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Abstract

In the IR limit the Matrix string theory is expected to be described by the S
NR8 supersymmetric orbifold

sigma model. Recently Dijkgraaf, Verlinde and Verlinde proposed a vertex that may describe the type IIA
string interaction. In this paper using this interaction vertex we derive the four graviton scattering amplitude
from the orbifold model in the large N limit.
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1 Introduction

According to the Matrix theory conjecture [1] the quantum mechanics of N D-particles [2] of type IIA string
theory in the large N limit describes the eleven-dimensional dynamics of M-theory [3, 4]. In particular, some
subspace of the Hilbert space of the quantum mechanics model admits an interpretation in terms of the second-
quantized Fock space of the M-theory states, and the S-matrix of the model is directly related to the scattering
amplitudes of the M-theory particles. The consistency of this conjecture was already examined in many ways
(for recent review see [5]).

Compactifying Matrix theory on a circle one arrives at the N = 8 two-dimensional supersymmetric SU(N)
Yang-Mills model [6]. It was recently argued in [7, 8, 9] that in the large N limit the Yang-Mills theory describes
non-perturbative dynamics of type IIA string theory, and the Yang-Mills and string coupling constants were
shown to be inverse to each other. The argumentation was based on the observation that in the IR limit
the gauge theory is strongly coupled and the IR fixed point may be described by the N = 8 supersymmetric
conformal field theory on the orbifold target space SNR8. In particular, it is known [10] that the Hilbert space
of the orbifold model coincides (to be precise, contains) in the large N limit with the Fock space of the free
second-quantized type IIA string theory.

Basing on the string interpretation of the Hilbert space of the orbifold model, Dijkgraaf, Verlinde and Verlinde
(DVV) [9] suggested that perturbative string dynamics in the first order in the string coupling constant can
be described by the SNR8 supersymmetric orbifold conformal model perturbed by an irrelevant operator of
conformal dimension (3/2, 3/2). Moreover, they determined an explicit form of this operator and showed that
it preserved the space-time supersymmetry and nicely fitted the conventional formalism of the light-cone string
theory.

The described sigma-model approach to the perturbative second-quantized string theory is not limited only
to the type IIA strings. On the same grounds one may easily define the DVV interaction vertices for the
sigma-model description of bosonic, heterotic [11], and type IIB strings.

An important problem posed by the above-described stringy interpretation of the SN orbifold sigma models
is to obtain the usual string scattering amplitudes directly from the models. The positive result would obviously
provide a strong evidence that Yang-Mills models indeed capture nonperturbative string dynamics. This problem
seems to be nontrivial due to the nonabelian nature of the SN orbifold models. In our previous paper [12] we
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obtained the four tachyon scattering amplitude from the SNR24 orbifold conformal field theory perturbed by
the bosonic analog of the DVV interaction vertex.

The aim of the present paper is to derive the four graviton scattering amplitude for type II strings from
the SNR8 supersymmetric orbifold sigma model, the closed string interaction being described by the DVV
interaction vertex. We treat in detail only the more complicated case of type IIA strings since for type IIB
strings the left- and right-moving sectors are identical.

Our consideration of the scattering amplitudes starts with defining incoming and outgoing asymptotic states
|i〉 and |f〉 that should be identified with some states in the Hilbert space of the orbifold conformal field theory.
In CFT any state is created by some conformal field and, therefore, the first step consists in finding the conformal
fields of the orbifold CFT corresponding to the asymptotic states. Recall that the Hilbert space of the orbifold
sigma model is decomposed into the direct sum of Hilbert spaces of twisted sectors. Each twisted sector describes
asymptotic states of several strings. The vacuum state of a twisted sector corresponds to a ground state twist
operator. If the orbifold sigma model originates from the IR limit of the Yang-Mills theory, then the energy
of all vacuum states should be the same and, therefore, the conformal dimensions of the ground state twist
operators must be equal. We will show that this is indeed the case for the supersymmetric orbifold sigma
model. In contrast, in the bosonic case the conformal dimensions were found [12] to be different and, therefore,
the bosonic sigma model does not describe the IR limit of the Yang-Mills theory with 24 matter fields in the
adjoint representation of the U(N) gauge group.

Then, by the conventional quantum field theory, the gn
s -order scattering amplitude A can be extracted from

the S-matrix element described as a correlation function of n interaction vertices V (zi) with the subsequent
integration over the insertion points zi:

〈f |S|i〉 ∼
∫
∏

i

d2zi〈f |V (z1) . . . V (zn)|i〉.

The paper is organized as follows. In the second section we remind the description of the Hilbert space
of the orbifold model. In the third section the vertex operators that create the states of the Hilbert space
are introduced and their conformal dimensions are calculated. We pay special attention to the fact that in
nonabelian orbifold models there is no decomposition of vertex operators into the tensor product of bosonic
and fermionic (holomorphic and antiholomorphic) twist fields. We also recall the construction of the DVV
interaction vertex. In the fourth section we describe the S-matrix element corresponding to the scattering of
four gravitons and reduce the problem of it’s calculation to the one of computing special correlation functions
in the orbifold CFT. In Section 5 we compute the bosonic correlation functions up to normalization constants
by using the stress-energy tensor method. To compute the fermionic contribution, in the next section we
describe a bosonization procedure for fermions of the orbifold model in the SU(4)×U(1) formalism. In Section
7 we find normalization constants for the correlation functions. Finally, in Section 8 we combine the results
obtained in the previous sections and derive the well-known four graviton scattering amplitude that appears to
be automatically Lorentz-invariant. In Conclusion we discuss unsolved problems.

2 SNR8 supersymmetric orbifold sigma model

The target space of the supersymmetric orbifold sigma model is the symmetric product space SNR8 =
(R8)N/SN , where SN is the permutation group of N objects. The model on a cylinder with coordinates
(σ, τ) is described by the following action

S =
1

2π

∫

dτdσ(∂τX
i
I∂τX

i
I − ∂σX

i
I∂σX

i
I +

i

2
θa

I (∂τ + ∂σ)θa
I +

i

2
θȧ

I (∂τ − ∂σ)θȧ
I ), (2.1)

Here 0 ≤ σ < 2π, I = 1, 2, . . . , N . The real bosonic fields X i, i = 1, 2, . . . , 8 transform in the 8v representation
of the SO(8) group, while the components θa, θȧ, a, ȧ = 1, . . . , 8 of the 16-component Majorana-Weyl spinor
θα transform in the 8s and 8c representations respectively. One has also to identify all configurations (X, θ)
related by arbitrary SN transformations:

X ∼ hX, θ ∼ hθ, h ∈ SN . (2.2)
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As usual in orbifold models [13, 14], the fields X i, θα can have twisted boundary conditions

X i(σ + 2π) = gX i(σ), θα(σ + 2π) = gθα(σ), g ∈ SN . (2.3)

Note that the untwisted sector corresponds to the Ramond boundary condition.
Multiplying (2.3) by some element h ∈ SN and taking into account the identification (2.2), one gets that

all possible boundary conditions are in one-to-one correspondence with the conjugacy classes of the symmetric
group. Therefore, the Hilbert space of the orbifold model is decomposed into the direct sum of Hilbert spaces
of the twisted sectors corresponding to the conjugacy classes [g] of SN [10]

H(SNRD) =
⊕

[g]

H[g].

It is well-known that the conjugacy classes of SN are described by partitions {Nn} of N

N =

s∑

n=1

nNn

and can be represented as
[g] = (1)N1(2)N2 · · · (s)Ns . (2.4)

Here Nn is the multiplicity of the cyclic permutation (n) of n elements.
In any conjugacy class [g] there is the only element gc that has the canonical block-diagonal form

gc = diag(ω1, ..., ω1
︸ ︷︷ ︸

N1 times

, ω2, ..., ω2
︸ ︷︷ ︸

N2 times

, ..., ωs, ..., ωs
︸ ︷︷ ︸

Ns times

),

where ωn is an n× n matrix that generates the cyclic permutation (n) of n elements

ωn =
n−1∑

i=1

Ei,i+1 + En1

and Eij are matrix unities.
It is not difficult to show that ωn generates the Zn group, since ωn

n = 1, and that only the matrices ωk
n from Zn

commute with ωn. Since the centralizer subgroup Cg of any element g ∈ [g] is isomorphic to Cgc
one concludes

that

Cg =

s∏

n=1

SNn
× ZNn

n ,

where the symmetric group SNn
permutes the Nn cycles (n). It is obvious that the centralizer Cg contains

∏s
n=1 Nn!nNn elements.
Due to the factorization (2.4) of [g], the Hilbert space H[g] ≡ H{Nn} of each twisted sector can be decomposed

into the graded Nn-fold symmetric tensor products of the Hilbert spaces H(n) which correspond to the cycles
of length n

H{Nn} =

s⊗

n=1

SNnH(n) =

s⊗

n=1




H(n) ⊗ · · · ⊗ H(n)
︸ ︷︷ ︸

Nn times






SNn

.

The space H(n) is Zn invariant subspace of the Hilbert space of a sigma model of 8n bosonic fields X i
I and 16n

fermionic fields θα with the cyclic boundary condition

X i
I(σ + 2π) = X i

I+1(σ), θα
I (σ + 2π) = θα

I+1(σ), I = 1, 2, ..., n. (2.5)
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The fields XI(σ) (θI(σ)) can be glued together into one field X(σ) (θ(σ)) that is identified with a long string
of the length n. The states of the space H(n) are obtained by acting by the creation operators of the string on
eigenvectors of the momentum operator. These eigenvectors have the standard normalization

〈q|k〉 = δD(q + k)

and can be regarded as states obtained by acting by the operator e ikx on the vacuum state 1 (that is not

normalizable): |k〉 = e ikx|0〉, 〈q| = 〈0| e iqx.
The Zn invariant subspace is singled out by imposing the condition

(L0 − L̄0)|Ψ〉 = nm|Ψ〉,

where m is an integer and L0 is the canonically normalized L0 operator of the single string.
The Fock space of the second-quantized IIA type string is recovered in the limit N → ∞, ni

N → p+
i [10],

where the finite ratio ni

N is identified with the p+
i momentum of a long string. The Zn projection reduces in this

limit to the usual level-matching condition L
(i)
0 − L̄

(i)
0 = 0. The individual p−i light-cone momentum is defined

by means of the standard mass-shell condition p+
i p

−
i = L

(i)
0 .

3 Vertex operators

Let us consider conformal field theory of free fields described by the action (2.1). It is convinient to perform
the Wick rotation τ → −iτ and to map the cylinder onto the sphere: z = e τ+iσ, z̄ = e τ−iσ.

The NS vacuum state |0〉 of the CFT is annihilated by the momentum operators and by annihilation
operators, and has to be normalizable. To be able to identify this vacuum state with the vacuum state of
the untwisted sector of the orbifold sigma model we choose the following normalization of |0〉

〈0|0〉 = R8N .

Here R should be regarded as a regularization parameter of the sigma model. We regularize the sigma model by
compactifying the coordinates xi

I on circles of radius R. Then the norm of the eigenvectors of the momentum
operators in the untwisted sector is given by

〈q|k〉 = (2π)−8N

∫ 2πR

0

d8Nx e i(q+k)x =

N∏

I=1

δ8R(qI + kI),

where ki
I =

mi
I

R and qi
I =

ni
I

R are momenta of the states, mi
I and ni

I are integers since we compactified the

coordinates, and δ8R(k) = R8
∏8

i=1 δmi0 is the regularized δ-function. In the limit R → ∞ one recovers the usual
normalization of the eigenvectors.

The asymptotic states of the orbifold CFT model should be created by some vertex operators applied to the
NS vacuum |0〉. Evidently, the vertex operators creating the ground states of twisted sectors are in one-to-one
correspondence with the conjugacy classes of SN . For nonabelian groups a conjugacy class [g] of an element g
contains many group elements. It enforces us to define a vertex operator V[g] in two steps. First one introduces
vertex operators Vg corresponding to elements g ∈ SN . The fundamental fields obey the twisted boundary
condition (2.3) around an insertion point of an operator Vg. Under the group action, Vg transforms into Vh−1gh

and, therefore, to define an invariant operator V[g] one should sum up all vertex operators from a given conjugacy
class:

V[g](z, z̄) =
1

N !

∑

h∈SN

Vh−1gh(z, z̄).

Vertex operators creating excited states of the twisted sectors can be defined in an analogous way. The main
requirement imposed on all invariant vertex operators is that they should form a closed operator algebra.

1As is discussed below, the vacuum state carries a representation of the Clifford algebra, since the long string is in the Ramond
sector.
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Schematically the OPE of any noninvariant vertex operators is of the form

Vg1(z, z̄)Vg2(0) =
1

z∆z̄∆̄

(
Cg1g2

g1,g2
Vg1g2(0) + Cg2g1

g1,g2
Vg2g1(0)

)
+ · · · , (3.1)

where ∆, ∆̄ are defined by the conformal symmetry. Here the two leading terms appear because there are two
different ways to go around the points z and 0. It is not difficult to see that g1g2 and g2g1 belong to the same
conjugacy class and, hence, ∆g1g2 = ∆g2g1 . If one requires the operator algebra of invariant operators to be
closed, then one faces hard restrictions on the structure constants in (3.1). In particular, the structure constants
occuring in the OPE of operators Vg creating ground states should be invariant with respect to the global action
of SN , e.g.:

Ch−1g1g2h
h−1g1h,h−1g2h = Cg1g2

g1,g2
.

Then OPE (3.1) leads to the following OPE for invariant ground state operators:

V[g1](z, z̄)V[g2 ](0) =
1

N !

∑

h∈SN

1

z∆h z̄∆̄h

(

Cg1h−1g2h
g1,h−1g2h + Ch−1g2hg1

g1,h−1g2h

)

V[g1h−1g2h](0) + · · · ,

i.e., for leading terms the operator algebra is closed.
Naively, one can think that vertex operators Vg receiving contributions from bosons and fermions can be

decomposed into tensor product of bosonic and fermionic twist fields: Vg = σg ⊗ Σg. Obviously, the OPE for
the fields σg and Σg should be of the same type as for Vg (3.1). Then one can easily see that the tensor product
structure of Vg leads to the appearance of unwanted terms in the OPE:

Vg1Vg2 = (σg1 ⊗ Σg1)(σg2 ⊗ Σg2) = σg1σg2 ⊗ Σg1Σg2

∼
(
Bg1g2

g1,g2
σg1g2 +Bg2g1

g1,g2
σg2g1

)
⊗
(
F g1g2

g1,g2
Σg1g2 + F g2g1

g1,g2
Σg2g1

)
+ · · ·

= Bg1g2
g1,g2

F g1g2
g1,g2

Vg1g2 +Bg2g1
g1,g2

F g2g1
g1,g2

Vg2g1 +

Bg1g2
g1,g2

F g2g1
g1,g2

σg1g2 ⊗ Σg2g1 +Bg2g1
g1,g2

F g1g2
g1,g2

σg2g1 ⊗ Σg1g2 + · · · .

