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The SVR® supersymmetric orbifold sigma model is expected to describe the Infrared limit of the matrix
string theory. In the framework of the model the type IlA string interaction is governed by a vertex which was
recently proposed by Dijkgraaf, Verlinde, and Verlinde. By using this interaction vertex, we derive all four
particle scattering amplitudes directly from the orbifold model in the I&tdinit. [S0556-282(199)00818-9

PACS numbegps): 11.25.Hf

I. INTRODUCTION bifold sigma model. The fact that the orbifold model is non-
Abelian comes as no surprise, since in the IR limit, the origi-
To provide a heuristic basis for understanding variousal gauge symmetry groug(N) reduces to the permutation
phenomena arising in superstrings, it was suggested thatroupSy. Furthermore, if8] it was proposed that the string
there exists a fundamental nonperturbative quantum theoripteraction in the orbifold sigma model is governed by a

in eleven dimensions, called M theory. The appropriate comsynersymmetric vertex of conformal dimensich ). This
pactification of M theory leads to one of the five superstringyertex describes the elementary process of joining and split-
theories anq, in p_artlcular, the compact.lflcatlon Snleads ting of strings and from the viewpoint of the gauge theory is
to the ten-dimensional type IlA superstring thepty2]. Al- responsible for partial restoring of thé(N) gauge symme-
though at present, we do not know how to formulate My in some small region of space-time. With the DVV inter-
theory as a quantum theory, it has been conjectiB¢that  4¢tion vertex at hand, one is tempted to deduce string scat-
there is a precise equivalence between the M theory and thging amplitudes directly from the orbifold sigma model. It
large N limit of the supersymmetric quantum matrix model g,41d be realized that this is a nontrivial problem due to the
which describes the dynamics of D earuo[@&. o non-Abelian nature of the orbifold. Nevertheless, the neces-
In the original D-particle languag&" compactification of - g1y tools for computing tree-level diagrams were recently
M theory amounts to applying a-duality transformation geyeloped if9,10]. In particular, the four-graviton scatter-
along theS! direction, thereby turning the D particles into D ing amplitudes for type 11A and IIB strings were calculated
strings. By adopting this approach, we can cast matrix theorgnd were shown to be Lorentz invariant in the laNjémit.
into the form of the two-dimensional/=8 maximally su- |t was also observed that the string kinematical factor exhib-
persymmetridJ (N) Yang-Mills (YM) theory[5]. According  ited manifest Lorentz invariance even at finkie
to the matrix theory philosophy, in the limiN—, the YM In this paper, we complete the proof of the DVV conjec-
theory should describe nonperturbative dynamics of type IlAure on the level of tree diagrams by explicitly calculating all
superstrings. This is a new type of nonperturbative dualityfour particle scattering amplitudes for type IIA superstrings
between a gauge theory and a string theory in which thejirectly from the SNR® supersymmetric orbifold sigma
string coupling constant is inversely proportional to the YM model and demonstrating their Lorentz and supersymmetry
coupling constantgy = a’g2 [6-8]. Thus, we expect that invariance. This provides a new consistency check on the
the strong coupling expansion of the YM model describesnatrix model conjecture. Furthermore, this is a new evidence
the perturbative type IIA free string theor\gd=0). Re-  of the hidden supersymmetry invariance of the matrix model
cently, it was conjectured by Dijkgraaf, Verlinde and Ver- and its existence is a necessary condition for the model to
linde (DVV) [8] that in the infraredIR) limit, the YM model  describe M theory.
reduces to theV'=8 non-AbelianSNR® supersymmetric or- We begin by reviewing the general formalism of the
SVR® supersymmetric orbifold sigma model developed in
[10]. We define theSy invariant vertex operators which cre-

*Email address: arut@genesis.mi.ras.ru ate all massless states of type IIA string theory and which
"Email address: frolov@bama.ua.edu form a closed operator algebra. Following the approach of
*Email address: alexey@mi.ras.ru [8], we describe the DVV interaction vertex which is both
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space-time supersymmetric agd)(8) invariant. Then, we ) _
construct theSmatrix to the second order in the coupling <f|5|'>“<f|f dx, A% T{Vin(X1) Vind(X2) }i)

constant by sandwiching two DVV vertices in-between the

asymptotic states corresponding to two incoming and tw . .

outgoing particles. As a result of this construction, we obtairﬁby using the reduction formula. Consequently, to compute

the expression for th&-matrix element as the sum over spe- S|Cfattesrt'2%§mﬂ.'$dgfé Vt\;]eef'éf;tgie% tt?]geﬂ'.rrﬂ'ri)sagigugf the
cific four-point correlation functions which we explicitly list (1)) whi ; ! P

at the end of Sec. IIC. The procedure for calculating theséS R O.rb'fOId sigma model. Regall that the Hilbert space of
correlation functions was outlined {10] and in Sec. IID, an orbifold model decomposes into the direct sum of Hilbert

we summarize the main results. The appropriate scatterin aces of twisted sectors corresponding to conjugacy classes

amplitude can then be obtained from Benatrix element by f the discrete group defining the orbifold. The conjugacy

making use of the reduction formula. Since the problem Oiclasses oy are described by partitiori,} of N and can

calculating scattering amplitudes is equivalent to that of cal-be represented by

culating all possible open string kinematical factors, it fol-
lows that to prove the DVV conjecture on the level of tree o Ne N N _ >

diagrams, we have to show that all kinematical factors ob- [g]=(1)"(2)"2---(8)", N_nz::l NNy, ©)
tained directly from the orbifold sigma model coincide with
those obtained in the framework of the superstring theory. . o : .
To this end, we first compute the open string kinematicalWhereNn is the mult|pI|C|_ty of the cyclic permu_tatlofn) of
factor corresponding to the scattering of two vector particle§' elements. In any conjugacy clapg], th_ere is only one
and two fermions. In the process of this calculation, we de£/€mentg. that has the canonical block-diagonal form
velop the necessary tools to deal with spinors and focus on .

