π√
λ
(H − S1 + S2), p6(x) = x 2π√

λ
(J + J1 − J2),

p3(x) = x 2π√
λ
(−H − S1 − S2), p7(x) = x 2π√

λ
(J − J1 + J2),

p4(x) = x 2π√
λ
(−H + S1 + S2), p8(x) = x 2π√

λ
(−J − J1 − J2) .

Analogously, around x → ∞ we obtain

TrT(x) = 8 − 8π2

x2λ

[

H2 + S2
1 + S2

2 + J2 + J2
1 + J2

2

]

+ . . . , (5.12)

as well as

AdS Sphere

p1(x) = 2π

x
√

λ
(−H − S1 + S2), p5(x) = 2π

x
√

λ
(J − J1 − J2),

p2(x) = 2π

x
√

λ
(−H + S1 − S2), p6(x) = 2π

x
√

λ
(−J − J1 + J2),

p3(x) = 2π

x
√

λ
(H + S1 + S2), p7(x) = 2π

x
√

λ
(−J + J1 − J2),

p4(x) = 2π

x
√

λ
(H − S1 − S2), p8(x) = 2π

x
√

λ
(J + J1 + J2) .

The relative sign ambiguity of pk(x) has been fixed by requiring that in the absence of

winding (i.e. when m = 0 in (2.7)) the following relation must be satisfied pk(1/x) =

−pk(x).

In principle, it is now straightforward to generalize the results obtained in [7],

and construct the classical Bethe equations for the string theory on AdS5×S1. Due to

the complicated asymptotic behavior of quasi-momentum around x → ±1, eqs.(5.5)

and (5.8), the challenge, however, is to derive the equations for the string theory on

AdS5 × S5.

6. Conclusions

In this paper we developed the Hamiltonian formalism for classical strings on AdS5×
S5. The Hamiltonian is obtained in the uniform gauge and depends on two parame-

ters: the S5 angular momentum component J and the string tension λ. In the large J

expansion with the effective BMN coupling λ′ kept fixed the Hamiltonian reproduces

the plane-wave Hamiltonian and higher corrections previously found in [25, 38]. We

then exhibited kinematical integrability of the Hamiltonian (for J and λ finite) by

explicitly constructing the corresponding Lax representation. In this respect we note

that emergence of an integrable structure is rather intricate because the Hamilto-

nian turns out to be of a non-polynomial (Nambu) type. We further verified that

the asymptotic properties of the quasi-momentum (the generating function of the
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integrals of motion) perfectly agree with the ones obtained earlier for some specific

cases [7].

Let us now formulate several open problems naturally arising in our approach.

As we have seen, for the general AdS5 × S5 model the asymptotics of the quasi-

momentum around x → ±1 is not related to the global conserved charges in a

simple way. This appears to be an obstacle in formulating the classical string Bethe

equations in full generality. To get more insight into this problem it is desirable to

analyze the higher local conserved charges arising in the expansion around x → ±1.

Alternatively, the local integrals of motion for the string sigma model can be found

by means of the Bäcklund transform [16]. It is, therefore, interesting to construct

the Bäcklund equations for the sigma model coupled to 2d gravity and analyze the

corresponding conservation laws.

The knowledge of the continuous string Bethe equations can be further used to

guess the fundamental Bethe equations which would describe the quantum string, at

least in some asymptotic expansions [28]. Another way to approach the quantization

problem is to find first the separated variables for the classical string Hamiltonian

(2.9). To this end one should investigate the Poisson structure of the Lax connec-

tion L and establish a relation to the (dynamical) r-matrix approach. We expect,

however, that the Poisson structure will not be ultra-local, i.e. it will contain the

δ′(σ − σ′) term, as it appears already for the sigma model in the conformal gauge

[44].

To maintain the conformal invariance at the quantum level one needs to include

the fermions. We believe that fermionic degrees of freedom can be naturally incor-

porated in the Hamiltonian approach without spoiling the kinematical integrability.

In particular, the zero-curvature representation for the Green-Schwarz superstring

found in [33] could be of use here. The knowledge of the classical separated variables

might help to approach the formidable problem of finding the separated variables in

the quantum case, see [45, 46] for interesting examples.

The uniform gauge is not the only gauge one can use to fix the gauge freedom

of the string theory on AdS5 × S5. In particular, choosing the uniform gauge implies

non-zero J and, therefore, leads to missing a sector of string states with J = 0.