The same arguments also reveal the absence of decomposition of Vg into the tensor product of holomorphic and
antiholomorphic parts. A reason for the absence of tensor product structure lies, of course, in the nonabelian
nature of the SN orbifold CFT. However, in what follows to simplify the notation we represent Vg as a product
of bosonic and fermionic (holomorphic and antiholomorphic) twist fields: Vg(z, z̄) = σg(z)Σg(z)σ̄g(z̄)Σ̄g(z̄).

It is known that any g ∈ SN has the decomposition

(n1)(n2) · · · (nNstr
), (3.2)

where each cycle of length n has a definite set of indices ordered up to a cyclic permutation and generates
the action of the subgroup Zn. Due to this decomposition the vertex operator Vg can be represented as the
following product

Vg =

Nstr∏

α=1

V(nα),

where V(n) is a vertex operator that creates the vacuum state of the space H(n) of the sigma model of fundamental
fields with cyclic boundary condition (2.5).

It is obvious that the conformal dimensions of the vertex operators corresponding to cycles of the same
length coincide2 and therefore ∆g depends only on [g] and is given by the equation

∆g =

Nstr∑

α=1

∆nα
=

s∑

n=1

Nn∆n, (3.3)

where ∆n denotes the conformal dimension of the vertex operator V(n). Thus, it is enough to consider the
operator V(n), which we again represent as a product of bosonic and fermionic twist fields.

2It explains why we do not specify a set of indices occured in a given cycle.
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We begin with describing the bosonic twist operator. As usual, the field X(z, z̄) can be decomposed into
the left- and right-moving components

2X(z, z̄) = X(z) + X̄(z̄). (3.4)

In what follows we shall mainly concentrate our attention on the left-moving sector.
Let σ(n)(z, z̄) be a primary field [15] that creates a bosonic vacuum of the twisted sector at the point z, i.e.

the fields X i(z) satisfy the following monodromy conditions

X i(z e 2πi, z̄ e−2πi)σ(n)(0) = ωnX
i(z, z̄)σ(n)(0), (3.5)

where ωn generates the cyclic permutation of n elements.
It is also convinient to regard the twist field σ(n)(z, z̄) as a product σ(n)(z, z̄) = σ(n)(z)σ̄(n)(z̄). To simplify

calculations, we require that under the world-sheet parity transformation z → z̄, and X(z) → X̄(z̄) the field
σ(n)(z) transforms into σ̄(−n)(z̄), where (−n) denotes the cycle with the reversed orientation corresponding to
the element ω−1

n .
Note that (3.5) does not completely specify the field σg but it contains enough information to derive it’s

conformal dimension. For later use we consider the general case of Dn bosonic fields.
Let the twist field σ(n) be located at z = 0 and let us denote the vacuum state 3 as |(n)〉 = σ(n)(0, 0)|0〉.

Since the twist field σ(n) creates one long string we normalize the vacuum state |(n)〉 as

〈(n)|(n)〉 = RD. (3.6)

The fields X(z) have the following decomposition in the vicinity of z = 0

∂X i
I(z) = − i

n

∑

m

αi
m e− 2πi

n
Imz−

m
n
−1, (3.7)

where αi
m (m 6= 0) are the usual creation and annihilation operators with the commutation relations

[αi
m, α

j
n] = mδijδm+n,0, (3.8)

and αi
0 is proportional to the momentum operator 4.

The vacuum state |(n)〉 is annihilated by the operators αi
m for m ≥ 0.

Since σ(n) is a primary field, the conformal dimension ∆b
n can be found from the equation

〈(n)|T (z)|(n)〉 =
∆b

n

z2
〈(n)|(n)〉,

where T (z) is the stress-energy tensor.
By using eqs. (3.7) and (3.8), one calculates the correlation function

〈(n)|∂X i
I(z)∂X

j
I (w)|(n)〉 = −δij (zw)

1
n
−1

n2(z
1
n − w

1
n )2

〈(n)|(n)〉.

Taking into account that the stress-energy tensor is defined as

T (z) = −1

2
lim
w→z

D∑

i=1

n∑

I=1

(

∂X i
I(z)∂X

i
I(w) +

1

(z − w)2

)

,

one gets

∆b
n =

D

24
(n− 1

n
). (3.9)

3This vacuum state is a primary state of the CFT.
4αi

0
= 1

2
pi in string units α′ = 1

2
.

6



The excited states of this sigma model are obtained by acting on |(n)〉 by some vertex operators. In particular
the state corresponding to a scalar particle with momentum k is given by

σ(n)[k](0, 0)|0〉 =: e iki
IXi

I (0,0) : |(n)〉, (3.10)

where the summation over i and I is assumed, ki
I =

mi
I

R is a momentum carried by the field X i
I(z, z̄) and

ki =
∑n

I=1 k
i
I is a total momentum of the long string.

By using the definition of the vacuum state |(n)〉, one can rewrite eq.(3.10) in the form

σ(n)[k](0, 0)|0〉 =: e
i ki
√

n
Y i(0,0)

: |(n)〉, (3.11)

where

Y i(z, z̄) =
1√
n

n∑

I=1

X i
I(z, z̄). (3.12)

The field Y (z) is canonically normalized, i.e. the part of the stress-energy tensor depending on Y is − 1
2 :

∂Y (z)∂Y (z) :, and has the trivial monodromy around z = 0.
It is obvious from eq.(3.11) that the conformal dimension of the primary field

σ(n)[k](z, z̄) =: e
i ki
√

n
Y i(z,z̄)

: σ(n)(z, z̄)

is equal to

∆b
n[k] = ∆b

n +
k2

8n
=
D

24
(n− 1

n
) +

k2

8n
,

where the decomposition (3.4) was taken into account.
To simplify calculations it will be convinient to treat σ(n)[k](z, z̄) as a product of holomorphic and antiholo-

morphic parts σ(n)[k/2](z)σ(n)[k/2](z̄).
Other excited states of the model can be produced by considering the OPE of the fields ∂X with the twist

fields. By using (3.7) and the definition of the vacuum state |(n)〉 one can see that the most singular term of
the OPE looks as

∂X i
I(z)σ(n)(w, w̄) = (z − w)−(1− 1

n)e
2πi
n

Iτ i
(n)(w, w̄) + . . . , (3.13)

where τ i
(n)(0, 0) = − i

nα
i
−1|(n)〉 is the first excited state in the twisted sector. According to our conventions,

the field τ i
(n)(z, z̄) can be represented as a product: τ i

(n)(z, z̄) = τ i
(n)(z)σ̄(n)(z̄). In particular, since the element

gIJ = 1 − EII − EJJ + EIJ + EJI transposing the fields XI and XJ has just one cycle of length 2, one can
define the field τIJ ≡ τ(2). This twist field will be used to define the DVV interaction vertex.

Similarly to the vertex operator Vg, the twist field σg can be represented as

σg =

Nstr∏

α=1

σ(nα).

Due to eqs. (3.3) and (3.9), the conformal dimension of σg is given by

∆g =

s∑

n=1

Nn
D

24
(n− 1

n
) =

D

24
(N −

s∑

n=1

Nn

n
).

One can also introduce a primary field that creates scalar particles with momenta ki
α, α = 1, 2, ..., N1 + N2 +

· · · +Ns ≡ Nstr

σg[{kα}](z, z̄) =: e
i

ki
α√
nα

Y i
α(z,z̄)

: σg(z, z̄) =

Nstr∏

α=1

σ(nα)[kα],

where n1 = n2 = · · · = nN1 = 1, nN1+1 = nN1+2 = · · · = nN1+N2 = 2 and so on, Y i
α corresponds to the cycle

(nα) and is defined by eq.(3.12), and the summation over i and α is assumed.
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The conformal dimension of the field σg[{kα}] is equal to

∆g[{kα}] =
D

24
(N −

s∑

n=1

Nn

n
) +

∑

α

k2
α

8nα
. (3.14)

It is obvious that the two-point correlation function of the twist fields σg1 and σg2 is not equal to zero if and
only if g1g2 = 1. Taking into account the normalization (3.6), we find 5

〈σg−1 (∞)σg(0)〉 = RDNstr .

It means that the fields σg−1 and σg have the following OPE

σg−1(z, z̄)σg(0, 0) =
RD(Nstr−N)

|z|4∆g
+ · · · .

Here we assume that 〈0|0〉 = RDN .
The two-point correlation function of σg−1 [{qα}] and σg[{kα}] is respectively equal to

〈σg−1 [{qα}](∞)σg[{kα}](0)〉 =
∏

α

δD
R (qα + kα). (3.15)

Now we proceed with describing the fermion twist fields that create the vacuum states corresponding to long
strings. We begin with the case of one long string of length n.

Equations of motion corresponding to the cyclic boundary condition (2.5) imply that θa and θȧ are the
following holomorphic and antiholomorphic functions on the z-plain:

θa
I (z) =

1√
n

∑

m

θa
me

− 2πi
n

Imz−
m
n
− 1

2 , (3.16)

θȧ
I (z̄) =

1√
n

∑

m

θȧ
me

2πi
n

Imz̄−
m
n
− 1

2 ,

where we have taken into account that under conformal mappings fermion fields have the scaling dimension
1/2. Thus, on the z-plain the fermions satisfy θa

I (ze2πi) = −θa
I+1(z) and analogously for θȧ

I . In what follows we
mainly concentrate on the left-moving sector.
In eq.(3.16) the creation and annihilation operators satisfy the standard commutation relations:

{θa
m, θ

b
n} = δabδm+n, (3.17)

i.e. zero modes θa
0 form the Clifford algebra. Therefore, the vacuum state anihilated by θa

m for m > 0 carry
an irreducible representation of the Clifford algebra. By the triality the representation space can be choosen as
the direct sum 8v + 8c. It means that the vacuum state is a 16-component vector with components |i〉 and |ȧ〉
normalized in the standard fashion 〈i|j〉 = δij , 〈ȧ|ḃ〉 = δȧḃ and transforming under the action of θa

0 as follows

θa
0 |i〉 =

1√
2
γi

aȧ|ȧ〉, θa
0 |ȧ〉 =

1√
2
γi

aȧ|i〉. (3.18)

In the CFT the vacuum states |i〉 and |ȧ〉 are created by the primary (spin) fields Σi
(n) and Σȧ

(n). Their conformal

dimension can be found similarly to the bosonic case. Denoting by Σµ̇
(n) one of the fields Σi

(n), Σȧ
(n) and using

eq.(3.17) we obtain

〈Σµ̇
(n)|θa

I (z)∂θb
I(w)|Σµ̇

(n)〉 = −1

2

〈Σµ̇
(n)|θa

0θ
b
0|Σµ̇

(n)〉
nz1/2w3/2

+
δab

nz1/2

((
1
n − 1

2

)
w1/n−3/2

z1/n − w1/n
+

1
nw

2/n−3/2

(z1/n − w1/n)2

)

.

5it is clear that [g−1] = [g] and therefore ∆g−1 = ∆g
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Taking into account the definition of the stress-energy tensor TF for fermion fields

TF (z) = −1

2
lim
w→z

8∑

a=1

n∑

I=1

(

θa
I (z)∂θb

I(w) − 1

(z − w)2

)

,

one finds

∆f
n =

n

6
+

1

3n
. (3.19)

The transformation properties (3.18) are encoded in the following OPE:

θa
I (z)Σi

(n)(0) =
1√
nz1/2

γi
aȧ√
2

Σȧ
(n)(0) + . . . , θa

I (z)Σȧ
(n)(0) =

1√
nz1/2

γi
aȧ√
2

Σi
(n)(0) + . . . (3.20)

Note that the r.h.s. of this OPE contains other (less) singular terms that correspond to the excited states of
the twisted sector.

The twist fields Σ̄µ
(n)(z̄) for the right-moving sector are introduced in the same manner, they realize the

representation space 8v + 8s, and have the same conformal dimensions. The fields θȧ(z̄) have the following
OPE with the twist fields

θȧ
I (z̄)Σ̄i

(n)(0) = − 1√
nz̄1/2

γi
aȧ√
2

Σ̄a
(n)(0) + . . . , θȧ

I (z̄)Σ̄a
(n)(0) = − 1√

nz̄1/2

γi
aȧ√
2
Σ̄i

(n)(0) + . . . (3.21)

Comparing eqs.(3.20) and (3.21) one can see that under the world-sheet parity transformation z → z̄ and the
space reflection X3 → −X3 the fermions and twist fields transform as follows:

θa(z) ↔ θȧ(z̄); Σȧ
(n)(z) ↔ Σ̄a

(−n)(z̄);

Σi
(n)(z) ↔ Σ̄i

(−n)(z̄), i 6= 3; Σ3
(n)(z) ↔ −Σ̄3

(−n)(z̄). (3.22)

The third direction is singled out since in our conventions γ3 = 1 (see Appendix A).
At last combining the fermionic vacuum states of the holomorphic and the antiholomorphic sectors with the

vacuum state of the bosonic sector we obtain 256 states that describes the spectrum of the IIA supergravity.
The IIA supergravity states with the momentum k are

|V (k, µ̇, ν)〉 = |k〉 ⊗ |µ̇〉 ⊗ |ν〉,

where µ̇ = (i, ȧ) and µ = (i, a). Clearly, these states can be generated from the NS vacuum |0〉 by the following
vertex operators:

V(n)[k, µ̇, ν](z, z̄) = σ(n)[k](z, z̄)Σµ̇
(n)(z)Σ̄

ν
(n)(z̄).

The conformal dimension of the vertex operator is equal to

∆n =
n

2
+

k2

8n
. (3.23)

In particular, a graviton with a momentum k and a polarization ζ is created by

V(n)[k, ζ](z, z̄) = ζijσ(n)[k](z, z̄)Σi
(n)(z)Σ̄

j
(n)(z̄),

where ζij is a symmetric tensor.
It is worth noting that due to eq.(3.22) under the world-sheet parity transformation z → z̄ and the space

reflection X3 → −X3 the graviton vertex operator V(n)[k, ζ] transforms into V(−n)[k̃, ζ̃], where k̃i, ζ̃ij are the

space reflected momenta and polarizations respectively (k̃3 = −k3).
Due to the factorization (3.2) the vertex operator corresponding to any element g ∈ SN has the following

decomposition into the tensor product of V(n)[k, µ̇, ν]:

Vg[{kα, µ̇α, να}] =

Nstr∏

α=1

V(nα)[kα, µ̇α, να].