the issue of the Lorentz invariance of the model. It turns out ~ 9e = diag (w1, ..., w1, Wy, ..., Wz, ... Ws, ... ,ws),

that the kinematical factor that we obtain is automatically Ny times Ny times N, times
Lorentz invariant and coincides with the well-known open

string kinematical factor of the superstring theory. We then

compute the remaining kinematical factors for all massles%\lherew is annx n matrix that generates the cvelic permu-
particles which make up the complete spectrum of IIA SU- b n el ts Si 9 tos th yclic p
pergravity and show that they also coincide with those of the ion(n) of n elements. Since, generates the grouf, , as

superstring theory. In conclusion, we discuss interesting" be eas-lly verified, the Hilbert Spathg =Hin, IS de-
problems that still remain open. composed into the gradéd,-fold symmetric tensor products

of Hilbert spacesH,, which areZ, invariant subspaces of
the Hilbert space:

Il. GENERAL FORMALISM

A. Free SNR® orbifold model <. s S
. . . H = S ”H n) = n e n N
The action that defines the fr&R8=(R®)N/S, orbifold {n} f§f () f§3 w
Ny times

sigma model is

N
1 : . ) )
— I I I I
S= wa deazl (afx'afx' IaXi95X, The fundamental fields corresponding to the sphgg are

_ _ 8n bosonic fieldsX| and 16 fermionic fields #* with the
+'§0|a(a7+ 2.) 6,a+|§6?(a,— 9,)6). o cyclic boundary condition
‘ X|(o+2m)=X|,1(0), O (oc+2m)=06] (o),
Here X' are eight real bosonic fields transforming in e
representation of the transversal gro8@(8) and 62,62 1=1,2,...n. (4
a,a=1,...,8 aresixteen fermionic fields transforming in
the 85 and8. representations, respectively. As pertains to allag ysual, states of the Hilbert spagg,, are obtained by
orbifold modelq 11,12, the fundamental fields' and¢* are  acting on momentum eigenstates with the string creation op-
allowed to have twisted boundary conditions: erators. Since the fundamental fields have twisted boundary
conditions, the string creation operators have nontrivial
X(oc+2m)=gX(0), 6% o+2m)=g6%o), (2) transformation properties under the action of the gréyp
However, the space((,, must beZ,, invariant and to ensure

where in the case of the"R? orbifold modelg e Sy, ';?s (_)ne has to impose the condition on the allowed states of
(n) -

In the conventional QFT, the scattering amplitude to the
second order in the coupling constant is extracted from the .
S'matrix element, schematically written as (Lo—Lo)|¥)y=nm|¥),
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wherem is some integer antly is the canonically normal- «, at the final stage of scattering amplitude calculation. Thus,

ized Lo-operator of a single long string obtained by gluing we define the vertex operatdfy(z,z) according to
together the fieldX, (o) (6,(o)) into one fieldX(a)(6(o)).

Before passing on to the construction of asymptotic states Vy(2,2)=04(2)2(2)0(2)34(2). (6)
corresponding td,, we note that according td 3], the _ _ _ _
Fock space of the second-quantized I1A type string is recovIo clarify the meaning of the holomorphidanti-
ered in the limitN—, n;/N—p;", where the finite ratio holomorphi¢ twist field 04(2)(04(2)), we decompose the
n; /N is identified with thep,” momentum of a long string. I fundamental fieldX(z,z) into the left- and right-moving
this limit, the Z, projection becomes the usual level- components:
matching conditionL{’ —L{=0 for closed strings, while _ _
the individualp;” light-cone momentum is defined by means 2X(z,2)=X(2) +X(2),

of the standard mass-shell conditipfip; =L . _ — — _
so that now we can definey(z) andoy(z) according to

B. Asymptotic states of SNR® X (z&™)0y(0)=gX(2)04(0)

We will consider the conformal field theof£FT) on the eX'(z€™)oy4-1(0)=9" X (2)o4-1(0)
sphere with coordinatesz(z) obtained from the cylinder and
with coordinates ,0) by performing the Wick rotationr
— —i7 followed by the mapz=¢e""?, z=¢""17. Xi(ze 2™ g4(0)=gX(2) y(0)

The asymptotic states of the orbifold CFT model are ob- — =i — o ——
tained by acting with th&y-invariant vertex operators on the =X(ze"")04(0)=g "X(2)74(0).
Nevell-Schwarz(NS) vacuum|0) which is normalized ac- o — .
cording to Now the formal substitutiorz—z leads to the conclusion

that the operatow is identical to the operatar,-1. For any
(0]0)=R®N. elementg e Sy with the decomposition