Another interesting gauge condition is the AdS5 light-cone gauge proposed in [36].

An important advantage of this gauge is that fermions as well as spinless string states

can be readily taken into account. It would be very interesting to use our method to

derive a Lax pair for the AdS5 light-cone Hamiltonian obtained in [36].

Finally, it is of interest to clarify the relation between the exact Lax pair we

constructed here and the perturbative 1/J Lax pair recently obtained in [32].
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A. Equations of Motion and Charges

Equations of motion for physical variables generated by the Hamiltonian (2.9) are

żk =
Gtt

H

[(

1 − z2

4

)2

pzk
+

λ

J2
Gφφ(pzz

′ + pyy
′)z′k

]

,

ẏk =
Gtt

H

[(

1 +
y2

4

)2

pyk
+

λ

J2
Gφφ(pzz

′ + pyy
′)y′

k

]

,

ṗzk
=

zk

H
(

1 − z2

4

)




− H2

(

1 + z2

4

) +
1

2

(

1 − z2

4

)2

p2
z −

λz′2

2
(

1 − z2

4

)2




+

+ ∂σ






Gtt

H
( λ

J2
Gφφ(pzz

′ + pyy
′)pzk

+
λ

(

1 − z2

4

)2 z′k

)




 ,

ṗyk
= −yk

Gtt

H
(

1 + y2

4

)(

1 − y2

4

)






J2

Gφφ

− λ

J2
Gφφ(pzz

′ + pyy
′)2

+
1

2

(

1 − y2

4

)((

1 +
y2

4

)2

p2
y −

λy′2
(

1 + y2

4

)2

)




+

+ ∂σ






Gtt

H
( λ

J2
Gφφ(pzz

′ + pyy
′)pyk

+
λ

(

1 + y2

4

)2 y′
k

)




 . (A.1)

In particular, the first two equations are used to eliminate żk and ẏk from the current

Aα in favor of the corresponding canonical momenta pzk
and pyk

.

The Hamiltonian (2.9) has SO(4) × SO(4) symmetry. It is generated by the

following charges: the Cartan generators S1 and S2 for the SO(4) symmetry rotating

the AdS coordinates are

S1 =

∫ 2π

0

dσ

2π
z[1pz2]

, S2 =

∫ 2π

0

dσ

2π
z[3pz4]

, (A.2)
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while the Cartan generators J1 and J2 for the SO(4) group acting on the coordinates

of the sphere have the form

J1 =

∫ 2π

0

dσ

2π
y[1py2]

, J2 =

∫ 2π

0

dσ

2π
y[3py4]

. (A.3)

In these formulae y[1py2]
= y1py2 − y2py1, etc.

B. Strings on R × S3

As we have seen the string Hamiltonian and its Lax representation are rather com-

plicated. To approach a difficult problem of finding the separated variables for the

Hamiltonian (and their subsequent quantization) one could start from a smaller sub-

sector, e.g., from string theory on R×S3. This model is not conformal at the quantum

level but hopefully it remains integrable. Unraveling its integrable structure might

provide further insight on the general problem. In this appendix we collect the

relevant formulae to analyze strings on R × S3 in the Hamiltonian setting.

Reduction to R × S3 consists in taking zk = 0 = pzk
for all k = 1, . . . 4 and

y3 = y4 = py3 = py4 = 0. Thus, the physical variables are two coordinates, y1 and

y2, and their conjugate momenta p1 and p2. The square of the Hamiltonian density

becomes

H2 =
J2

Gφφ

+
λ

J2
Gφφ(pyy

′)2 +
(

1 +
y2

4

)2

p2
y +

λy′2
(

1 + y2

4

)2 .

The corresponding Lax connection can be written in terms of 2 × 2 matrices. For

instance, the σ-component reads as

Lσ =
L +

2(1 − x)
+

L −

2(1 + x)
− i

2J
(pyy

′)σ3 , (B.1)

where σ3 is the Pauli matrix and

L
± =

(
L

±
11 L

±
12

−L
±∗
12 −L

±
11

)

.