9



According to (3.23) the conformal dimension of Vg is given by

∆g =
N

2
+

Nstr∑

α=1

k2
α

8n
. (3.24)

Thus, we see that the operators creating ground states (kα = 0) have the same conformal dimension that does
not depend on a particular group element.

As was discussed before an invariant vertex operator is defined by summing up all the twist fields from one
conjugacy class:

V[g][{kα, µ̇α, να}] =
1

N !

∑

h∈SN

Nstr∏

α=1

Vh−1(nα)h[kα, µ̇α, να]. (3.25)

One can easily check that the vertex operators are invariant with respect to the simultaneous permutation of
kα, µ̇α and να which correspond to cycles (nα) of the same length.

By using this definition, one can easily calculate the two-point correlation function

〈V[g][{kα, µ̇α, ρα}](∞)V[g][{qα, ν̇α, ǫα}](0)〉 =
1

N !

s∏

n=1

Nn!nNn

∏

α

δ8R(qα + kα)δµ̇α ν̇αδραǫα ,

where
∏s

n=1Nn!nNn is the number of elements of the centralizer subgroup Cg.
Thus, we have introduced the vertex operators that create asymptotic states corresponding to the massless

particles of the type IIA string.
To describe the interaction vertex proposed by DVV [9] we need another kind of spin twist fields. Note that

on the z-plane there are twist fields around which fermions obey the following boundary condition:

θ(e2πiz) = gθ(z).

Consider the group element gIJ transposing the fields θI and θJ . Since the combination θI − θJ satisfies the
Ramond boundary condition the corresponding spin field carries a representation of the Clifford algebra. The
DVV interaction vertex is defined with the help of the twist field Σi

IJ transforming as a vector of SO(8). In
fact, Σi

IJ is a well-known spin field of the R8/Z2 supersymmetric orbifold sigma model.
To write down the DVV interaction vertex it is useful to come back to the Minkowskian space-time. Then

the interaction is described by the translationally-invariant vertex

Vint =
λN

2π

∑

I<J

∫

dτdσ
(
τ i(σ+)Σi(σ+)τ̄ j(σ−)Σ̄j(σ−)

)

IJ
,

where λ is a coupling constant proportional to the string coupling, and σ± are light-cone coordinates: σ± = τ±σ.
The twist field VIJ (σ+, σ−) =

(
τ i(σ+)Σi(σ+)τ̄ j(σ−)Σ̄j(σ−)

)

IJ
is a weight (3

2 ,
3
2 ) conformal field and the

coupling constant λ has dimension −1. As was shown in [9] the interaction vertex is space-time supersymmetric,
SO(8) invariant and describes an elementary string interaction. Another important property of the interaction
vertex is the invariance with respect to the world-sheet parity transformation σ → −σ and an odd number of
space reflections.

Performing again the Wick rotation and the conformal map onto the sphere, one gets the following expression
for Vint

Vint = −λN
2π

∑

I<J

∫

d2z|z|VIJ(z, z̄),

where the minus sign appears because VIJ has conformal dimension (3
2 ,

3
2 ).

Thus, the action of the interacting SNR8 sypersymmetric orbifold sigma model is given by the sum

Sint = S0 + Vint

In the next section we calculate the S-matrix element corresponding to the scattering of two gravitons and show
that the scattering amplitude coincides with the type IIA string scattering amplitude.
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4 S-matrix element

The S-matrix element at the second order in the coupling constant λ is given by the standard formula of
quantum field theory

〈f |S|i〉 = −1

2

(
λN

2π

)2

〈f |
∫

d2z1d
2z2|z1||z2|T (Lint(z1, z̄1)Lint(z2, z̄2)) |i〉, (4.1)

where the symbol T means the time-ordering: |z1| > |z2|, and

Lint(z, z̄) =
∑

I<J

VIJ(z, z̄).

The initial state |i〉 describes two gravitons with momenta k1 and k2, and polarizations ζ1 and ζ2, and is created
by the vertex operator V[g0][k1, ζ1;k2, ζ2]:

V[g0][k1, ζ1;k2, ζ2](z, z̄) =
1

N !

∑

h∈SN

Vh−1(n0)h[k1, ζ1](z, z̄)Vh−1(N−n0)h[k2, ζ2](z, z̄).

Namely,

|i〉 = C0V[g0][k1, ζ1;k2, ζ2](0, 0)|0〉.

Here the element g0 is taken in the canonical block-diagonal form

g0 = (n0)(N − n0),

where n0 < N − n0.
The final state 〈f | describes two gravitons with momenta k3 and k4, and polarizations ζ3 and ζ4, and is

given by the formula (see [15])

〈f | = C∞ lim
z∞→∞

|z∞|4∆∞〈0|V[g∞][k3, ζ3;k4, ζ4](z∞, z̄∞).

The element g∞ has the canonical decomposition

g∞ = (n∞)(N − n∞), n∞ < N − n∞.

The constants C0 and C∞ are chosen to be equal to

C0 =

√

N !

n0(N − n0)
, C∞ =

√

N !

n∞(N − n∞)

that guarantees the standard normalization of the initial and final states.
After the conformal transformation z → z

z1
eq.(4.1) acquires the form

〈f |S|i〉 = −1

2

(
λN

2π

)2 ∫

d2z1d
2z2|z1||z2||z1|2∆∞−2∆0−6

× 〈f |T
(

Lint(1, 1)Lint(
z2
z1
,
z̄2
z̄1

)

)

|i〉,

where, according to (3.24), the conformal dimensions ∆0 and ∆∞ of the vertex operators V[g0][k1, ζ1;k2, ζ2] and
V[g∞][k3, ζ3;k4, ζ4] are given by

∆0 =
N

2
+

k2
1

8n0
+

k2
2

8(N − n0)
,

∆∞ =
N

2
+

k2
3

8n∞
+

k2
4

8(N − n∞)
. (4.2)
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Let us introduce the light-cone momenta of the gravitons [9] taking into account the mass-shell condition for
the graviton states

k+
1 =

n0

N
, k−1 k

+
1 − k2

1 ≡ −k2
1 = 0,

k+
2 =

N − n0

N
, k−2 k

+
2 − k2

2 ≡ −k2
2 = 0,

k+
3 = −n∞

N
, k−3 k

+
3 − k2

3 ≡ −k2
3 = 0,

k+
4 = −N − n∞

N
, k−4 k

+
4 − k2

4 ≡ −k2
4 = 0.

By using the light-cone momenta and the mass-shell condition, one can rewrite (4.2) in the form

∆0 =
N

2
+
k−1 + k−2

8N
,

∆∞ =
N

2
− k−3 + k−4

8N
.

Performing the change of variables z2

z1
= u, one obtains

〈f |S|i〉 = −1

2

(
λN

2π

)2 ∫

d2z1|z1|2∆∞−2∆0−2

×
∫

d2u|u|〈f |T (Lint(1, 1)Lint(u, ū)) |i〉.

The integral over z1 is obviously divergent. To understand the meaning of this divergency one should remember
that we made the Wick rotation. Coming back to the σ, τ -coordinates on the cylinder, we get for the integral
over z1 ∫

d2z1|z1|2∆∞−2∆0−2 → i

∫

dτdσ e 2iτ(∆∞−∆0).

Integration over σ and τ gives us the conservation law for the light-cone momenta k−i
∫

dτdσ e 2iτ(∆∞−∆0) = 4N(2π)2δ(k−1 + k−2 + k−3 + k−4 ).

Thus, the S-matrix element is equal to

〈f |S|i〉 = −i2λ2N3δ(k−1 + k−2 + k−3 + k−4 )

∫

d2u|u|〈f |T (Lint(1, 1)Lint(u, ū)) |i〉. (4.3)

So, to find the S-matrix element one has to calculate the correlation function

F (u, ū) = 〈f |T (Lint(1, 1)Lint(u, ū)) |i〉
= C0C∞

∑

I<J;K<L

〈V[g∞][k3, ζ3;k4, ζ4](∞)T (VIJ (1, 1)VKL(u, ū)) V[g0][k1, ζ1;k2, ζ2](0, 0)〉. (4.4)

In what follows we assume for definiteness that n0 < n∞ and |u| < 1.
By using the definition (3.25) of V[g], and taking into account that the interaction vertex is SN -invariant, and

that any correlation function of vertex operators is invariant with respect to the global action of the symmetric
group

〈Vg1Vg2 · · ·Vgn
〉 = 〈Vh−1g1hVh−1g2h · · ·Vh−1gnh〉, (4.5)

we rewrite the correlation function in the form

F (u, ū) =
C0C∞

N !

∑

h∞∈SN

∑

I<J;K<L

〈Vh−1
∞ g∞h∞

[k3, ζ3;k4, ζ4](∞)VIJ (1, 1)VKL(u, ū)Vg0 [k1, ζ1;k2, ζ2](0, 0)〉. (4.6)
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Let us note that the correlation function

〈Vg1 (∞)Vg2 (1, 1)Vg3(u, ū)Vg4(0, 0)〉 (4.7)

does not vanish only if
g1g2g3g4 = 1 or g1g4g3g2 = 1. (4.8)

It can be seen as follows. Due to the OPE (3.1) of Vg, in the limit u→ 0 the correlation function (4.7) reduces
to the sum of three-point correlation functions 〈Vg1Vg2Vg3g4〉 and 〈Vg1Vg2Vg4g3〉. This sum does not vanish if
one of the following equations is fulfilled:

g1g2g3g4 = 1, g1g3g4g2 = 1, g1g2g4g3 = 1, g1g4g3g2 = 1. (4.9)

From the other side in the limit u → 1 one gets the sum of the correlation functions 〈Vg1Vg2g3Vg4〉 and
〈Vg1Vg3g2Vg4〉. This sum does not vanish if

g1g2g3g4 = 1, g1g4g2g3 = 1, g1g3g2g4 = 1, g1g4g3g2 = 1. (4.10)

Comparing eqs.(4.9) and (4.10), one obtains eq.(4.8).
Thus, every summand in (4.6) is not equal to zero in the following two cases:

h−1
∞ g∞h∞g0gKLgIJ = 1, h−1

∞ g∞h∞gIJgKLg0 = 1.

On the other hand, one can express the correlation functions with the second monodromy condition via the
correlation functions with the first one. Indeed, since the action and the interaction vertex of the model
is invariant under the world-sheet parity transformation z → z̄ and the space-reflection X3 → −X3, and the
graviton vertex operators Vg[{kα, ζα}] transform into Ṽg−1 [{kα, ζα}] ≡ Vg−1 [{k̃α, ζ̃α}] their correlation functions
satisfy the following equality:

〈VgIJ gKLg−1
0
VIJVKLVg0〉 = 〈Ṽg0gKLgIJ

VIJVKLṼg−1
0

〉.

Now taking into account eqs.(4.5) and that the elements g and g−1 belong to the same conjugacy class, one
obtains

〈VgIJ gKLg−1
0
VIJVKLVg0 〉 = 〈Ṽg−1

0 gK′L′gI′J′
VI′J′VK′L′ Ṽg0〉,

where gI′J′ = hgIJh
−1, gK′L′ = hgKLh

−1, and the element h is such that g−1
0 = h−1g0h. It is now clear that

the contribution of the terms satisfying the second monodromy condition coincides with the one of the terms
satisfying the first monodromy condition after the replacement kα → k̃α and ζα → ζ̃α. It is obvious that due
to the SO(8) invariance the correlation function (4.4) can depend only on the scalar products of momenta and
polarizations of the gravitons and, therefore, is invariant under space reflections. Thus, the contributions of the
terms satisfying the first and the second monodromy conditions coincide.

Schematically, the function F (u, ū) given by a sum of correlation functions of twist fields can be represented
as

S =
∑

h∞∈SN

∑

I<J;K<L

〈Vh−1
∞ g∞h∞

VIJVKLVg0 〉,

where the elements h∞, gIJ , gKL solve the equation h−1
∞ g∞h∞gIJgKLg0 = 1.

We can fix the values of the indices K and L by using the action of the centralizer of g0 and the invariance (4.5)
of the correlation functions

S =
∑

h∞∈SN

∑

I<J

(

n0(N − n0)〈Vh−1
∞ g∞h∞

VIJVn0NVg0〉

+ (N − n0)〈Vh−1
∞ g∞h∞

VIJVn∞NVg0〉

+ (N − n0)〈Vh−1
∞ g∞h∞

VIJVn0+n∞,NVg0〉
)

. (4.11)
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The first term in (4.11) corresponds to the joining of two incoming strings and the factor n0(N−n0) appears since
in this case the index K can take n0 values, K = 1, ..., n0, and the index L takes N−n0 values, L = n0+1, ..., N .
To fix K = n0 and L = N we have to use all elements of Cg0 . The second and the third terms correspond to the
splitting of the string of length N − n0 into two strings of lengths n∞ − n0 and N − n∞, and N − n0 − n∞ and
n∞ respectively. In these cases to fix the values of K and L one should use N − n0 elements of the subgroup
ZN−n0 of Cg0 that does not act on the cycle (n0).

Eq.(4.11) can be further rewritten in the form

S = n0(N − n0)n∞(N − n∞)

(
n∞∑

I=1

〈Vg∞(I)VI,I+N−n∞Vn0NVg0〉

+

N−n∞∑

I=1

〈Vg∞(I)VI,I+n∞Vn0NVg0〉 +

n∞∑

J=n0+1

〈Vg∞(J)Vn0JVn∞NVg0〉

+

N∑

J=n0+n∞+1

〈Vg∞(J)Vn0JVn0+n∞,NVg0〉
)

, (4.12)

where the elements g∞ have to be found from the equation g∞gIJgKLg0 = 1. The diagramms corresponding to
these four terms are depicted in Fig.1.

So, we need to compute the correlation functions (and the same correlation functions with the interchange
u↔ 1)

G(u, ū) = 〈Vg∞ [k3, ζ3;k4, ζ4](∞)VIJ (1, 1)VKL(u, ū)Vg0 [k1, ζ1,k2, ζ2](0, 0)〉, (4.13)

where all possible elements g∞, gIJ , gKL, g0 are listed in eq.(4.12).
To calculate the correlation function (4.13) we employ the stress-energy tensor method [16]. The idea of the

method is as follows. Suppose that one knows the following ratio

f(z, u) =
〈T (z)φ∞(∞)φ1(1)φ2(u)φ0(0)〉

〈φ∞(∞)φ1(1)φ2(u)φ0(0)〉 ,

where T (z) is the stress-energy tensor and φ are primary fields. Taking into account that the OPE of T (z) with
any primary field has the form

T (z)φ(0) =
∆

z2
φ(0) +

1

z
∂φ(0) + · · · ,

one gets a differential equation on the correlation function G(u, ū) = 〈φ∞(∞)φ1(1)φ2(u)φ0(0)〉

∂u logG(u, ū) = H(u, ū),

where H(u, ū) is the second term in the decomposition of the function f(z, u) in the vicinity of u

f(z, u) =
∆2

(z − u)2
+

1

z − u
H(u, ū) + · · · .