HereR is the radius of a circle onto which we compactify the g=(n(ny)---(Nn, ), )

string coordinates; in order to regularize the sigma model. _
The most natural way to buil8y-invariant vertex opera- We represen¥(z,z) as the tensor product of operators each
torsVq is to first introduce a vertex operatdy correspond- ~ corresponding to some cycle {):
ing to a particular group elemegtof Sy and then sum over _ N _
the conjugacy class af. This procedure can be represented Vy(2,2)=® MV y(2,2).
as follows: . o
The operator,a(n)(z,z)=o(p)(z)a(n)(z) is a prima.ry field
_ 1 _ [14] that creates the bosonic vacuum state of a twisted sector,
Vig(z.2)= NU hEES Vh-1g0(2,2). () Jabeled by f), at the point ¢,z). We denote this vacuum
N state by|(n))=0,(0,0)|0). Recall that zero modes of fun-
damental field9* form the Clifford algebra. Therefore, by
> VE! g 4 ' triality, the vacuum state can be chosen to be the direct sum
the twist fields of the orbifold mod_el—the fields about V\_/mch 8,®8,. Consequently, we define the primary spin fields of
the fundamental fields have twisted boundary conditions : i a .
Since the monodromy conditions of the bosonic fundamentatlhe hol9morph|c SeCtOE(“)(Z) " E(“)(-Z) which create t_he
fields X!(z,z) are given by Eq(4), we are led to the follow- fermionic vacuum state](n), u) =2 {;(0)|0), where

. . . P . =(i,a). Under the world-sheet paritz—z and the space
ing definition of the bosonic twist field(z,2): reglect)ionx3—>—x3, twist fields trgnsfgcl)% as foIIows:p

The vertex operatorvg(z,?) should be constructed from

X!(z€™,ze72™)04(0,00=gX(2,2)04(0,0). T2 T (D SE (D3R (D
Ir] exactly the same manner, we introduce the fermionic tW'StE'(n)(z)HE'(_n)(z), i£3: E?n)(Z)H_E?—n)( ), )
field 24(z,2).

In constructing the vertex operatdv’g(z,?), one is Where (—n) denotes the cycle with the reversed orientation
tempted to consider the tensor product of the bosonic twistorresponding to the elemeat, *. The third direction is
field o4(z,z) and the fermionic twist field 4(z,2). Although ~ Singled out, since in our conventions=1 (see Appendix
the non-Abelian nature of the orbifold sigma model does notd)- _
admit the factorization into bosonic and fermioimlomor- Finally, we introduce the primary fieldrg[{k,}](z,2)
phic and antiholomorphjccontributions, it was shown in corresponding to particles with transversal momekifa
[10] that this factorization can be assumed provided that on&uppose thag e Sy has the decompositiof¥) so that the
introduces a certain normalization constant, later denoted bipllowing factorization takes place
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s N _ i i i - i -
o4(2.2)= ®a5="1‘7(na)(z’ ), mvarlant_wnh respect to the world-sheet parrfy transforma
tion z—z and an odd number of space reflections.

thenoy[{k,}1(z,2) is defined by
C. S-matrix element

ool {ka1(z,2)= TLARCEINDS o4(2,2)= ®:‘2’10(na)[ka]1 With the account of Eq(12), the S-matrix element to the
second order in the coupling constants given by the for-
where ny=ny;=---=ny =1ny +1=NN+2= - =Ny +n, mula
=2,... and 1/AN\2
N, <f|S|i>:_§(E) <f|f dz,d%2,|zy||z,)|
Y (z,2)= > Xl(z,2) B -
Vn, =1 XT(Lil21.2) L2221, (13)

Combining the fermionic vacuum state with the vacuumyhereT means time-orderindz;|>|z,| and
state of the bosonic sector, we find 256 states that describe
the complete spectrum of type IIA supergravity. In particu-

lar, the state withk*=n/N, transversal momenturk and Eim(Z,Z)=;J Vis(z,2).
polarizationZ#” is generated from the NS vacuy) by the
vertex operatdr For the initial statdi), we choose the state corresponding

. . . to two incoming particles with transversal momeRtaand
Vinlk,1(z,2) = om k(22264 (D2 (2). (9 ky, polarizations;l and ¢,, and fOI.’ the fingl stat§f|—the

. . _ state corresponding to two outgoing particles with transver-
As was shown ir110], Sy-invariant vertex operators sal momenté, andk,, polarizations’; and,, respectively:

1 N .
Vightke L 1= 2 @MV snlkendd (10 1= CoVisalks aikz £210.010)

I hesy

, _ , (f]=C.. lim |z.[**=(0| V(g [K3,{3:Ka,44]

creating ground states, i.e., states wit=0, have the same Z,—
conformal dimension which is a necessary condition for the —
orbifold sigma model to originate from the IR limit of the X(Ze,Z5). (14
YM theory.