For L + we have

L
+
11 = − i√

λ
J +

i

J
Gφφ(py

′) +
i√
λ

y[1p2] +
i

(

1 + y2

4

)2y[1y
′
2] ,

L
+
12 = i

y1 + iy2

1 − y2

4

[

− J√
λ

+
Gφφ

J
(py′)

]

−
[ 1√

λ
(p1 + ip2) +

y′
1 + iy′

2
(

1 + y2

4

)2

]

− (y1 + iy2)
2

4

[ 1√
λ

(p1 − ip2) +
y′

1 − iy′
2

(

1 + y2

4

)2

]
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and for L −

L
−
11 =

i√
λ

J +
i

J
Gφφ(py

′) − i√
λ

y[1p2] +
i

(

1 + y2

4

)2y[1y
′
2] ,

L
−
12 = i

y1 + iy2

1 − y2

4

[ J√
λ

+
Gφφ

J
(py′)

]

+
[ 1√

λ
(p1 + ip2) −

y′
1 + iy′

2
(

1 + y2

4

)2

]

+
(y1 + iy2)

2

4

[ 1√
λ

(p1 − ip2) −
y′

1 − iy′
2

(

1 + y2

4

)2

]

.

In these formulae y[1py2]
= y1py2 − y2py1, etc.

Expansion around the plane-wave limit is constructed by rescaling the coordi-

nates and momenta according to eqs.(3.1). It is not difficult to compute the mon-

odromy perturbatively in 1/
√

J . For instance, for the matrix elements of T

T =

(
T11 T12

T21 T22

)

up to the order 1/J we find

T11 = e−iπω − e−iπω

J
A , T22 = eiπω − eiπω

J
A∗

and

T12 =
e−iπω

√
J

∫ 2π

0

dσb(σ)eiωσ , T21 = −eiπω

√
J

∫ 2π

0

dσb∗(σ)e−iπωσ .

Here we use the notation

A =

∫ 2π

0

dσ

∫ σ

0

dσ′ b(σ)b∗(σ′)eiω(σ−σ′) −
∫ 2π

0

dσc(σ) ,

where the functions b(σ) and c(σ) are

b(σ) =
1√
λ′

(

− x

1 − x2
(i(y1 + iy2) + p1 + ip2) −

√
λ′

1 − x2
(y′

1 + iy′
2)

)

,

c(σ) =
i√
λ′

x

1 − x2
y[1p2] +

i

1 − x2
y[1y

′
2] +

i

2

1 + x2

1 − x2
(py′) .

and we have used the concise notation

ω =
2√
λ′

x

1 − x2
(B.2)

In fact, one can consider ω as the new spectral parameter, the map from the x-plane

to the ω-plane is two-fold, as

x =
−1 ±

√
1 + λ′ω2

√
λ′ω

. (B.3)
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As was discussed in section 5 the local integrals of motion are obtained by expanding

the trace of the monodromy matrix around the singularities of the Lax connection

which are at x = ±1. However, analyzing the structure of the monodromy matrix

computed perturbatively in 1/J one can recognize that the limit x → ±1 is ill-

defined. This clearly shows that two expansions, x → ±1 and J → ∞, are not

permutable. The model, of course, remains to be integrable, the local charges are

reorganized in a different expansion.

From the results above it is easy to see the appearance of the plane-wave physics.

The conventional way to solve the periodic integrable model is to use separation of

variables [45]. If the Poisson bracket {T12(x), T12(x
′)} vanishes then the matrix

element T12(x) can be considered as a new coordinate. Introduce a variable

t(ω) =

∫ 2π

0

dσb(σ)eiωσ .

By using the equations of motion generated by the plane-wave Hamiltonian

ẏ = p, ṗ = −y + λ′y′′ ,

one can easily check that indeed {t(ω), t(ω′)} = 0. Further one finds

{t(ω), t∗(ω′)} =
(

− ωω′ +
ω2

1 − x′2 +
ω′2

1 − x2

)e2πi(ω−ω′) − 1

ω − ω′ .

For ω arbitrary this bracket is not canonical. The canonical bracket arises when ω

is an integer. In this case we have

{t(ω), t∗(ω′)} = −2πiω2
√

1 + ω2λ′δ(ω − ω′) ,

i.e. the canonical (separated) variables are

a(ω) =
t(ω)

iω 4
√

1 + ω2λ′

with the bracket

{a∗(ω′), a(ω)} = −2πiδ(ω − ω′) .

It is also interesting to look at the time evolution of t(ω) ≡ t(x). Expanding (5.2) in

inverse powers of
√

J we find at leading order

ṫ(x) = −i
1 + x2

1 − x2
t(x) −

√
λ′

x
b
(1

x
, 0
)(

e2πiω − 1
)

.