In the same way one gets the second equation on G(u, ū) by using the stress-energy tensor T̄ (z̄)

∂ū logG(u, ū) = H̄(u, ū).

A solution of these two equations determines the correlation function G(u, ū) up to a constant.
It turns out that for the correlation functions we consider the functions H(u, ū) and H̄(u, ū) are holomorphic

and antiholomorphic functions respectively. Therefore, the correlation function G(u, ū) admits a factorization
G(u, ū) = G(u)Ḡ(ū). Moreover, since the stress-energy tensor is a sum of the bosonic and fermionic ones, the
function G(u) admits further factorization G(u) = Gb(u)Gf (u). Thus, the correlation function G(u, ū) acquires
the form

G(u, ū) = Gb(u)Gf (u)Ḡb(ū)Ḡf (ū), (4.14)

where, e.g., Gb(u) is a contribution of the bosonic left-moving sector to the correlation function. By using the
stress-energy tensor method one can compute each multiplier on the r.h.s. of (4.14) up to a constant. Since
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Figure 1: The diagramm representation of different correlation functions in eq.(4.32)

the vertex operators can not be represented as a tensor product of bosonic and fermionic twist fields, only the
overall normalization constant for G(u, ū) can be found exactly. As to the individual constants, below we show
that they can be determined only up to phases.

In the next two sections we calculate the contribution of the bosonic and fermionic correlation functions
occuring in (4.14).

5 Bosonic correlation functions

By using the definition of the vertex operators one can see that the contribution of the bosonic left-moving
sector to correlation function (4.13) is given by

Gij
b (u) = 〈σg∞ [k3/2,k4/2](∞)τ i

IJ (1)τ j
KL(u)σg0 [k1/2,k2/2](0)〉.

According to the definition (3.13) of τ this correlation function can be written as the following limit

Gij
b (u) = lim

z→1,w→u
(z − 1)1/2(w − u)1/2〈∂X i

I(z)∂X
j
K(w)σg∞ [k3/2,k4/2](∞)σIJ (1)σKL(u)σg0 [k1/2,k2/2](0)〉.

(5.1)
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Figure 2: The N -fold covering of the z-sphere by the t-sphere.

Thus, the calculation of Gij
b is reduced to calculation of the Green function

Gij
MS(z, w) =

〈∂X i
M (z)∂Xj

S(w)σg∞ [k3/2,k4/2](∞)σIJ(1)σKL(u)σg0 [k1/2,k2/2](0)〉
〈σg∞ [k3/2,k4/2](∞)σIJ(1)σKL(u)σg0 [k1/2,k2/2](0)〉

≡ 〈〈∂X i
M (z)∂Xj

S(w)〉〉.

and the correlation function

Gb(u) = 〈σg∞ [k3/2,k4/2](∞)σIJ(1)σKL(u)σg0 [k1/2,k2/2](0)〉. (5.2)

We start with considering the more general correlation function

G(u) = 〈σg∞ [p3,p4](∞)σ[p5]IJ(1)σ[p6]KL(u)σg0 [p1,p2](0)〉, (5.3)

and the corresponding Green function

Gij
MS(z, w) =

〈∂X i
M (z)∂Xj

S(w)σg∞ [p3,p4](∞)σ[p5]IJ (1)σ[p6]KL(u)σg0 [p1,p2](0)〉
〈σg∞ [p3,p4](∞)σ[p5]IJ (1)σ[p6]KL(u)σg0 [p1,p2](0)〉 ,

forD bosonic fields and arbitrary momenta p5 and p6 keeping in mind application to calculation of the fermionic
correlation functions.

These Green functions have non-trivial monodromies around points ∞, 1, u and 0, and, in fact, are different
branches of one multi-valued function. However, this function is single-valued on the sphere that is obtained by
gluing the fields X i

I at z = 0 and z = ∞. Thus to construct Gij
MS(z, w) we introduce the following map from

this sphere onto the original one:

z =

(
t

t1

)n0
(
t− t0
t1 − t0

)N−n0
(
t1 − t∞
t− t∞

)N−n∞

≡ u(t). (5.4)

Here the points t = 0 and t = t0 are mapped to the point z = 0; t = ∞, t = t∞ → z = ∞, t = t1 → z = 1
and t = x → z = u (see Fig.2). In what follows we often use the notation ΩA to refer to the set of the branch
points: Ω1 = 0, Ω2 = t0, Ω3 = ∞, Ω4 = t∞, Ω5 = t1 and Ω6 = x.

The map (5.4) may be viewed as the N -fold covering of the z-plain by the t-sphere on which the Green
function is single-valued. The more detailed discussion of eq.(5.4) is presented in the Appendix B.
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Due to the projective transformations, the positions of the points t0, t∞, t1 depend on x and it is convinient
to choose this dependence as follows

t0 = x− 1,

t∞ = x− (N − n∞)x

(N − n0)x+ n0
,

t1 =
N − n0 − n∞

n∞
+
n0x

n∞
− N(N − n∞)x

n∞((N − n0)x + n0)
.

This choice leads to the following expression for the rational function u(x)

u = u(x) = (n0 − n∞)n0−n∞
nn∞
∞

nn0
0

(
N − n0

N − n∞

)N−n∞
(
x+ n0

N−n0

x− 1

)N

×
(

x− N−n0−n∞
N−n0

x

)N−n0−n∞ (

x− n0

n0 − n∞

)n0−n∞

. (5.5)

Since n0 < n∞, the map u(x) can be treated as the 2(N − n0)-fold covering of the u-sphere by the x-sphere,
that means that an equation u(x) = u has 2(N − n0) different solutions. It is worthwhile to note that this
number coincides with the number of nontrivial correlation functions in eq.(4.12) and, therefore different roots
of eq.(5.5) correspond to different correlation functions (4.12). We see that the t-sphere can be represented as
the union of 2(N −n0) domains, and each domain VIJKL contains the points x corresponding to the correlation
function (4.13). If we take on the u-plain the appropriate system of cuts, then every root of eq.(5.5) realizes a
one-to-one conformal mapping of the cut u-plain onto the corresponding domain VIJKL.

Let us now choose some root of eq.(5.5). One can always cut the z-sphere and numerate the roots tR(z) of
eq.(5.4) in such a way that they have the same monodromies as the fields X do. Then the Green functions are
obviously not equal to zero only if the momentum conservation law p1 +p2 +p3 +p4 +p5 +p6 = 0 is fulfilled,
and are given by

Gij
MS(z, w) = −δij t′M (z)t′S(w)

(tM (z) − tS(w))2
−
∑

AB

pi
Ap

j
Bt

′
M (z)t′S(w)

(tM (z) − ΩA)(tS(w) − ΩB)
. (5.6)

Since Ω3 = ∞ the corresponding terms in the sum (5.6) are absent.

One can easily check that these functions have the singularity − δijδMS

(z−w)2 in the vicinity z−w = 0 and proper

monodromies around the points z = ∞, 1, u, 0.
Recall that the stress-energy tensor is defined as

T (z) = −1

2
lim
w→z

D∑

i=1

N∑

I=1

(

∂X i
I(z)∂X

i
I(w) +

1

(z − w)2

)

.

By using this definition and eq.(5.6), one gets 6

〈〈T (z)〉〉 =
∑

M

D

12

((
t′′M (z)

t′M (z)

)′

− 1

2

(
t′′M (z)

t′M (z)

)2
)

+
∑

AB,M

pApB(t′M (z))2

2(tM (z) − ΩA)(tM (z) − ΩB)
.

The term
(
t′′

t′

)′

− 1

2

(
t′′

t′

)2

=
t′′′

t′
− 3

2

(
t′′

t′

)2

is the Schwartz derivative as one could expect from the very beginning. To get the differential equation on the
correlation function (5.3) one should expand 〈〈T (z)〉〉 in the vicinity of z = u. This expansion is given by

〈〈T (z)〉〉 =
p2

6 +D/4

4

1

(z − u)2
+

1

u(z − u)

(

−p2
6 +D/4

4
+

9p2
6 + 3D/2

16

a2
1

a3
0

− p2
6 +D/4

2

a2

a2
0

(5.7)

6If all pi = 0, the expectation value of T (z) in the presence of twist fields can be equivalently found by mapping with tM (z)
the stress-energy tensor on the t-sphere onto the z-sphere with the subsequent summation over M (see e.g.[16])
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+

5∑

A,B=1

pApB

4a0(x− ΩA)(x− ΩB)
−

5∑

A=1

p6pA

2a0(x− ΩA)2

(

1 +
3a1(x− ΩA)

a0

)


+ · · · .

Here the coefficients ak are defined as follows

ak =
(−1)k−1

k + 2

(
n0

xk+2
+

N − n0

(x− t0)k+2
− N − n∞

(x− t∞)k+2

)

.

The first term shows that the conformal dimension of the twist field σKL[p6] is equal to D
16 +

p2
6

4 , as it should
be, and the other terms lead to the following differential equation on G(u)

u∂u logG(u) = −p2
6 +D/4

4
+

9p2
6 + 3D/2

16

a2
1

a3
0

− p2
6 +D/4

2

a2

a2
0

+

5∑

A,B=1

pApB

4a0(x− ΩA)(x − ΩB)
−

5∑

A=1

p6pA

2a0(x− ΩA)2

(

1 +
3a1(x− ΩA)

a0

)

. (5.8)

It is useful to make the change of variables u→ u(x). Then, performing simple but tedious calculations which
are outlined in Appendix B, one obtains the following differential equation on G(u)

∂x logG(u(x)) = −
(
D

16
+

p2
6

4

)
d

dx
log u+

d0

x
+

d1

x− 1
+

d2

x+ n0

N−n0

+
d3

x− N−n0−n∞
N−n0

+
d4

x− n0

n0−n∞

− d5

(
1

x− α1
+

1

x− α2

)

. (5.9)

Here

αi =
n0

n0 − n∞
+ (−1)i

√

n0n∞(N − n∞)

(n0 − n∞)2(N − n0)

are roots of the equation x2a0 = 0 and the coefficients di are given by the following formulas

d0 =
D

24

(

1 − N − n∞

n0
− n0

N − n∞

)

+
N − n∞

2n0
p2

1 +
n0

2(N − n∞)
p2

4 + p1p4 + p6p1 + p6p4 +
p2

6

2
,

d1 =
D

24

(

1 +
N − n∞

n∞
+

n∞

N − n∞

)

− N − n∞

2n∞
p2

3 −
n∞

2(N − n∞)
p2

4 + p6p3 + p6p4 + p3p4 +
p2

6

2
,

d2 =
D

24

(

1 +
N − n0

n0
+

n0

N − n0

)

− N − n0

2n0
p2

1 −
n0

2(N − n0)
p2

2 + p1p2 + p6p1 + p6p2 +
p2

6

2
,

d3 =
D

24

(

1 − n∞

N − n0
− N − n0

n∞

)

+
n∞

2(N − n0)
p2

2 +
N − n0

2n∞
p2

3 + p6p2 + p6p3 + p2p3 +
p2

6

2
,

d4 =
D

24

(

1 − n0

n∞
− n∞

n0

)

+
n∞

2n0
p2

1 +
n0

2n∞
p2

3 + p6p1 + p6p3 + p1p3 +
p2

6

2
,

d5 =
D

24
− 4p5p6 − p2

5 − p2
6

4
. (5.10)

Thus, with the account of the momentum conservation law the solution of eq.(5.9) is given by

G(u) = C(g0, g∞)RD/2
xd0(x− 1)d1

(

x+ n0

N−n0

)d2
(

x− N−n0−n∞
N−n0

)d3
(

x− n0

n0−n∞

)d4

u
D
16+

p2
6

4 ((x− α1)(x− α2))d5

. (5.11)

Here x = x(u) is the root of equation u = u(x) that corresponds to given values of the indices I, J,K,L, and
C(g0, g∞) is a normalization constant which does not depend on u.
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Now we proceed with calculation of the correlation function Gij
b (u). Setting in (5.11) D = 8, p1 = k1/2,

p2 = k2/2, p3 = k3/2, p4 = k4/2 and p5 = p6 = 0 one obtains the bosonic correlation function Gb(u) (5.2) up
to the normalization constant C(g0, g∞). Then, according to (5.1), in the limit z → 1 and w → u we find

lim
z→1,w→u

(z − 1)1/2(w − u)1/2Gij
IK(z, w) =

1

4u1/2(a0(t1)a0)1/2

(

−δij 1

(t1 − x)2
−
∑

AB

ki
Ak

j
B

4(t1 − ΩA)(x− ΩB)

)

,

where

a0(t1) = −1

2

(
n0

t21
+

N − n0

(t1 − t0)2
− N − n∞

(t1 − t∞)2

)

.

Taking into account that

a0(t1) = − n3
∞(N − n∞)

n0(N − n0)(n0 − n∞)2

(

x+ n0

N−n0

)2

x2

(x− 1)2
(

x− N−n0−n∞
N−n0

)2 (

x− n0

n0−n∞

)2 a0,

and performing simple calculations one obtains

Gij
b (u) =

i

8

(
n∞n0(N − n∞)

(N − n0)

)1/2 〈τiτj〉
(n∞ − n0)u1/2(x− α1)(x− α2)

Gb(u),

where we introduced a concise notation

〈τiτj〉 = −δij
4x(x− 1)(x+ n0

N−n0
)(x − N−n0−n∞

N−n0
)(x − n0

n0−n∞
)

(n0 − n∞)(x− α1)2(x− α2)2
(5.12)

−
(

(x + n0

N−n0
)

n0
ki
1 +

(x− N−n0−n∞
N−n0

)

n∞
ki
3 +

1

N − n0
ki
4

)(

(x − 1)kj
1 + xkj

3 +
n0 − n∞

N − n∞
(x− n0

n0 − n∞
)kj

4

)

.