Next we turn to the description of the DVV interaction Recall that Sy invariant vertex operators/ig)[{K,,{a}]
vertex. To this end, we introduce the first excited stateX(z,2) were defined in Eq(10). The elementg, g.. are

r(n)(z,5 of the twisted sector which appears as the mosf:hosen in the canonical block-diagonal form

singular term in the one-pion exchan@PE) 9o=(Ng)(N=Ng), gw=(N.)(N=n.,)

. 1 2w .
IX|(2) o (my(W) = (z—w) - Re 7 (w)+ - - and to ensure proper normalization, the const@atandC.,
(11)  have to be equal to

Suppose(n) is a simple transpositionn=2) which ex- [N [ NI
changesX, with X;, then we can define the field; Co= No(N—ng)’ C.= n.(N—n.)’
=17(3. The DVV interaction vertex8] is then given by 0 0 ” ”
Following the approach df8], we introduce the light-cone

AN _ R - , ;
Vine=— > IZJ f d%2|z|((2)2(2) F(2)2)(2)),5, momenta of initial and final particles
<
n N—n N N—n.
e M K K

where N is a coupling constant proportional to the string

couplinggs.. - which satisfy the mass-shell conditiok k; —k,k,=0 for
The twist field V|;(z,2)=(7(2)2'(2) 7 (2)2'(2)),; is a eacha, wherea=1, ... ,4.According to[10], the Smatrix

weight ¢,2) conformal field and the coupling constant ~ €lement can be written as

has dimension—1. As was shown i8], this interaction o 2B b s e 1

vertex is space-time supersymmetr&Q(8) invariant and (FISli)=—12A*N"6(ky +kp +ks +k )M, (15

describes the elementary string interaction. In addition, it i%/vhere the delta function results from the integral axeand
M is given by

1, ; ; _ —
In what follows, we call the wave function of a particle a polar M= f d2u|u|F(u,u). (16)

ization.
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Here we introduced a concise notation #3 and?=— . From the explicit form ofy!; given in
— — Appendix A and with the account ofl,=(yT);, one can
F(u,u)=(f[T(Lin(1,D Lin(u,w))]i) easily deduce that : ¢
=C,C.. V ks,l3:Ky, i _ 7
0 I<J;EK<L (Vig.lKs,¢3:Ka, 4] Y=,
X(2)T(V13(1,) Vi (u,u)) Thus, we are justified to make the replacemiept>k,, and
XVig[k1.¢1:K2.£2](0,0). (17) 7.—{, in the correlation function. Consequently, we arrive

at the equality

In what follows, we assume for definiteness that<1.
From the definition(5) of V(g , it is clear that Eq(17) is the (Vg 29,0, V13VKLVa0) = (Vg g g5 VInar Ve V)

sum over two conjugacy classes corresponding to group el- (19
ementsy, andg., . However, with the account of the invari-

ance of the interaction vertex as well as of any correlatiorNow note that while the correlation function on the left-hand
function constructed from vertex operators under the globagide of Eq.(19) corresponds tqVh-14_n VIJVKLVgO> with
action of the symmetric group, it becomes po§5|ble to reducghe monodromy condition

the sum over two conjugacy classes to the single sum:

CoC.

F(u,u)= (Vh-1g.n, () Vi5(1,2) h'9.n..01;9k 90=1,

N!  h Tsy 1<3K<L
XV (U,u)Vg (0,0). (19  the correlation function on the right-hand side of E#9)
satisfies the monodromy condition

The obtained expression can be further simplified, however,

to do so, we need to establish certain properties of correla-

tion functions entering Eq18). To this end, we recall that Nz '0.h.=015:9k 190 =2 900Gk Grry = 1.

the action(1) and the DVV interaction vertex are invariant

under the world-sheet parity transformatinas z combined  Therefore, the contribution of terms satisfying either of the

with the space reflectioX® — — X3, while the vertex op- two monodromy conditions coincide. As it was shown in

erator Vg[{ka,é“a}](z,;) transforms into Vg—l[{ka,éa}] [10_], the on_ly nontrivial terms in Eq(18) are _t_hose that

x(z?)EV 71[{]2 7 }](z?) wherek, . 7, are the space satisfy premsely.these two monodromy condlt!ons. Conse-
' g arSaf R&EH ar Sa - quently, we can include only terms corresponding to one of

reflected momenta and polarization, respectivéfz —k®.  the monodromy conditions and place a factor of 2 in front of

Let us  consider the  correlation  function the entire expression. Using the same procedures as those in

(Vh-1g.n, Vi3V Vg,) with the monodromy condition establishing Eq(19), we now show that the correlation func-
. . . tion F(u,u) is real. To this end, we first consider the result
N.."0:N0139kL90=1=N.. "9 = g "9k 915 - of complex conjugating the correlation function:

With the account of the world-sheet parity and the space ) —
reflection symmetries, we obtain the following equality: (Vg [K3,{3:Ka,84](0)V,3(1,1) Ve (u,u)

XV [ki1,¢1:k2.£21(0,0)*

<V9519KL9|3V'JVKLV90> = <V9|J9KL90V|JVKLV961>-
= |lim lim |zw|*4Agx[{k3vk4}]|ZO|*4Agol{k11k2}]|u|*6

Due to the invariance of the correlation function under the Ze—® 2g—0
global action ofSy and the fact that the elemergsandg ! L L1
belong to the same conjugacy class, we obtain % < Vgol[—kl,é“l;—kz,lz](z—,?— Vi Gi)

<V9619KL9|JV'JVK'—V90>:<V9|’J'9K'L'961V"J'VK'L'V90> 11

XV (111)V -1 _k vg 1_k 1§ — ’

whereg, ;;=hg;;h™%,  gx:L =hgq h™ %, and the element " 0.1~ Ka:LsimKa L] 20"z,

his such tha’g51= h~goh. Due to theSQ(8) invariance of
the model, the correlation functiaid7) can depend only on where we took into account the conjugating property of a
the scalar products of momenkg and polarizations, as  vertex operator

well as on their contractions with tf&0(8) spin-tensorygb.