Here we also exhibit the dependence of the function b(σ) on the spectral parameter

x. Thus, in the periodic case the dynamics of the coefficient t(x) is not simple and
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depends on the boundary value of fields at some point. In fact, this is a major ob-

stacle in application of the inverse scattering method to the periodic case. Roughly

speaking, for rapidly decreasing fields on a line the role of zero point is played by

infinity where the fields vanish and, therefore, the dynamics of the transition coeffi-

cients simplifies. In the distinguished case of ω integer, however, the unwanted term

containing b(0) disappears and the dynamics of t(x) becomes trivial. In this case

the evolution equation can be immediately integrated and we find the BMN type

formula

t(ω, τ) = e−iτ
√

1+λ′ω2
t(ω, 0) , ω ∈ Z . (B.4)

Finally for ω integer we find

TrT = (eiπω + e−iπω)
(

1 − |t(ω)|2
2J

+ . . .
)

. (B.5)

One can easily see that the conserved quantity |t(ω)|2 is nothing else but the density

of the plane-wave Hamiltonian written in terms of separated variables. The corre-

sponding quasi-momentum p(ω) = arccos(1
2
T) has an expansion in powers of 1/

√
J .

Note that for ω non-integer one would get the following 1/J expansion

p(ω) = πω +
e−iπωA + eiπωA∗

2J | sin(πω)| + ... . (B.6)

This expression does not have the limit ω → integer. Therefore, at integer values of

ω the expansion of the quasi-moment changes drastically. Instead of 1/J expansion

at regular (non-integer) values we have 1/
√

J expansion for ω integer-valued.

The perturbative treatment can be pushed to higher orders in 1/
√

J . It is how-

ever hardly possible that T12(x) would provide the separated variables: For J finite

dynamics of T12(x) is complicated and depends on value of the fields at zero point.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999)

1113], hep-th/9711200.

[2] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and pp waves

from N = 4 super Yang Mills,” JHEP 0204 (2002) 013, hep-th/0202021.

[3] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A semi-classical limit of the

gauge/string correspondence,” Nucl. Phys. B 636 (2002) 99, hep-th/0204051.

[4] S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating superstring in

AdS5 × S5,” JHEP 0206 (2002) 007, hep-th/0204226; “Multi-spin string solutions

– 25 –



in AdS5 × S5,” Nucl. Phys. B 668 (2003) 77, hep-th/0304255; “Quantizing

three-spin string solution in AdS5 × S5,” JHEP 0307 (2003) 016, hep-th/0306130;

“Rotating string solutions: AdS/CFT duality in non-supersymmetric sectors,” Phys.

Lett. B 570 (2003) 96, hep-th/0306143.

[5] R. R. Metsaev and A. A. Tseytlin, Type IIB superstring action in AdS5 × S5

background,” Nucl. Phys. B 533 (1998) 109, hep-th/9805028;

[6] G. Arutyunov, S. Frolov, J. Russo and A. A. Tseytlin, “Spinning strings in

AdS5 × S5 and integrable systems,” Nucl. Phys. B 671, 3 (2003), hep-th/0307191;

G. Arutyunov, J. Russo and A. A. Tseytlin, “Spinning strings in AdS5 × S5: New

integrable system relations,” Phys. Rev. D 69 (2004) 086009, hep-th/0311004.

[7] V. A. Kazakov, A. Marshakov, J. A. Minahan and K. Zarembo, “Classical /

quantum integrability in AdS/CFT,” JHEP 0405 (2004) 024 hep-th/0402207.

V. A. Kazakov and K. Zarembo, “Classical / quantum integrability in non-compact

sector of AdS/CFT,” hep-th/0410105. N. Beisert, V. A. Kazakov and K. Sakai,

“Algebraic Curve for the SO(6) sector of AdS/CFT,” hep-th/0410253.

[8] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,”

JHEP 0303, (2003) 013, hep-th/0212208.

[9] N. Beisert, “The complete one-loop dilatation operator of N = 4 super Yang-Mills

theory,” Nucl. Phys. B 676 (2004) 3, hep-th/0307015; N. Beisert and

M. Staudacher, “The N = 4 SYM integrable super spin chain,” Nucl. Phys. B 670

(2003) 439, hep-th/0307042.