Thus, we determined the correlation function Gij
b (u) up to the constant occuring in Gb(u). However, we are

only interested in the overall normalization constant for correlation function (4.13). To determine this constant
we are in need of the structure constants in the OPE (3.1). As will be shown later these structure constants
can be expressed through the corresponding constants for the bosonic and fermionic twist fields. The latter can
be extracted from an auxiliary correlation function

G0(u) = 〈σg−1
0

[−p1,−p2](∞)σIJ [−p](1)σIJ [p](u)σg0 [p1,p2](0)〉, (5.13)

where I = 1, . . . , n0, J = n0 + 1, . . . , N .
Let us note that by using the action of Cg0 one can fix I = n0, J = N . This correlation function corresponds
to the case n∞ = n0 and the rational function u(x) is equal to

u(x) =

(

1 +
2n0 −N

N − n0

1

x

)N−2n0
(

1 + n0

N−n0

1
x

1 − 1
x

)N

. (5.14)

The root of eq.(5.14) that corresponds to the correlation function (5.13) behaves as

1

x
=

1

4n0
(u− 1) + o(u− 1), when u→ 1. (5.15)

The following expression for the correlation function G0(u) can be derived from eq.(5.11) in the limit n∞ → n0

G0(u) = C(g0)R
D/2

xd0(x− 1)d1

(

x+ n0

N−n0

)d2
(

x− N−2n0

N−n0

)d3

u
D
16+

p2

4

(

x− N−2n0

2(N−n0)

)d5
, (5.16)
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where the coefficients di are given by eq.(5.10) with the obvious substitution n∞ → n0, p3 = −p1, p4 = −p2,
and p6 = −p5 = p.

Taking into account the OPE

σIJ [−p](1)σIJ [p](u) =
R−D/2

(1 − u)
D
8 +

p2

2

+ · · · ,

and the normalization (3.15) of two-point correlation functions, one gets

G0(u) →
R−D/2

(1 − u)
D
8 +

p2

2

. (5.17)

From the other side by using eqs.(5.15) and (5.16), one derives in the limit u→ 1

G0(u) → C(g0)R
D/2

(
1

4n0
(u− 1)

)−(d0+d1+d2+d3−d5)

=
RD/2

(u − 1)
D
8 +

p2

2

C(g0)(4n0)
D
8 +

p2

2 . (5.18)

Comparing eqs.(5.17) and (5.18), one finds the normalization constant

C(g0) = (−4n0)
−D

8 −
p2

2 .

Let us now consider the limit u→ 0. Taking into account the OPE

σn0N [p](u)σg0 [p1,p2](0) =
C

gn0N g0

n0N,g0
(p1,p2,p)

u
D
16 +

p2

4 +∆g0 [p1,p2]−∆gn0N g0 [p1+p2+p]
σgn0N g0 [p1 + p2 + p](0) (5.19)

+
C

g0gn0N

n0N,g0
(p1,p2,p)

u
D
16 +

p2

4 +∆g0 [p1,p2]−∆gn0N g0 [p1+p2+p]
σg0gn0N

[p1 + p2 + p](0) + · · · ,

one obtains

G0(u) →
C

gn0N g0

n0N,g0
(p1,p2,p)

u
D
16 +

p2

4 +∆g0 [p1,p2]−∆gn0N g0 [p1+p2+p]
〈σg−1

0
[−p1,−p2](∞)σn0N [−p](1)σgn0N g0 [p1 + p2 + p](0)〉

+
C

g0gn0N

n0N,g0
(p1,p2,p)

u
D
16+

p2

4 +∆g0 [p1,p2]−∆gn0N g0 [p1+p2+p]
〈σg−1

0
[−p1,−p2](∞)σn0N [−p](1)σg0gn0N

[p1 + p2 + p](0)〉.

By using the global SN invariance and the obvious symmetry property of the structure constant

C
gn0N g0

n0N,g0
(−p1,−p2,−p) = C

gn0N g0

n0N,g0
(p1,p2,p)

it is not difficult to show that the correlation functions 〈σg−1
0
σn0Nσgn0N g0〉 and 〈σg−1

0
σn0Nσg0gn0N

〉 are equal to

RD/2C
g0gn0N

n0N,g0
and RD/2C

gn0N g0

n0N,g0
respectively:

〈σg−1
0
σn0Nσgn0N g0〉 = 〈σgn0N g0σn0Nσg−1

0
〉 = 〈σgn0N g−1

0
σn0Nσg0 〉 = RD/2C

g0gn0N

n0N,g0

〈σg−1
0
σn0Nσg0gn0N

〉 = 〈σg0gn0N
σn0Nσg−1

0
〉 = 〈σg−1

0 gn0N
σn0Nσg0 〉 = RD/2C

gn0N g0

n0N,g0
. (5.20)

Moreover, the structure constants C
g0gn0N

n0N,g0
and C

gn0N g0

n0N,g0
are complex-conjugated to each other. Indeed, it follows

from the normalization of the two-point correlation functions of the twist fields σg[{kα}](z) that the conjugate
operator (σg[{kα}](z))† is given by

(σg [{kα}](z))† = z−2∆g[{kα}]σg−1 [{−kα}]
(

1

z

)

. (5.21)
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Then, from eqs.(5.20) and (5.21) one gets

(RD/2C
g0gn0N

n0N,g0
)∗ = 〈σg−1

0
σn0Nσgn0N g0〉∗ = 〈σ†

gn0N g0
σ†

n0Nσ
†

g−1
0

〉 = 〈σg−1
0 gn0N

σn0Nσg0〉 = RD/2C
gn0N g0

n0N,g0
.

Thus, the correlation function G0(u) in the limit u→ 0 is expressed through the structure constant

C(n0,p1;N − n0,p2;p) ≡ C
gn0N g0

n0N,g0
(p1,p2,p)

as follows

G0(u) →
2RD/2|C(n0,p1;N − n0,p2;p)|2

u
D
16 +

p2

4 +∆g0 [p1,p2]−∆gn0N g0 [p1+p2+p]
. (5.22)

On the other hand, taking into account that in the limit u→ 0 the root x(u) behaves as

x+
n0

N − n0
→ −Nn

N−2n0
N

0 (N − n0)
2n0−2N

N u
1
N ,

one gets from eq.(5.16)

G0(u, ū) → 2
1
2p

2− 5
24D RD/2

u
D
16+

p2

4 − 1
N

d2

(N − n0)
− D

24 +2
n0−N

N
d2+2pp2+ 1

2p
2

n
− D

24−2
n0
N

d2+2pp1+ 1
2p

2

0

N
D
24−2d2+2p(p1+p2)+

3
2p2

. (5.23)

Comparing eqs.(5.22) and (5.23), one obtains the following expression for the modulus of the structure constant

|C(n0,p1;N − n0,p2;p)| = 2−
5D+24

48 + 1
4p

2 (N − n0)
− D

48+
n0−N

N
d2+pp2+ 1

4p
2

n
− D

48−
n0
N

d2+pp1+ 1
4p

2

0

N
D
48−d2+p(p1+p2)+

3
4p2

, (5.24)

where

d2 ≡ d2(n0,p1;N − n0,p2;p)

=
D

24

(

1 +
N − n0

n0
+

n0

N − n0

)

− N − n0

2n0
p2

1 −
n0

2(N − n0)
p2

2 + p1p2 + pp1 + pp2 +
p2

2
.

Note that the phase of the structure constant remains to be undetermined.
It is now not difficult to express any three-point correlation function of the form 〈σg−1gIJ

σIJσg〉 through the
structure constant C(n,k;m,q;p). Recall that any twist field σg[{kα}] has the following decomposition into
the product of the twist fields σ(n)[k]

σg[{kα}] =

Nstr∏

α=1

σ(nα)[kα], (5.25)

where the element g has the decomposition (n1)(n2) · · · (nNstr
).

Then, due to eq.(5.20), the structure constant C(n,k;m,q;p) with arbitrary n and m is equal to

C(n,k;m,q;p) = R−D/2〈σ(−n−m)[−k− q − p](∞)σIJ [p](1)σ(n)[k]σ(m)[q](0)〉, (5.26)

where I ∈ (n) and J ∈ (m).
By using eqs.(5.25) and (5.26), one can easily get the following expression for the three-point correlation function

〈σg−1gIJ
[{qα}](∞)σIJ [p](1)σg[{kα}](0)〉 = 〈σg[{kα}](∞)σIJ [p](1)σg−1gIJ

[{qα}](0)〉

= 〈σ(−n1−n2)[q]

Nstr∏

α=3

σ(−nα)[qα](∞)σIJ [p](1)σ(n1)[k1]σ(n2)[k2]

Nstr∏

α=3

σ(nα)[kα](0)〉

=

Nstr∏

α=3

R−D/2δD
R (qα + kα)〈σ(−n1−n2)[q](∞)σIJ [p](1)σ(n1)[k1]σ(n2)[k2](0)〉

= C(n1,k1;n2,k2;p)R−D/2δD
R (q + k1 + k2 + p)

Nstr∏

α=3

R−D/2δD
R (qα + kα),
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where I ∈ (n1) and J ∈ (n2).
It is now clear that the structure constant CgIJ g

IJ,g in the OPE of σIJ and σg is just equal to C(n1,k1;n2,k2;p),

and that the structure constant Cg−1

IJ,g−1gIJ
(which is complex conjugated to CgIJ g−1gIJ

IJ,g−1gIJ
due to eq.(5.21)) in the

OPE

σIJ [p](u)σg−1gIJ
[{qα}](0) =

∑

q1,q2

δq1+q2−q−p,0

u
D
16 +

p2

4 +∆
g−1gIJ

[{qα}]−∆g[{qα}]
(5.27)

×
(

Cg−1

IJ,g−1gIJ
(q1,q2,p)σg−1 [{qα}](0)+

∗

C
g−1

IJ,g−1gIJ
(q1,q2,p)σgIJ g−1gIJ

[{qα}](0)

)

+ · · ·

is equal to

Cg−1

IJ,g−1gIJ
(q1,q2,p) = R−D/2C(n1,q1;n2,q2;p).

In particular, the structure constants C
gn∞N g0

n∞N,g0
and C

gn0+n∞,N g0

n0+n∞,N ;g0
, which will be used to find the overall normal-

ization constant for correlation function (4.13) are given by

C
gn∞N g0

n∞N,g0
(k1,k2,p) = R−D/2C(n∞ − n0,k1;N − n∞,k2;p), (5.28)

C
gn0+n∞,N g0

n0+n∞,N ;g0
(k1,k2,p) = R−D/2C(N − n∞ − n0,k1;n∞,k2;p).

6 Fermionic correlation functions

To find the contribution of the left-moving fermions to the graviton scattering amplitude one has to compute
the following correlation function of four fermion twist fields:

〈Σi3i4
g∞

(∞)Σi
IJ (1)Σj

KL(u)Σi1i2
g0

(0)〉. (6.1)

Computation of (6.1) will be again based on the stress-energy tensor method and the conformal map (5.4).
Instead of N fermions θI(z) on the z-sphere, obeying twisted boundary conditions around the points 0, 1,∞
and u, on the t-sphere one has one fermion θ(t) with the Ramond boundary condition around the points ΩA.

It is well known that the Ramond fermions are created from the NS sector by the standard spin fields (see,
e.g., [17]). The simplest way to deal with correlation functions of the spin fields is to bosonize the fermions. To
this end it is convinient to use the SU(4)× U(1) formalism [18]. Recall that with respect to the SU(4)× U(1)
subgroup representations 8v, 8s and 8c are decomposed as

8s → 41/2 + 4̄−1/2, 8c → 4−1/2 + 4̄1/2, 8v → 60 + 11 + 1−1.

The corresponding basis for the fermions θa and their spin fields Σȧ and Σi consistent with this decomposition
is given by

ΘA =
1√
2
(θA + iθA+4), ΘĀ =

1√
2
(θA − iθA+4),

SȦ =
1√
2
(ΣȦ + iΣȦ+4), S ˙̄A =

1√
2
(ΣȦ − iΣȦ+4),

SA =
1√
2
(Σ2A−1 + iΣ2A), SĀ =

1√
2
(Σ2A−1 − iΣ2A),

where A = 1, . . . , 4. Note that the spin fields Σ4 and Σ4̄ transform as 11 and 1−1 respectively.
As usual, bosonization of the fermions and their twist fields up to cocycles is realized in terms of four bosonic

fields φA as

ΘA = e iqA
BφB

, SȦ = e iqȦ
BφB

, SA = e iφA

,
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where the weights of the spinor representations 8s and 8c are given by

q1 =
1

2
(−1,−1, 1, 1); q2 =

1

2
(−1, 1,−1, 1); q3 =

1

2
(1,−1,−1, 1); q4 =

1

2
(1, 1, 1, 1);

q1̇ =
1

2
(−1, 1, 1, 1); q2̇ =

1

2
(−1,−1,−1, 1); q3̇ =

1

2
(1, 1,−1, 1); q4̇ =

1

2
(1,−1, 1, 1).

The Cartan generators of SU(4) × U(1) in the bosonized form look as HA = i∂φA.
Clearly, bosonization of the fermions of the orbifold model is achieved by introducing 4N bosonic fields and

reads as
ΘA

I (z) = e iqA
BφB

I (z).

Twist fields σg creating twisted sectors for the fields φA
I (z) are introduced in the same manner as in Sec.3 with

the only exception that now they have the unit norm. Since, σ(n) on the z-sphere corresponds to the identity
operator on the t-sphere, it is natural to assume that the spin twist fields of the orbifold model can be realized
as

SȦ
(n)(z) = e

i
n

∑

I∈(n)
qȦ

BφB
I (z)

σ(n)(z) = σ(n)[q
Ȧ](z), (6.2)

SA
(n)(z) = e

i
n

∑

I∈(n)
φA

I (z)
σ(n)(z) = σ(n)[e

A](z),

where eA is a weight vector of 8v with components δA
B.

Indeed, according to (3.14), the conformal dimension of the field σ(n)[e
A] is

∆n[eA] =
1

6

(

n− 1

n

)

+
(eA)2

2n

and analogously for σ(n)[q
Ȧ]. Since (eA)2 = (qȦ)2 = 1 these fields have the correct conformal dimension (3.19)

of a spin twist field.
By using the bosonization rule one can now establish that the OPE of fermions with the twist fields (6.2)

coincides with (3.20) up to a sign. The correct sign dependence should be restored by taking into account
cocycles of fermions and twist fields. Fortunately, our method of calculation does not involve the knowledge of
these cocycles.

We proceed with considering correlation function (6.1). In the SU(4)×U(1) basis correlation function (6.1)
reduces to correlation functions of the form (5.3):

Gf (u) = 〈σg∞ [p3,p4](∞)σIJ [p5](1)σKL[p6](u)σg0 [p1,p2](0)〉, (6.3)

where a momentum pi is now some weight vector ±eA. The computation of (6.3) for general values of p was
performed in the previous Section and the answer is given by eq.(5.11). Recall that the structure constant (5.24)
occuring in the OPE of twist fields was found up to a phase that may depend on eA.