Obviously, all scalar products are invariant under the space V.Ik t_ - 204{kady " 1 20
. . ij . ~i ~ f . = glifa _ —_ —

reflection, whlleygb transforms intoy}, . Herey'= ' for i Vel {kat1(2))'=2 g-t[{=Ka}l z)’ (20)
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and the fact that the DVV vertex is of conformal dimension _
(2,2). Due to theSOQ(8) invariance, we can make a replace- =(Vg:[ks.¢3iKa,{al )V (LD Voo (u,u)
ment—k,—k, and after performing the conformal transfor- )

mationz— 1/z obtain X Vg [K1,{1:K2,¢21(0,0)),

(Vg [Ka,£3:Ka,£a] () V(LD Vi (U, ) whereh e Sy is the solution ofh g, *h=g, and
X Vg [K1,{1:K2,421(0,0)*

=(Vg-1lks,{31Ka,£4](*)V15(1,D) Vi, (U, u)
Now we apply this result to find the complex conjugate of
XVggl[kal?kzygz](o,o» F(u,u):

h™'g.'h=g., h7'gsh=0g,5, h 'ge h=gxL -

C.

— . 2C _
FuW*==—0"" > 0 3 (Vitg o [Ka,ZaiKaal () Vig(1,D Vi (U,U)Vq [Ky 1K, 65](0,0)*
N!'  hTsy 1<3K<L * 0

2C,C..

T hZS 'I JEK L<Vh';1gwh;[k3,§3;k4§4](°°)V|'J'(lal)VK'L'(U,U)Vgo[kl,§1Jk2a§2](0a0)>
. © €SN <J;K<

_2C,C..

NT > 2 (Vioig (ks aikadal(0)Vi g (LD Vi (u,u)Vg [k, £33k, £2](0,0)
o hlesy I'<JdhK'<L!
=F(u,u),
|
where 0-9,39x.9o=1.2 To simplify the notation, we did not ex-
plicitly indicate the moment& and polarizations in Eq.
h™'go*h=go, h *h.'g *h.h=h"_"g.h, (20).

Consequently, th&matrix element is constructed from
and the prime in the sum ovér, indicates that we include the correlation functions
only terms which satisfy the monodromy condition
h.'9..h..0,30x.9o=1. This completes the proof. o
As was shown if10], using the globaBy invariance of Gk (u,u)=(Vg [K3,{3:K4,{a](*)V 3(1,2)
the model, one can recaB(u,u) into the following form _
X Vi (U,u)Vg [K1,417K2,421(0,0)) (22)

N

F(u,u)=2N*Vk{ kg kakq | 2 (Vg (Vi en-n, (1D

=t corresponding tdu|<1 and the correlation functions ob-

_ tained from Eq.(22) by interchanging ¢,u)«(1,1) and

X Vpn(Uu,u)Vg (0,0)) + IZl (Vg y() therefore corresponding fai|>1. Here all possible combi-
- nations ofg.., g,; andgg, , go are listed in Eq(21).

N—n.

XV 0, (1) Vin(U,U) Vg (0,0)
D. Correlation functions

Ny
+J:n2+l (Vg 0(*)Vnga( LDV n(u,u) Taking into account the definitio(®) of Vy[k,,{,] and
0 the expressioril2) for the DVV interaction vertex, we ob-

N tain the holomorphic contribution to the correlation function
XVgo(00)+ | 2 (Vo ()Vaga(1.D (22):
_ GiakL(U) =GP e b2 3 e,
XV in, n(UUVg (0,0)) |, (1)

where the elementg., have to be found from the equation 2Here we assume for definiteness thgtn.. .
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where tors, the phase ambiguity disappears. To prove this assertion,
L . . we have to take into account the symmetry of a correlation
G2 4= (0 g [Kal2kal2](20) 7)5(1) Tl (U) o function under the change
X[k1/2k»12](0))

- - o[ ki2] oK) and SEoSE,
X(Zg¥(20) 215(1) 2 (W2 gH2(0))
i1 o] to obtain the equality
E<TiTj>(u)G|J:}(|_2 34 (U) (23)
Without any loss of generality, we will always assume that (Vg [Ks,¢3:Ka,44](2)Vi5(1) Vi (U)

the polarizationd*” can be taken in the fornj*“¢”. <V [k K 0
In the approach of10], the calculation of the correlation 90[ 1:41:K2,£2)(0))
function G,;¢, (u) was based on the stress-energy tensor

method [15] which requires the knowledge of the Green =(Vg ks, {3:Ka, La] () V15(1) Vi (U)
function for DN bosonic fields X|(z), 1=1,... N, i = = o~ o~
=1,...D. Recall thatX|(z) have cyclic boundary condi- ngc?l[kl'gl’kz’gﬂ(o»'

tions (4) around the insertion points of the twist fields

o(m(2) and therefore the corresponding Green function iSthen complex conjugating the obtained expression gives
N-valued. So, to find the Green function, and consequently

the correlation functiorG,;«, , one needs to construct the

N-fold map from thez-plane, on which it is multi-valued, to <Vg;1[F3 ,2“3;R4 ,24](00)7,3(1)VKL(U)
the sphere, which we call thesphere, on which it is single- -
valued. According td10], this map is unique, and is given ng—l[’l‘('lyzl;]zz ,51(0))*
by the formula 0
= lim lim z;ZAgx[k?"k“]z;ZAgO[kl’kZ]u‘3
t\"o/ t—t, N=ng ty—t. N—n, 2,,—% 2p—0
== U