[10] N. Beisert, C. Kristjansen and M. Staudacher, “The dilatation operator of N = 4

super Yang-Mills theory,” Nucl. Phys. B 664 (2003) 131, hep-th/0303060;

N. Beisert, “Higher loops, integrability and the near BMN limit,” JHEP 0309 (2003)

062, hep-th/0308074; N. Beisert, “The su(2|3) dynamic spin chain,” Nucl. Phys. B

682 (2004) 487, hep-th/0310252.

[11] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and exactly solvable

lattice models,” JETP Lett. 59 (1994) 596 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994)

571], hep-th/9311037. V. M. Braun, S. E. Derkachov and A. N. Manashov,

“Integrability of three-particle evolution equations in QCD,” Phys. Rev. Lett. 81

(1998) 2020 hep-ph/9805225. V. M. Braun, S. E. Derkachov, G. P. Korchemsky and

A. N. Manashov, “Baryon distribution amplitudes in QCD,” Nucl. Phys. B 553

(1999) 355 hep-ph/9902375. A. V. Belitsky, “Renormalization of twist-three

operators and integrable lattice models,” Nucl. Phys. B 574 (2000) 407

hep-ph/9907420.

[12] D. Serban and M. Staudacher, “Planar N = 4 gauge theory and the Inozemtsev long

range spin chain,” JHEP 0406 (2004) 001, hep-th/0401057.

– 26 –



[13] V. I. Inozemtsev, “Integrable Heisenberg-van Vleck chains with variable range

exchange,” Phys. Part. Nucl. 34 (2003) 166 [Fiz. Elem. Chast. Atom. Yadra 34

(2003) 332], hep-th/0201001.

[14] N. Beisert, V. Dippel and M. Staudacher, “A novel long range spin chain and planar

N = 4 super Yang-Mills,” JHEP 0407 (2004) 075, hep-th/0405001.

[15] N. Beisert, J. A. Minahan, M. Staudacher and K. Zarembo, “Stringing spins and

spinning strings,” JHEP 0309 (2003) 010, hep-th/0306139; N. Beisert, S. Frolov,

M. Staudacher and A. A. Tseytlin, “Precision spectroscopy of AdS/CFT,” JHEP

0310 (2003) 037, hep-th/0308117.

[16] G. Arutyunov and M. Staudacher, “Matching higher conserved charges for strings

and spins,” JHEP 0403 (2004) 004, hep-th/0310182; “Two-loop commuting charges

and the string / gauge duality,” hep-th/0403077.

[17] J. Engquist, J. A. Minahan and K. Zarembo, “Yang-Mills duals for semiclassical

strings on AdS5 × S5”, hep-th/0310188; J. Engquist, “Higher conserved charges

and integrability for spinning strings in AdS5 × S5”, JHEP 0404 (2004) 002,

hep-th/0402092; M. Smedback, “Pulsating Strings On AdS5 × S5,”

hep-th/0405102; L. Freyhult, “Bethe ansatz and fluctuations in SU(3) Yang-Mills

operators”, JHEP 0406 (2004) 010, hep-th/0405167; J. A. Minahan, “Higher loops

beyond the SU(2) sector,” hep-th/0405243.

[18] M. Kruczenski, “Spin chains and string theory,” hep-th/0311203; H. Dimov and

R. C. Rashkov, “A note on spin chain / string duality,” hep-th/0403121;

R. Hernandez and E. Lopez, “The SU(3) spin chain sigma model and string theory,”

JHEP 0404, 052 (2004), hep-th/0403139; B. . J. Stefanski and A. A. Tseytlin,

“Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations,” JHEP

0405, 042 (2004) hep-th/0404133; A. V. Ryzhov and A. A. Tseytlin, “Towards the

exact dilatation operator of N = 4 super Yang-Mills theory,” hep-th/0404215;

K. Ideguchi, “Semiclassical strings on AdS5 × S5/Z(M) and operators in orbifold

field theories,” JHEP 0409 (2004) 008, hep-th/0408014; Y. Susaki, Y. Takayama and

K. Yoshida, “Open semiclassical strings and long defect operators in AdS/dCFT

correspondence,” hep-th/0410139; S. Bellucci, P. Y. Casteill, J. F. Morales and

C. Sochichiu, “sl(2) spin chain and spinning strings on AdS5 × S5,”

hep-th/0409086; S. Ryang, “Circular and folded multi-spin strings in spin chain

sigma models,” hep-th/0409217; R. Hernandez and E. Lopez, “Spin chain sigma

models with fermions,” hep-th/0410022.