Some comments are in order. It follows from (5.19) that the basic OPE’s of the spin twist fields SIJ and
Sg0 in the bosonized form looks as

SA
n0N (u)SBC

g0
(0) =

C
gn0N g0

n0N,g0
(eA, eB, eC)

u
1
2+∆g0 [eB ,eC ]−∆gn0N g0 [eA+eB+eC ]

σgn0N g0 [e
A + eB + eC ](0) (6.4)

+
C

g0gn0N

n0N,g0
(eA, eB, eC)

u
1
2+∆g0 [eB ,eC ]−∆gn0N g0 [eA+eB+eC ]

σg0gn0N
[eA + eB + eC ](0) + · · · ,

and

SA
n0N (u)SB̄C

g0
(0) =

C
gn0N g0

n0N,g0
(eA,−eB, eC)

u
1
2+∆g0 [eB ,eC ]−∆gn0N g0 [eA−eB+eC ]

σgn0N g0 [e
A − eB + eC ](0) (6.5)

+
C

g0gn0N

n0N,g0
(eA,−eB, eC)

u
1
2+∆g0 [eB ,eC ]−∆gn0N g0 [eA−eB+eC ]

σg0gn0N
[eA − eB + eC ](0) + · · · ,
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Here the conformal dimension of σg0gn0N
[eA ± eB + eC ] is given by

∆gn0N g0 [e
A ± eB + eC ] =

N

6
+

1

3N
+

(eA ± eB + eC)2 − 1

2N
.

Obviously, the norm of the vectors e+ = eA + eB + eC and e− = eA − eB + eC can be equal to 3, 5, 9 and
to 1, 3, 5 respectively. When (e−)2 = 1 the field σ[e−] naturally corresponds to the spin twist field S−. The
appearence in (6.4), (6.5) the bosonic twist fields carrying integral momenta with non-identity norms implies
the existence of new spin twist fields whose bosonic realizations (up to cocycles) are given by σgn0N g0 [e

±]. The
origin of these fields becomes clear if one considers excited states of a given twisted sector.

To discuss the excited states it is convenient to use another basis for fermion fields ψI :

ψa
I (z) =

1√
n

n∑

J=1

e−
2πi
n

IJθa
J (z) =

∑

m∈Z

θa
nm−Iz

I
n
−m− 1

2

with the twisting property ψa
I (e2πiz) = −e 2πi

n
Iψa

I (z).
By applying the operators ψa

I to the vacuum state |Σµ̇〉 of a twisted sector (n) one obtains the excited states
(ψa

I Σµ̇)(0) = θa
−I |Σµ̇〉:

ψa
I (z)|Σµ̇〉 =

1

z
1
2−

I
n

θa
−I |Σµ̇〉 + reg.

The conformal dimension of the corresponding primary fields ψa
I Σµ̇ is ∆[ψIΣ] = n

6 + 1
3n + I

n . In the same manner
one can introduce primary fields ψa1

I1
· · ·ψak

Ik
Σµ̇ corresponding to more general excited states of a twisted sector.

If Is + Ip 6= n for any s and p, then their conformal dimensions are given by

∆[ψI1 · · ·ψIk
Σ] =

n

6
+

1

3n
+
I1 + · · · + Ik

n
. (6.6)

Let us now consider the OPE of the Z2-twist field Σi with the twist field Σjk corresponding to an element
g0. The product ΣiΣjk transforms as the tensor product of three 8v representations of SO(8) and, therefore, it
can be decomposed in a set of irreducible representations, each of them realized by excited fields of a twisted
sector. Thus, schematically, the first few terms of the OPE required by the SO(8) symmetry read as

Σi(u) · Σjk(0) = δijΣk + δijγk
aȧψ

a
I Σȧ + γij

abγ
k
bȧψ

a
I Σȧ + δijγkm

ab ψ
a
Iψ

b
JΣm + γij

abψ
a
Iψ

b
JΣk (6.7)

+ δijγkm
ab γ

m
cċψ

a
Iψ

b
Jψ

c
MΣċ + γij

abγ
k
cċψ

a
Iψ

b
Jψ

c
MΣċ + δijγkm

ab γ
mp
cd ψ

a
Iψ

b
Jψ

c
Mψd

NΣp

+ γij
abγ

kp
cdψ

a
Iψ

b
Jψ

c
Mψd

NΣp + γip
abγ

jp
cdψ

a
Iψ

b
Jψ

c
Mψd

NΣk + cycl. perm. (i, j, k) + . . . .

For the sake of simplicity we omitted here the SO(8) index independent structure constants standing by each
summond on the r.h.s., as well as the u-dependence. Note that in (6.7) we can take into account only nonzero
indices I, J,M,N since the action of ψ0 on a vacuum state does not produce a new excited field and, therefore,
does not disturb the form of the OPE.

Comparing ∆gn0N g0 [e
±] with (6.6) one can relate the norm of the vectors e± with the numbers Is of excited

states in the twisted sector (N):

I1 + · · · + Ik =
(e±)2 − 1

2
= {0, 1, 2, 4}, (6.8)

where on the r.h.s. all possible values of the sum I1 + · · · + Ik are indicated.
Under the SU(4)×U(1) group the γ-matrices γij are decomposed into the matrices γAB, γAB̄ and γĀB̄. A

simple analysis shows that in the SU(4) × U(1) basis the invariant OPE (6.7) acquires a form

SA
n0N (u)SBC

g0
(0) =

c3
u∆2

γAB
ab γC

bḃ
ψa

1Σḃ (6.9)

+
1

u∆3

(

c
(1)
5 γAB

ab ψa
1ψ

b
1S

C + c
(2)
5 γAC

ab ψa
1ψ

b
1S

B + c
(3)
5 γCB

ab ψa
1ψ

b
1S

A
)

+
c9
u∆4

γAs
[abγ

As
cd]ψ

a
1ψ

b
1ψ

c
1ψ

d
1S

A

SA
n0N (u)SB̄C

g0
(0) =

1

u∆1

(

c
(1)
1 δABSC + c

(3)
1 δBCSA

)

+
c3
u∆2

γAB̄
ab γC

bḃ
ψa

1Σḃ +
c5
u∆3

γAB̄
ab ψa

1ψ
b
1S

A, (6.10)
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where the coefficients ∆1, . . . ,∆4 are defined by the conformal symmetry and at the moment are unessential.
On the r.h.s. of eqs.(6.9) and (6.10) we have indicated only the leading singular terms of the OPE’s. Now

it is readily seen that they are in one to one correspondence with bosonic fields σ[e+] arising on the r.h.s. of
(6.4). Consider, for instance, eq.(6.9). Due to the facts that γAB = −γBA and γA(γA)T = 0 for any A, the

first term in (6.9) is nonzero only if A 6= B 6= C. Then, according to (6.8), the operators γAB
ab γC

bḃ
ψa

1Σḃ can be

identified with the fields σ[e+] with (e+)2 = 3. Next, when, e.g., A = B 6= C, the first nonzero term stands
by the singularity 1

u∆3
and, therefore admits the identification with σ[e+] with (e+)2 = 5. The last term in

(6.9) becomes involved in the case A = B = C and the corresponding operators can be regarded as σ[e+] with
(e+)2 = 9. The same situation takes place for (6.10), where the three singular terms correspond to σ[e−] with
(e−)2 = 1, 3, 5. Thus, the structure constants in (6.4) and (6.5) correspond to the ones in (6.9) and (6.10).

7 Normalization of four-point correlation functions

In this section we combine the results obtained in the two previous Sections and calculate the normalization
constant occuring in the product of bosonic and fermionic correlation functions:

G(u) = Gb(u)Gf (u) = 〈σg∞ [k3/2,k4/2](∞)σIJ (1)σKL(u)σg0 [k1/2,k2/2](0)〉 (7.1)

× 〈σg∞ [p3,p4](∞)σ[p5]IJ(1)σ[p6]KL(u)σg0 [p1,p2](0)〉,

where each pi coincides with some ±eA. According to (5.11), one gets for G(u):

G(u) = C(g0, g∞)R4
xd0(x− 1)d1

(

x+ n0

N−n0

)d2
(

x− N−n0−n∞
N−n0

)d3
(

x− n0

n0−n∞

)d4

u((x− α1)(x − α2))d5
. (7.2)

Here the coefficients di are given by

d0 = 1 +
1

4
k1k4 + p1p4 + p6p1 + p6p4, d1 = 1 +

1

4
k3k4 + p6p3 + p6p4 + p3p4,

d2 = 1 +
1

4
k1k2 + p1p2 + p6p1 + p6p2, d3 = 1 +

1

4
k2k3 + p6p2 + p6p3 + p2p3,

d4 = 1 +
1

4
k1k3 + p6p1 + p6p3 + p1p3, d5 = 1 − p5p6,

where kikj = kikj − 1
2k

+
i k

−
j − 1

2k
−
i k

+
j .

The normalization constant C(g0, g∞) can be determined by factorizing G(u) in the limit u → 0 on three-
point functions. According to eq.(5.5), u→ 0 in the following three cases

I) x→ − n0

N − n0
; II) x→ ∞; III) x→ N − n0 − n∞

N − n0

and, conversely, any root xM = xM (u) of eq.(5.5) tends to one of these values when u → 0. Evidently, these
three possible asymptotics correspond to three different choices of the indices K and L in eq.(4.12).

Let us begin with the case K = n0, L = N . By using the OPE (5.19) and the normalization (3.15) of
two-point correlation functions, one gets in the limit u→ 0

G(u) → R4C(n0,k1,p1;N − n0,k2,p2;p6)
∗

C (n∞,k3,p3;N − n∞,k4,p4;p5)

u1−
d2
N

, (7.3)

where we have taken into account that

∆b
g0

[k1,k2] + ∆f
g0

[p1,p2] − ∆b
gn0N g0

[k1 + k2] − ∆f
gn0N g0

[p1 + p2 + p6] = − 1

N
d2,

Here C(n0,k1,p1;N − n0,k2,p2;p) denotes the product of the bosonic and fermionic structure constants

C(n0,k1,p1;N − n0,k2,p2;p) = C(n0,k1/2;N − n0,k2/2; 0)C(n0,p1;N − n0,p2;p).
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Due to (5.24) the modulus of this structure constant is equal to

|C(n0,k1,p1;N − n0,k2,p2;p)| = 2−
3
2
(N − n0)

n0−N

N
d2+pp2n

−
n0
N

d2+pp1

0

N1−d2+p(p1+p2)
,

where

d2 ≡ d2(n0,k1,p1;N − n0,k2,p2;p) = 1 +
1

4

(

k1k2 −
N − n0

2n0
k2

1 −
n0

2(N − n0)
k2

2

)

+
N − n0

2n0
(1 − p2

1) +
n0

2(N − n0)
(1 − p2

2) + p1p2 + pp1 + pp2.

The root x(u) has the following behaviour in the vicinity of u = 0

|x+
n0

N − n0
| → Nn

N−n0
N

0 n
−n∞

N
∞ (N − n0)

n0−2N

N (N − n∞)
n∞
N |u| 1

N . (7.4)

By using eqs.(7.2) and (7.4), one can easily find

G(u) → e iϕC(g0, g∞)

u1−
d2
N

n
d0+d4+

N−n0
N

d2−1+p5p6

0 Nd1+d2−1+p5p6(N − n∞)d2+d3+d4−
N−n∞

N
d2−1+p5p6

n
n∞
N

d2
∞ (N − n0)d0+d1+d3+d4+

2N−n0
N

d2−2+2p5p6(n∞ − n0)d4−1+p5p6

, (7.5)

where the phase multiplier e iϕ depending, in particular, on a phase behaviour of the root x(u) remains to be
undetermined.
Comparing eqs.(7.3) and (7.5), one obtains the modulus of the normalization constant:

|C(g0, g∞)| = 2−3n
p1p5

0 n
p3p5
∞ (N − n∞)p4p6(n∞ − n0)

1
4k1k3+p1p6+p3p6+p1p3+p5p6

(N − n0)1+
1
4k1k3+p1p5+p3p5+p1p3−p2p6

. (7.6)

Thus, we have found the normalization constant up to a phase for N correlation functions which are presented
in the first and second terms of eq.(4.12).

Let us now determine the normalization constant for n∞ − n0 correlation functions of the form
〈Vg∞(J)Vn0JVn∞NVg0〉. By using the OPE (5.27) and eq.(5.28), one finds in the limit u→ 0

G(u) → R4
∗

C (n∞ − n0,k1 + k3,p1 + p5 + p3;N − n∞,k4,p4;p6)

u1− 1
n∞−n0

(1+ 1
4k1k3+p1p3+p3p5+p1p5)

×

× C(n∞ − n0,−k1 − k3,−p1 − p5 − p3;n0,k1,p1;p5).

Taking into account the behaviour of the root x(u) in the vicinity of u = 0

|x| →
(

(n∞ − n0)
n0−n∞

nn∞
∞

nn0
0

(
N − n0

N − n∞

)N−n∞
) 1

n∞−n0

|u| 1
n0−n∞ ,

one obtains from eq.(7.2)

G(u) → R4C(g0, g∞)

u
1− 1

n∞−n0
(1+ 1

4k1k3+p1p3+p3p5+p1p5)

×
(

(n∞ − n0)
n0−n∞

nn∞
∞

nn0
0

(
N − n0

N − n∞

)N−n∞
)−

1+ 1
4
k1k3+p1p3+p3p5+p1p5

n∞−n0

,

where we have used the relation

d0 + d1 + d2 + d3 + d4 + 2d5 = −
(

1 +
1

4
k1k3 + p1p3 + p1p5 + p3p5

)

.
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Now to find the normalization constant one should take into account the following identities:

d2(n∞ − n0,k1 + k3,p1 + p3 + p5;N − n∞,k4,p4;p6) = − N − n0

n∞ − n0
(1 +

1

4
k1k3 + p1p3 + p1p5 + p2p5)

d2(n∞ − n0,−k1 − k3,−p1 − p3 − p5;n0,k1,p1;p5) = − n∞

n∞ − n0
(1 +

1

4
k1k3 + p1p3 + p1p5 + p2p5)

By using these formulae one can establish that the modulus of the normalization constant is again given by
(7.6).

The normalization constant for the remaining N − n0 − n∞ correlation functions of the form

〈Vg∞(J)Vn0JVn0+n∞,NVg0〉

can be found in the same manner and is again defined by eq.(7.6).
Now we are ready to establish relative signs of the normalization constants corresponding to different values

of p’s. Note that the SO(8) invariance of the model dictates the form of the correlation function

Gi1i2i3i4i5i6
IJKL (u) = 〈V i3i4

g∞
[k3,k4](∞)V i5

IJ (1)V i6
KL(u)V i1i2

g0
[k1,k2](0)〉,

where we have used the notation V i1i2
g0

[k1,k2] =
(
σ[k1/2,k2/2]Σi1i2

)

g0
.