U 1 N W O
_ _ X<Vgo[_k1,§1i_kz,gz](z_)VKL(a)VlJ(l)
where we require the poitt=x to be mapped ta=u. Due 0
to the projective invariance, the positions of poings tq, o 1
andt,, can be chosen to depend &nn a specific manner, Xng[_kg,gg;_k4,§4]<Z—) >
that isty=tg(x), t;=1t,(x), andt,.=t.(x), and one possible *
choice of this dependence is described 10]. If we make
the substitution(see[10]): Because of th&O(8) invariance of the correlation function,

we can make the replacementk—k, 7—¢ and after per-

to=x—1, forming the conformal transformatian— 1/z obtain
_ (N_ nco)x

b =X N ng)x g’ (Vg [Ks.LaiKa,{al() V(1) Vi, (U)
_N_no_noc NpX N(N_nm)x ngo[kligl;k2!£2](o)>*

L= n. Ne  N[(N=ng)x+nol

=(Vg ks, {3:K4,£4](2)V3(1) Vi (u)

Eq. (24) transforms into a function af alone which can be —

viewed as the 2(— n,)-fold covering of theu-sphere by the X Vg [k1,{1:K2,£21(0)).

x-sphere. Since the number of nontrivial correlation func-

tions in Eqg.(21) is also equal to 2{—ng), as one can easily . . — )

verify, we see that the-sphere can be represented as theBY Making the formal substitutioa—z, we arrive at the

union of 2(N—n,) domains and each domain, denoted byporre_latlon fu_nctlon qf the_ anti-holomorphic sector contain-

V|jkL . contains the poink corresponding to some correla- Ing rlght—movmg fermpns mstgad of |gft—movmg ones. Thus,

tion function from Eq.(22). if the anti-holomorphic sector is oBtamed from the holomor-
Finally note that as was shown 0], the overall phase Phic one by the substitutionz—z, left-moving fermion

of Gk (u) cannot be determined and, in principle, can de-— right-moving fermion, then the overall phase of

pend on the indicek,J,K,L. However, below we will show G,;x. (u,u) is irrelevant.

that the correlation function of the holomorphic sector is Now we present the solution for the correlation function

complex-conjugated to the correlation function of the anti-G,;,, (u) that was found i10]. In particular,(7;7;)(u) is

holomorphic sector. Therefore, by combining the two secgiven by
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AxX(x— D)[x+no/(N—ng) J[X—(N—ng— )/ (N—ng) ][ X—Ng/(Ng—N-.) ]

mi7iy(u)=— 8 +(TiT)ks
{m J>( ) (No— N (X— @) ?(X— arp)? (n J>k
[X+ng/(N=ng)] . [X=(N=ng—n,)/(N=ng)] .
<Ti’7'j>k:_( no k|1+ n. k|3+ N_nok|4
| (x= 1)kl 4 x0T [y To (25)
128 N—n, No—N./ 2|’
while the correlation functio®/ 1234 (u) is equal to
Gmmm(u):,(m iR* (nmnO(N_nw))M(nx_no>(1/4)k1k3 [X—no/(Ng—n..)]°
KL 2%(n.—ng)(N—ng) |\ (N—ng) N—ng u(x— ap)?(x— ay)?

1IJKL

X[X_(N_no_nw)/(N_no)]>H(M)klk"’((X_1)[X+nO/(N_nO)])l+(l/4)k3k4 P
[X— o/ (No— )] [X—no/(No— )] T (w.

(26)
Here T/x2#2#41 () is defined in theSU(4)x U(1) basis according to

d _1n\d _ d _ _ _ _ d _ _ d
At go g,y o0 D Mo (N o) P (N~ ng )= ) 1 mo/ (o)™
[(x—ap)(x—a)]%

the coefficients; are given by Before we go on to consider the scattering amplitude, let
us point out the remarkable property @f7;),, namely
do=P1Pa+PeP1tPsPs,  d1=PeP3+ PsPst P3Pa,

=0= . 29
dy=p1P2+ PeP1tPeP2,  d3=PeP2t PeP3+ P2P3, (74 T (7T e 29

d,=PeP1+ PeP3+ P1P3.  ds=—psPs, To prove this asse_rtion, we note th_at the-™ light-cone
component of the first factor ifr;7;), is equal to
de=P1Ps+ PaPs+ P1P3— P2Ps
[X+no/(N=ng)] k++[X—(N—n0—nw)/(N—l’lo)] o

n
and o 1 . 3
ORI e L L L i <
190 = . +
° (N—ng)% N=ng *
28
(28) - Ng N—ng—n,, N—n, _
A few comments are in order. First, recall thatvas intro- “NVTNTR) T TNy ) T Ny
duced in Sec. Il B as a multiplicative factor which compen- 30
sates for the non-Abelian nature of the orbifold. This con- (30)

stant is equal to 2 (for derivation sed10]).