[19] M. Kruczenski, A. V. Ryzhov and A. A. Tseytlin, “Large spin limit of AdS5 × S5

string theory and low energy expansion of ferromagnetic spin chains,”

hep-th/0403120;

[20] M. Kruczenski and A. A. Tseytlin, “Semiclassical relativistic strings in S5 and long

coherent operators in N=4 SYM theory,” hep-th/0406189.

– 27 –



[21] A. Khan and A. L. Larsen, “Spinning pulsating string solitons in AdS5 × S5,” Phys.

Rev. D 69, 026001 (2004), hep-th/0310019; A. L. Larsen and A. Khan, “Novel

explicit multi spin string solitons in AdS(5),” Nucl. Phys. B 686, 75 (2004)

hep-th/0312184; C. Kristjansen, “Three-spin strings on AdS5 × S5 from N = 4

SYM,” Phys. Lett. B 586 (2004) 106, hep-th/0402033; C. Kristjansen and

T. Mansson, “The Circular, Elliptic Three Spin String from the SU(3) Spin Chain,”

hep-th/0406176.

[22] J. G. Russo, “Anomalous dimensions in gauge theories from rotating strings in

AdS5 × S5,” JHEP 0206 (2002) 038, hep-th/0205244; J. A. Minahan, “Circular

semiclassical string solutions on AdS5 × S5,” Nucl. Phys. B 648 (2003) 203

hep-th/0209047; A. V. Belitsky, A. S. Gorsky and G. P. Korchemsky, “Gauge /

string duality for QCD conformal operators,” Nucl. Phys. B 667 (2003) 3,

hep-th/0304028; A. Mikhailov, “Speeding strings,” JHEP 0312, 058 (2003),

hep-th/0311019; A. Mikhailov, “Notes on fast moving strings,” hep-th/0409040.

S. Ryang, “Folded three-spin string solutions in AdS5 × S5,” JHEP 0404, 053

(2004), hep-th/0403180; H. Dimov and R. C. Rashkov, “Generalized pulsating

strings,” JHEP 0405, 068 (2004), hep-th/0404012; M. Alishahiha, A. E. Mosaffa

and H. Yavartanoo, “Multi-spin string solutions in AdS black hole and confining

backgrounds,” Nucl. Phys. B 686 (2004) 53 hep-th/0402007; F. Bigazzi,

A. L. Cotrone and L. Martucci, “Semiclassical spinning strings and confining gauge

theories,” hep-th/0403261; R. Roiban and A. Volovich, “Yang-Mills correlation

functions from integrable spin chains,” JHEP 0409 (2004) 032 hep-th/0407140;

P. Gutjahr and A. Pankiewicz, “New aspects of the BMN correspondence beyond the

planar limit,” hep-th/0407098; K. Peeters, J. Plefka and M. Zamaklar, “Splitting

spinning strings in AdS/CFT,” hep-th/0410275.

[23] L. Dolan, C. R. Nappi and E. Witten, “Yangian symmetry in D = 4 superconformal

Yang-Mills theory,” hep-th/0401243; A. Agarwal and S. G. Rajeev, “The dilatation

operator of N = 4 SYM and classical limits of spin chains and matrix models,”

hep-th/0405116; A. Agarwal and S. G. Rajeev, “Yangian symmetries of matrix

models and spin chains: The dilatation operator of N = 4 SYM,” hep-th/0409180;

L. Dolan and C. R. Nappi, “Spin models and superconformal Yang-Mills theory,”

hep-th/0411020.

[24] A. Parnachev and A. V. Ryzhov, “Strings in the near plane wave background and

AdS/CFT,” JHEP 0210 (2002) 066, hep-th/0208010.

[25] C. G. Callan, H. K. Lee, T. McLoughlin, J. H. Schwarz, I. Swanson and X. Wu,

“Quantizing string theory in AdS5 × S5: Beyond the pp-wave,” Nucl. Phys. B 673

(2003) 3, hep-th/0307032; C. G. Callan, T. McLoughlin and I. Swanson,

“Holography beyond the Penrose limit,” hep-th/0404007; C. G. Callan,

T. McLoughlin and I. Swanson, “Higher impurity AdS/CFT correspondence in the

near-BMN limit,” hep-th/0405153.

– 28 –
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