Namely, this correlation function is decomposed into SO(8) invariant rank six tensors:

Gi1i2i3i4i5i6(u) = C1(u)δ
i1i2δi3i4δi5i6 + C2(u)δ

i1i2δi3i6δi4i5 + · · · .

Here the total number of terms is equal to 15. In fact, each function Ci(u) coincides up to a phase with the
correlation function (7.1) under a particular choice of p’s. For example, by using the SU(4) × U(1) basis, the
functions C1(u) and C2(u) can be schematically expressed as

C1(u) = 〈σSBB̄σSCσSC̄σSAĀ〉 ∼ 〈σ[eB ,−eB]σ[eC ]σ[−eC ]σ[eA,−eA]〉 (7.7)

C2(u) = 〈σSBC̄σSCσSB̄σSAĀ〉 ∼ 〈σ[eB ,−eC ]σ[eC ]σ[−eB]σ[eA,−eA]〉,

where one has to choose all the vectors eA, eB and eC to be different. On the other hand, if C = B, then one
can recognize that

C1(u) + C2(u) = 〈σSBB̄σSBσSB̄σSAĀ〉 ∼ 〈σ[eB ,−eB]σ[eB ]σ[−eB]σ[eA,−eA]〉.

Since we know all three correlation functions up to phases we get a nontrivial relation on C1(u) and C2(u)
allowing one to determine their relative sign. Namely, from (7.2) with the account of the found normalization
constants (7.6) one obtains

C1(u) ∼
e iϕ1

(n∞ − n0)(x − 1)(x+ n0

N−n0
)(x− α1)(x− α2)

,

C2(u) ∼ − e iϕ2

(n∞ − n0)(x− 1)(x+ n0

N−n0
)(x − N−n0−n∞

N−n0
)(x − n0

n0−n∞
)
,

C1(u) + C2(u) ∼
e iϕ3(N − n∞)n∞x

(N − n0)(n∞ − n0)2(x− 1)(x+ n0

N−n0
)(x− N−n0−n∞

N−n0
)(x − n0

n0−n∞
)(x− α1)(x − α2)

,

where a common multiplier coming in all three functions is omitted.
Now it can be readily seen that the last equation is satisfied only if ϕ1 = ϕ2 = ϕ3 = ϕ. Proceeding in

the same manner we fix the relative signs of all 15 functions Ci. The final answer for the correlation function
Gi1i2i3i4ij

IJKL (u) reads as

Gi1i2i3i4ij
IJKL (u) = − e iϕ R4

8(N − n0)

(
n∞ − n0

N − n0

) 1
4k1k3

(7.8)

×
(x− n0

n0−n∞
)3

u(x− α1)(x − α2)

(

x(x − N−n0−n∞
N−n0

)

(x− n0

n0−n∞
)

)1+ 1
4k1k4

(

(x− 1)(x+ n0

N−n0
)

(x− n0

n0−n∞
)

)1+ 1
4k3k4

T i1i2i3i4ij
IJKL (u),

27



where

T i1i2i3i4ij
IJKL (u) =

=
δij

(n0 − n∞)(x− α1)(x− α2)

(

δi1i2δi3i4

(x− 1)(x+ n0

N−n0
)
− δi1i4δi2i3

x(x − N−n0−n∞
N−n0

)
− N − n0

(n0 − n∞)

δi1i3δi2i4

(x − n0

n0−n∞
)

)

+
δi3i4

(x− 1)(x+ n0

N−n0
)

(

δii1δji2

n0(x− N−n0−n∞
N−n0

)
− δii2δji1

(n0 − n∞)x(x − n0

n0−n∞
)

)

+
δi1i2

(x− 1)(x+ n0

N−n0
)

(

N − n0

n∞(N − n∞)

δii3δji4

x
− δii4δji3

(n0 − n∞)(x− N−n0−n∞
N−n0

)(x− n0

n0−n∞
)

)

+
δi2i3

x(x− N−n0−n∞
N−n0

)

(

δii4δji1

(n0 − n∞)(x+ n0

N−n0
)(x − n0

n0−n∞
)
− N − n0

n0(N − n∞)

δii1δji4

(x − 1)

)

+
δi2i4

(x− n0

n0−n∞
)

(

N − n0

n0(n0 − n∞)

δii1δji3

(x− 1)(x− N−n0−n∞
N−n0

)
− N − n0

n∞(n0 − n∞)

δii3δji1

x(x+ n0

N−n0
)

)

+
δi1i4

x(x− N−n0−n∞
N−n0

)

(

δii2δji3

(n0 − n∞)(x− 1)(x− n0

n0−n∞
)
− δii3δji2

n∞(x+ n0

N−n0
)

)

+
δi1i3

(x− n0

n0−n∞
)

(

N − n0

(N − n∞)(n0 − n∞)

δii2δji4

x(x− 1)
− δii4δji2

(n0 − n∞)(x+ n0

N−n0
)(x − N−n0−n∞

N−n0
)

)

.

Certainly, the common phase ϕ remains to be undetermined and can depend on the indices I, J,K,L and
the momenta ki. However, we will see at a moment that this phase disappears if one takes into account the con-
tribution of the right-moving sector. By using the world-sheet parity symmetry combined with space reflection
(3.22) we get the following relation between the correlation functions of the holomorphic and antiholomorphic
sectors:

〈V i3i4
g∞

[k3,k4](∞)V i5
IJ (1)V i6

KL(u)V i1i2
g0

[k1,k2](0)〉∗

= 〈V̄ ĩ3 ĩ4
g−1
∞

[k̃3, k̃4](∞)V̄ ĩ5
IJ (1)V̄ ĩ6

KL(u)V̄ ĩ1 ĩ2
g−1
0

[k̃1, k̃2](0)〉∗

= u−2〈V̄ ĩ1 ĩ2
g0

[−k̃1,−k̃2](∞)V̄ ĩ6
KL(u−1)V̄ ĩ5

IJ (1)V̄ ĩ3 ĩ4
g∞

[−k̃3,−k̃4](0)〉
= 〈V̄ ĩ3 ĩ4

g∞
[−k̃3,−k̃4](∞)V̄ ĩ5

IJ (1)V̄ ĩ6
KL(u)V̄ ĩ1 ĩ2

g0
[−k̃1,−k̃2](0)〉

= 〈V̄ i3i4
g∞

[k3,k4](∞)V̄ i5
IJ (1)V̄ i6

KL(u)V̄ i1i2
g0

[k1,k2](0)〉,

and we recall that V i1i2
g0

[k1,k2] =
(
σ[k1/2,k2/2]Σi1i2

)

g0
and V̄ i1i2

g0
[k1,k2] =

(
σ̄[k1/2,k2/2]Σ̄i1i2

)

g0
. Here the

conjugation property (5.21) of V and the invariance of the correlation function (7.8) under the space reflection
were used. Thus, correlation functions of the anti-holomorphic sector are complex-conjugated to correlation
functions of the holomorphic one. Therefore, after combining these two sectors the phase ambiguity dissappears.

8 Scattering amplitude

The results obtained in the previous section allows one to determine a holomorphic contribution Gi1i2i3i4
IJKL (u) to

the correlation function (4.13)

Gi1i2i3i4
IJKL (u) = Gij

b (u)〈Σi3i4
g∞

(∞)Σi
IJ (1)Σj

KL(u)Σi1i2
g0

(0)〉 (8.1)

=
i

8

(
n∞n0(N − n∞)

(N − n0)

)1/2
x〈τiτj〉Gi1i2i3i4ij

IJKL (u)

(n∞ − n0)u1/2(x− α1)(x− α2)
.

Up to now we considered the correlation functions Gi1i2i3i4
IJKL (u) with |u| < 1. The correlation functions

Gi1i2i3i4
IJKL (u) with |u| > 1 can be calculated in the same way. In particular, the normalization constant in this
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case is derived by studying the limit u → ∞ and coincides with the previously found constant (7.6). We find
that Gi1i2i3i4

IJKL (u) with |u| < 1 is again given by eq.(8.1). The time-ordering, therefore, can be omitted, and

to complete the computation of the S-matrix element we have to integrate the product Gi1i2i3i4
IJKL (u)Ḡj1j2j3j4

IJKL (ū)
over the complex plane. With the account of eq.(7.8) and the equality

1

u

du

dx
=

(n0 − n∞)(x − α1)
2(x− α2)

2

x(x − 1)(x− N−n0−n∞
N−n0

)(x− n0

n0−n∞
)(x+ n0

N−n0
)

we find that the corresponding integral is given by

∫

d2u|u|Gi1i2i3i4
IJKL (u)Ḡj1j2j3j4

IJKL (ū) = κ
R8

212

n0n∞(N − n∞)

(N − n0)3

(
n∞ − n0

N − n0

) 1
2k1k3

(8.2)

×
∫

d2u

∣
∣
∣
∣

du

dx

∣
∣
∣
∣

−2
∣
∣
∣
∣
∣

x(x− N−n0−n∞
N−n0

)

(x− n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k1k4

∣
∣
∣
∣
∣

(x− 1)(x+ n0

N−n0
)

(x− n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k3k4

T i1i2i3i4
IJKL (u)T j1j2j3j4

IJKL (ū),

where we have introduced a concise notation

T i1i2i3i4
IJKL (u) = 〈τiτj〉T i1i2i3i4ij

IJKL (u).

There is an important subtlety originating from the non-abelian nature of the orbifold model that leads to
changing the overall normalization of (8.2) by some constant κ. Recall that our computation scheme relies on
independent computation of boson and fermion (holomorphic and antiholomorphic) contributions to the corre-
lation function (4.13), i.e. we regard the vertex operators as the tensor product of bosonic and fermionic, and
holomorphic, and antiholomorphic twist fields. However, as was mentioned above, the absence of such a decom-
position in the orbifold model has to be taken into account. A correct way of determining the normalization
constant for the correlation functions should be based on the OPE (3.1) of the vertex operators and involves the
knowledge of the corresponding structure constants. Namely, omitting all unessential details, the normalization
constant turns out to be proportional to the product of two structure constants: C(g0, g∞) ∼ ČČ, while Č are
obtained by considering an auxiliary correlation function 〈Vg−1

0
(∞)VIJ (1)VIJ(u)Vg0 (0)〉. It’s normalization is

found by studying the limit u→ 1 and does not appeal to the tensor product structure of the vertex operators.
In the limit u→ 0 one gets 〈Vg−1

0
(∞)VIJ (1)VIJ (u)Vg0(0)〉 → f

u∆ū∆̄ , where f is some constant, which due to (3.1)

is related with Č as f = 2Č2. Note that the multiplier 2 emerges namely due to the nonabelian character of the
orbifold. On the other hand, the constant f is expressed through the structure constants Cbh, Cfh and Cba, Cfa
7 found in the previous sections as f = 24C2

bhC
2
fhC

2
baC

2
fa, since each sector again provides the multiplier 2.

Thus, the structure constant Č is equal to the product Č = 23/2CbhCfhCbaCfa. Therefore, the constant κ is
found to be 23.

Coming back to eq.(8.2), we see that under the change of variables u→ x the integral acquires the form

∫

d2u|u|Gi1i2i3i4
IJKL (u)Ḡj1j2j3j4

IJKL (ū) =
R8

29

n0n∞(N − n∞)

(N − n0)3

(
n∞ − n0

N − n0

) 1
2k1k3

×
∫

VIJKL

d2x

∣
∣
∣
∣
∣

x(x − N−n0−n∞
N−n0

)

(x− n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k1k4

∣
∣
∣
∣
∣

(x − 1)(x+ n0

N−n0
)

(x − n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k3k4

T i1i2i3i4(x)T j1j2j3j4(x̄),

where we have taken into account that under this change of variables the u-sphere is mapped onto the domain
VIJKL.

Since the basic correlation function (4.6) is equal to the sum

F (u, ū) =
C0C∞

N !
2n0(N − n0)n∞(N − n∞)

∑

IJKL

Gi1i2i3i4
IJKL (u)Ḡj1j2j3j4

IJKL (ū)ζi1j1
1 ζi2j2

2 ζi3j3
3 ζi4j4

4 ,

7Here, e.g., Cbh refers to the structure constant (5.24) in the bosonic left-moving sector.
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where the summation goes over the set of indices listed in eq.(4.12), the integral
∫
d2u|u|F (u, ū) is equal to

∫

d2u|u|F (u, ū) =
R8

28

√

k+
1 k

+
2 k

+
3 k

+
4

(
n0n∞(N − n∞)

N(N − n0)

)2(
n∞ − n0

N − n0

) 1
2k1k3

(8.3)

×
∫

d2x

∣
∣
∣
∣
∣

x(x − N−n0−n∞
N−n0

)

(x − n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k1k4

∣
∣
∣
∣
∣

(x− 1)(x+ n0

N−n0
)

(x− n0

n0−n∞
)

∣
∣
∣
∣
∣

1
2k3k4

T i1i2i3i4(x)T j1j2j3j4(x̄)ζi1j1
1 ζi2j2

2 ζi3j3
3 ζi4j4

4 .

To discuss the Lorentz invariance of the theory, without loss of generality, we choose the polarization ζµν in
the form ζµζν . Recall that in ten dimensions a polarization of a graviton satisfies the transversality condition:
kµζ

µ = 0. In the light-cone gauge the polarization obeys ζ+ = 0 allowing to express the component ζ− via ζi

and kµ as ζ− = 2kiζi

k+ . In our model we only deal with eight transversal polarizations ζi and can treat the last
equation as a definition of the light-cone polarization ζ−. An important property of the light-cone gauge is that
ζi
1ζ

i
2 = ζµ

1 ζ
µ
2 ≡ (ζ1ζ2). Glearly, the integrand in (8.3) depends on scalar products of the transversal momenta

ki and polarizations ζi. It turns out that by using the light-cone momenta and polarizations k− and ζ− the
integrand can be written via scalar products of ten-dimensional vectors. Namely, it is enough to check this
assertion for the expressions 〈τiτi〉 and 〈τiτj〉ζi

aζ
j
b . We confine ourselves with considering 〈τiτj〉ζi

aζ
j
b . The result

easily follows from the fact that, e.g.,

(x+ n0

N−n0
)

n0
ki
1ζ

i
a +

(x− N−n0−n∞
N−n0

)

n∞
ki
3ζ

i
a +

1

N − n0
ki
4ζ

i
a

=
(x+ n0

N−n0
)

n0
(k1ζa) +

(x− N−n0−n∞
N−n0

)

n∞
(k3ζa) +

1

N − n0
(k4ζa),

where the relation kiζi
a = (kζa) + 1

2k
+ζ−a was used.