Secondly, computation of the fermionic correlation func-While the "+ light-cone component of the second factor is
tion (Egj““(oo)EiJ(l)E{(L(u)Eg;"Z(O)) was done by equal to
bosonizing the fermiond10] in the framework of the No—N No
SU(4)xU(1) formalism[16] which is concisely presented  (x—1)k; +xk3 + N= = (x— — )k;{
in Appendix B. Here we only note that in this formalism, N No— N
there is a one-to-one correspondence betweenStb@d) 1
X U(1) index.A={A,A} and the weight vectop. Specifi- N
cally, if A corresponds t8,, thenp(p*)=€e*(—¢e*) and if
it corresponds td., then pA(p")=0*(—qg"), where =€*  This property will be used in establishing the Lorentz invari-
has component@@ and +qg” is defined in Eq(B1). ance of scattering amplitudes.

=0.

1 o
No(X—1) —Nn,X—(Ng—N.)| X o=
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1. Scattering amplitude

iN— _ix29—8 -
Up to now we considered the correlation function (flSli)=-ir%2 2N5ml+m2+m3+m4‘°5(2 k')

GI’31|<"“L2“3“4(U,U) correspoding tgu|<1. It turns out that the 4

correlation function corresponding ta|>1 is again given 1T (kr)e(hi)(ki+)s(w)

by Eg. (26) and so the time-ordering in Eq17) can be 5 i=1

omitted. Consequently, from Eq$§21), (22) and (23), we X9 Z ki) 4

find that M is equal to Hl k*
=

M=2N2k kS K] k}IJEKL f d2u|u| GLak2kata( ) G123 (34)

where

1/2

Z(&3k)

X (U)Z#1V1§52V2§§3V3§#4V4- s

o . = [ Mon=(N=n-) )~ el ()~ €(v1)
Substituting Eq(26) for the holomorphic part of the corre- &K= ( N—n, ) (H (k") (k)
lation functionG, ;. (u,u) and its complex conjugate for the
anti-holomorphic part so as to get rid of the phase ambiguity, % J’ 42

we arrive at the following expression fov1:

2
z—| |7 (1/2)k1k4| 1-7] (U2)kgka T 1mo1zr4( Z)
Z

B R8 ( nonx(N_ noc))Z( n,— nO) (1/2)kq1ks TV1V2V3V4(Z) M1V1§/2‘2V2§§3V3§M4V4. (35)
28\ ks kg kik; | N(N—no) N—ng . _
, w2k Here e(“)(€(")) is equal to 0, ifu;(v;) corresponds t@®,
XJ 42y dul % x[x = (N—no—n..)/(N—n)]| {2kt and is equal to 1, if;(v;) corresponds t8, (8,). Also note
d [X—ng/(Ng—n.,)] | that we have restored-functions responsible for the mo-

mentum conservation law and represented the light-cone mo-

_ _ (1/2)ksk
(x—Dx+no/(N—n)] o mentak;" ask;” =m;/N. In the next section, we will compute

[x—no/(no—n.)] | all open string kinematical factors and show that all depen-
dence onN in Z(¢{;k) is absorbed into the light-cone mo-
x> T,’Sﬂ‘f"w“(u)T;’jﬁL”e’V“(u)§flvlé“§2v2§”3v3§““”“, mentak;” and, hence, we are justified to consider the limit

KL N—o in Eg. (34). In this limit, the combination

NS, +m,+my+m,0 JO€S 10 8(Zik") and formula(34) ac-
quires the form

where we introduced a concise notation

T”leMsM u)=(7; >TM1’L2M3M4” (u). (32)

1IKL 1IKL 1/2

4

H e(u.)(k+)6(v

Recall that under the transformatier—x, the u-sphere is (f|S|i>=—i)\25D+2(z ki”) i1
1

mapped onto the domaW ;«, . Taking this into account and 4
performing the change of variabl€g] IT k'
i=1
_ X[Xx—(N—ng—n..)/(N—ng)] X 278T(Z:K). (36)
[(Ne=Ng)/(N=Ng)J[X—Ng/(Ng—N)]
(X—ayp)(X—ay) In order to extract the scattering amplitudél,2,3,4) from
=dz= 2dX' the Smatrix element, one needs to make use of the reduction
[(noo_ nO)/(N_ nO)][X_ nO/(nO_ nOC)] formula name|y
(32)
4 1/2

the expression foM assumes the conventional form H E(M,)(k+)e(v)

<f|S|i>=—i5D+2(2i ki“)

R® NoN(N—n.) |2 dx|? 4
T8 i kikike | N(N—no) fd dz [T k'
28\k; kg k3 k; 0 L
x|z (1/2)k1k4| 1-7 (1/2)k3k4Tﬁ1ﬁ2ﬁ3ﬁ4( 2) X A(1,2,3,4. (37)
T”1”2”3”4(Z)§“1V1§’2‘2V2§§3”3§“4V“ (33 Using Eq.(36) for the Smatrix element and taking into ac-

count the reduction formula, we obtain the general expres-
Now it follows from Eg. (15 that in the limitR—o, the  sion for the four particle scattering amplituéé€1,2,3,4):
expression for the&smatrix element to the second order in
the coupling constant is given by A(1,2,3,4=\%22"81(£:Kk).
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Consequently, the problem of finding(1,2,3,4) in the in our computations, since we choose the kinematical factor
SVR® orbifold sigma model is reduced to the calculation of of the right-moving sector to coincide with that of the left-
Z(¢;k). In the next section, we will find thaf(¢;k) can be  moving sector. Nevertheless, it is essential to know the rela-
written in the form which is standard in the superstringtive phases, off'1'22334ii(z) for different values ofSQ(8)
theory, namely indicesi,,, anda, . In order to fix these phases, we decom-

pose the spin-tensof'1'23334i1(z) into the sum ofSQ(8)