To rewrite the integral (8.3) in the conventional form we perform the change of variables

n∞ − n0

N − n0
z =

x(x− N−n0−n∞
N−n0

)

x− n0

n0−n∞

, dz =
(x− α1)(x − α2)

n∞−n0

N−n0
(x − n0

n0−n∞
)2
.

Then, after simple but rather lengthy calculations, one arrives at the following result

∫

d2u|u|F (u, ū) =
R8

28N2

√

k+
1 k

+
2 k

+
3 k

+
4

∫

d2z |z| 12 k1k4−2 |1 − z| 12k3k4−2K(z, z̄, ζ),

Here we introduced a notation

K(z, z̄, ζ) = Ki1i2i3i4(z)Kj1j2j3j4(z̄)ζi1j1
1 ζi2j2

2 ζi3j3
3 ζi4j4

4 ,

where

Ki1i2i3i4(z)ζi1
1 ζ

i2
2 ζ

i3
3 ζ

i4
4 =

z(k3k4)(ζ1ζ3)(ζ2ζ4) − (k3k4)(ζ2ζ3)(ζ1ζ4) − (k1k4)(ζ1ζ2)(ζ3ζ4)

+(1 − z) [(ζ1k4)(ζ3k2)(ζ2ζ4) + (ζ2k3)(ζ4k1)(ζ1ζ3) + (ζ1k3)(ζ4k2)(ζ2ζ3) + (ζ2k4)(ζ3k1)(ζ1ζ4)]

+z [(ζ2k1)(ζ4k3)(ζ3ζ1) + (ζ3k4)(ζ1k2)(ζ2ζ4) + (ζ2k4)(ζ1k3)(ζ3ζ4) + (ζ3k1)(ζ4k2)(ζ1ζ2)]

− [(ζ1k2)(ζ4k3)(ζ3ζ2) + (ζ3k4)(ζ2k1)(ζ1ζ4) + (ζ1k4)(ζ2k3)(ζ3ζ4) + (ζ3k2)(ζ4k1)(ζ1ζ2)] .

Now one can recognize in K the standard open string kinematical factor for the four vector particle scattering.
The S-matrix element can be now found by using eq.(4.3) and by taking the limit R → ∞:

〈f |S|i〉 = −iλ
2Nδm1+m2+m3+m4,0δ(

∑

i k
−
i )δD(

∑

i ki)
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√

k+
1 k

+
2 k

+
3 k

+
4

∫

d2z |z| 12k1k4−2 |1 − z| 12 k3k4−2K(z, z̄, ζ), (8.4)
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where we have restored δ-functions responsible for the momentum conservation law and have represented the
light-cone momenta k+

i as k+
i = mi

N .

In the limit N → ∞ the combination Nδm1+m2+m3+m4,0 goes to δ(
∑

i k
+
i ) and eq.(8.4) acquires the form

〈f |S|i〉 = −i λ
2δD+2(

∑

i k
µ
i )

28

√

k+
1 k

+
2 k

+
3 k

+
4

∫

d2z |z| 12k1k4−2 |1 − z| 12k3k4−2
K(z, z̄, ζ).

Taking into account that the scattering amplitude A is related to the S-matrix element as follows (see e.g. [18])

〈f |S|i〉 = −i δ
D+2(

∑

i k
µ
i )

√

k+
1 k

+
2 k

+
3 k

+
4

A(1, 2, 3, 4),

one finally gets

A(1, 2, 3, 4) = λ22−8

∫

d2z |z| 12k1k4−2 |1 − z| 12k3k4−2
K(z, z̄, ζ)

that is the well-known four graviton scattering amplitude.

9 Conclusion

In this paper we developed the technique for calculating scattering amplitudes of type II string states by using
the interacting SNR8 orbifold sigma model. Although we considered only the four graviton scattering, our
results allow one to find immediately the scattering amplitudes of any four particles. Let us stress that in our
calculation we did not impose any kinematical restrictions on momenta and polarizations of gravitons and, hence,
automatically obtained the Lorentz-invariant amplitude. It gives a strong evidence that the two-dimensional
Yang-Mills model should possess the same invariance in the large N limit.

An interesting problem is to consider the scattering amplitudes of the heterotic string states. Recall that
an important point of our construction was the cancellation of phases coming both from the left- and the right-
moving sectors. The world-sheet parity transformations combined with an odd number of space reflections are
the symmetry of the type IIA string theory responsible for this cancellation. A symmetry of the heterotic string
theory that may be responsible for such a cancellation is unknown.

It would be of interest to trace the appearance of the loop amplitudes in the framework of the orbifold
sigma model. Obviously, the one-loop amplitude requires the computation of the correlation function of four
DVV interaction vertices sandwiched between the asymptotic states, which technically results in constructing
the non-commutative Green functions in the presence of six twist fields. We note that cancellation of possible
divergences in the amplitude may require the further perturbation of the CFT action by higher-order contact
terms.

Although the string scattering amplitudes follow from the orbifold model description, the problem of a great
interest is to reproduce the amplitudes directly from the SYM theory.
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Appendix A

We use the following representation of γ-matrices satisfying the relation

γi(γj)T + γj(γi)T = 2δijI

γ1 =

(
1 0
0 1

)

⊗
(

0 1
1 0

)

⊗
(

0 1
−1 0

)

γ2 =

(
0 1

−1 0

)

⊗
(

0 1
−1 0

)

⊗
(

0 1
−1 0

)

γ3 = 1 γ4 =

(
0 1

−1 0

)

⊗
(

1 0
0 1

)

⊗
(

1 0
0 −1

)

γ5 =

(
1 0
0 1

)

⊗
(

1 0
0 −1

)

⊗
(

0 1
−1 0

)

γ6 = −
(

0 1
−1 0

)

⊗
(

1 0
0 1

)

⊗
(

0 1
1 0

)

γ7 =

(
1 0
0 −1

)

⊗
(

0 1
−1 0

)

⊗
(

1 0
0 1

)

γ8 =

(
0 1
1 0

)

⊗
(

0 1
−1 0

)

⊗
(

1 0
0 1

)

.
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Consider the spinor representation 8s of the SO(8). In this representation the algebra generators Rij can be
realized as

Rij =
1

4
θaγij

abθ
b.

Here γij = 1
2 (γi(γj)T − γj(γi)T ).

According to our definition of the fermions Θ:

ΘA =
θA + iθA+4

√
2

, ΘĀ =
θA − iθA+4

√
2

,

where A = 1, . . . , 4, we get for Rij :

Rij =
1

4
(ΘASij

ABΘB + ΘĀS̄ij
ABΘB̄ + ΘĀT̄ ij

ABΘB + ΘAT ij
ABΘB̄,

where

T ij
AB =

1

2
(γij

AB + iγij
A B+4 − iγij

A+4 B + γij
A+4 B+4)

and

Sij
AB =

1

2
(γij

AB − iγij
A B+4 − iγij

A+4 B − γij
A+4 B+4).

The four Cartan generators of SO(8) are given by R2i−1 2i. Define the SU(4) × U(1) generators acting on
ΘAs’:

J ij = − i

2
ΘAT ij

ABΘB̄.

Then the Cartan generators H1, H2, H3 of SU(4) and the generator H4 of U(1) are given by

H1 = J12, H2 = J34, H3 = J56, H4 = J78.

Since

T 12 = i







−1
−1

1
1







T 34 = i







−1
1

−1
1







T 56 = i







1
−1

−1
1







T 78 = iI

the weights of the representation 41/2 look as

q1 =
1

2
(−1,−1, 1, 1); q3 =

1

2
(1,−1,−1, 1);

q2 =
1

2
(−1, 1,−1,−1); q4 =

1

2
(1, 1, 1, 1); (A.1)

Bosonizing the Cartan generators with the help of four bosonic fields φA as HA = i∂φA we get the following
expression for fermions

ΘA = eiqA
BφB

.

Appendix B

In this Appendix we consider some properties of the map (5.4) and outline the derivation of the differential
equation (5.9) for the four-point correlation functions (4.13).

Let us consider the map (5.4)

z =
tn0(t− t0)

N−n0

(t− t∞)N−n∞

(t1 − t∞)N−n∞

tn0
1 (t1 − t0)N−n0

≡ u(t). (B.1)
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This map is the N -fold covering of the z-sphere by the t-sphere. Obviously, it branches at the points t = 0, t0, t∞
and ∞. To find other branch points we have to solve the following equation:

d log z

dt
=

n0

t
+
N − n0

t− t0
− N − n∞

t− t∞

=
n∞t

2 + ((N − n0 − n∞)t0 −Nt∞) t+ n0t0t∞
t(t− t0)(t− t∞)

. (B.2)

In general there are two different solutions t1 and t2 of this equation, and the map (B.1) has the following form
in the vicinity of these points

z − zi ∼ (t− ti)
2, z1 = 1 = u(t1), z2 = u = u(t2).

Due to the projective transformations, we can impose three relations on positions of branch points. However,
we have already chosen the points 0 and ∞ as two branch points, therefore, only one relation remains to be
imposed. Since the differential equation on the four-point correlation function is written with respect to the
point u, it is convinient not to fix the position of the point t2 ≡ x. Then, the remaining relation that leads to
the rational dependence of points t0, t∞ and t1 on x looks as follows

t0 = x− 1. (B.3)

The point x is supposed to be a solution of eq.(B.2). Therefore, one can immediately derive from eqs.(B.2) and
(B.3) that t∞ is expressed through the point x as

t∞ = x− (N − n∞)x

(N − n0)x+ n0
. (B.4)

The second solution of eq.(B.2) can be now easily found and is given by

t1 =
N − n0 − n∞

n∞
+
n0x

n∞
− N(N − n∞)x

n∞((N − n0)x + n0)

=
n0(x− 1) ((N − n0)x+ n0 + n∞ −N)

n∞ ((N − n0)x + n0)
. (B.5)

The rational function u(x) is defined by the following equation

u(x) =
xn0(x− t0)

N−n0(t1 − t∞)N−n∞

(x− t∞)N−n∞tn0
1 (t1 − t0)N−n0

. (B.6)

By using eqs.(B.3),(B.4) and (B.5), one can derive the following relations

t1 − t0 =
(N − n0)(x− 1) ((n0 − n∞)x− n0)

n∞ ((N − n0)x+ n0)
,

t1 − t∞ =
((n0 − n∞)x− n0) ((N − n0)x+ n0 + n∞ −N)

n∞ ((N − n0)x+ n0)
.

Then the rational function u(x) is found to be equal to

u = u(x) = (n0 − n∞)n0−n∞
nn∞
∞

nn0
0

(
N − n0

N − n∞

)N−n∞
(
x+ n0

N−n0

x− 1

)N

×
(

x− N−n0−n∞
N−n0

x

)N−n0−n∞ (

x− n0

n0 − n∞

)n0−n∞

. (B.7)

To obtain the differential equation (5.9) we need to know the decomposition of the roots tK(z) and tL(z) in the
vicinity of z = u. Let us take the logarithm of the both sides of eq.(B.1):

log
z

u
= n0 log

t

x
+ (N − n0) log

t− t0
x− t0

− (N − n∞) log
t− t∞
x− t∞

. (B.8)
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Decomposition of the l.h.s. of eq.(B.8) around z = u and the r.h.s. of eq.(B.8) around t = x gives:

∞∑

k=1

(−1)k+1

k

(
z − u

u

)k

= (t− x)2
∞∑

k=0

ak(t− x)k, (B.9)

where the coefficients ak are equal to

ak =
(−1)k−1

k + 2

(
n0

xk+2
+

N − n0

(x− t0)k+2
− N − n∞

(x− t∞)k+2

)

. (B.10)

It is clear from eq.(B.9) that t(z) has the following decomposition

t− x =

∞∑

k=1

ck(z − u)
k
2 . (B.11)

Substituting eq.(B.11) into eq.(B.9), one finds

c21 =
1

ua0
, c2 = − a1

2ua0
,

2a0c1c3 = − 1

2u2
+

5a2
1

4u2a3
0

− a2

u2a2
0

. (B.12)

Next coefficients are not important for us.
Then, by using the decomposition (B.11) and eq.(B.12), one gets

(
t′′

t′

)′

=
1

2(z − u)2
+O(1),

(
t′′

t′

)2

=
1

4(z − u)2
+

3

z − u

(
c22
c21

− c3
c1

)

+O(1),

c22
c21

− c3
c1

=
1

4u

(

1 +
2a2

a2
0

− 3a2
1

2a3
0

)

.

Finally, taking into account that in the set of N roots tM (z) only two roots tK(z) and tL(z) have the decom-
position (B.11), we obtain eqs.(5.7) and (5.8).

The coefficients ak can be rewritten as the following functions of x:

a0 =
n0(n0 + n∞ −N)

2(N − n∞)x2
+
n0(N − n0)

(N − n∞)x
+

(N − n0)(n∞ − n0)

2(N − n∞)

=
(N − n0)(n∞ − n0)

2(N − n∞)x2
(x− α1)(x − α2), (B.13)

a1 =
n0((N − n∞)2 − n2

0)

3(N − n∞)2x3
− n2

0(N − n0)

(N − n∞)2x2

− n0(N − n0)
2

(N − n∞)2x
+

(N − n0)((N − n∞)2 − (N − n0)
2)

3(N − n∞)2
,

a2 = −n0((N − n∞)3 − n3
0)

4(N − n∞)3x4
+

n3
0(N − n0)

(N − n∞)3x3
+

3n2
0(N − n0)

2

2(N − n∞)3x2

+
n0(N − n0)

3

(N − n∞)3x
− (N − n0)((N − n∞)3 − (N − n0)

3)

4(N − n∞)3
.

To obtain the differential equation (5.9) we have to use the following important equalities on 1
u

du
dx , that can be

derived by using eqs.(B.7) and (B.13)

1

u

du

dx
=

n0 + n∞ −N

x
− N

x− 1
+

N

x+ n0

N−n0
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+
N − n0 − n∞

x− N−n0−n∞
N−n0

+
n0 − n∞

x− n0

n0−n∞

,

1

u

du

dx
=

4(N − n∞)2x4a2
0

(N − n0)2(n0 − n∞)x(x − 1)(x− N−n0−n∞
N−n0

)(x − n0

n0−n∞
)(x+ n0

N−n0
)

=
(n0 − n∞)(x− α1)

2(x− α2)
2

x(x− 1)(x− N−n0−n∞
N−n0

)(x− n0

n0−n∞
)(x + n0

N−n0
)
.

Finally, to get eq.(5.9) one should use the Lagrange interpolation formula for the ratio of two polynomials

P (x)

Q(x)
=
∑

i

P (xi)

Q′(xi)

1

x− xi
,

where xi are the simple roots of Q(x) and degP < degQ.
These equalities drastically simplify the derivation of eq.(5.9).
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