(&K =K(EKK(EK)C(s,t,u), (39) invariant rank six spin-tensors:
where Til2224i] (7) = %y[ilizijlégéA(:l(z) +1 7[i1i2]53é45il- Ci(2)
_ _ _ L Lol - sl L Lol - sl
Clstu— I'(—s/8)(—t/8)['(—u/8) 39 +a 0,01 Cs(2) +39112,5,6'C4(2)

a .
I'(1+s/8)I'(1+t/8)I'(1+u/8 o o
( ) ( ) ( ) + %)’[|1”53545|2|C5(Z)
Here we introduced open string kinematical factiig; k)
which we will show coincide with the well-known kinemati-
cal factors obtained in the framework of the superstring
theory.

+3 110, 5,82 Ce(2) + 391, 5, 81112C(2)
+ 82,2,0128 Cy(2) + 833,81 8D Co(2)

. 1] oiol
IIl. KINEMATICAL FACTORS +03,0,0 1182 Cyo(2).

A. Vector particle +vector particle — fermion+fermion By using theSU(4)x U(1) basis, the functiorC,(z) and
To conform with the standard notation of the superstringcz(z) can be determined up to a phase using the following

theory, let us denote the polarization of a lefght-) moving  relations:

fermion byu?(u?) instead of{?(£?) preserving? for polar- o

izations of massless vector particles. Ti24434— _C
As follows from Eqgs.(38) and (35), in order to find the

kinematical factor corresponding to two massless vector par-

. . . . : . . . : TTHAEZ:__C —C,,
ticles in the inital statdi.e., u;—i4, u,—1i,) and two fer o w12

mions in the final staté.e., us—az, us—a,), one first has
to find

1>

. 1
Tl43422: ECI_CZ'

Thi2%%(z) = (77))(2) T'1'2%%1(2), (40 since we know all three functions up to a phase, we get a
T nontrivial equation orC,(z) and C,(z) allowing us to de-
where the spin-tenscf'1'22324(z) is determined up to an termine their relative sign. Namely, from E(7) with the

unknown phase by Ed27). The overall phase is irrelevant account of the normalization constd28), one obtains

N—ng e'e1
_C1~nx—n0 X[x—(N—ny—n..)/(N—ng)J[x—ng/(ng—n..)]’
—EC _CNN—nO e'¢2
271 T2 n.—ng x(Xx—a)(Xx—ay)’
1. ¢ _n.(N-n,) e 1)
270 7% (n,—ng)? [X—(N=ng—n.)/(N=ng)][X—No/(Ng—N.0) (X~ a1) (X~ ap)’

where a common multiplier in all three functions was omitted. Now it can be easily verified that the last equation is satisfied

only if e'¢1=¢'¢2=—e'¢3. Since we proved that the overall phase is irrelevant, we cael%etl and proceeding in the same
manner, fix relative signs of all 10 functiol(z). For convenience in later computations, it is useful to reviFltée3s24'l (z)
in terms of ordinary products of’s instead of their antisymmetric combinations. This is achieved with the help of identity

(A3). The final answer foil'1'2'3'41(7) is
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o iy -
Tilizc;i3a4ij(z):[n (N_n )]*1/2 E N_no (71727')’)513314
* - 4 n,—ng X[Xx—(N—ng—n.)/(N=ng)][Xx—ng/(Ng—nN..)]

1 (¥ V) a0,01'2 1 N—n, (7'29)3,5,0'
+5X(x=1) [x+no/(N=ng) IIx—(N=no—n.)/(N=ng)] 2 ng x(x—L1)[x—(N=no—n.)/(N=np)]
1 N—n, (270,80
2 N, Nng X[X+Ng/(N—ng) ][X— (N—=Ng—Nn.)/(N=ng)[[X—No/(Ng—N..)]
1 N-ng (719 3,2,0?
2N, X(X—1)[X—Ng/(Ng—N2)]
1 N—n, (¥19)2,2,62
- 2 N, —Ng [X+Ng/(N—ng) ][ X—(N—ng—n..)/(N—ng) ][ X—ng/(Ng—n)]
1 n.(N—n.) (7'19'2);3,4,0"
2 (n,—ng)? (X—a)(x—az)[x—(N—ng=n..)/(N—ng)J[Xx—ng/(ng—n..)]
N—n,, 81625,z
o XY X g (N- g ITX— g/ (Mo~ 1]
LN 81828,

Ng  (X=1L)[x+ng/(N=ng)J[Xx—(N—ng—n..)/(N—no)]

_ nw(N— noo) 6i1i25ij 55354 (42)
(Ne=Ng)(N—Ng) (X—ay)(X—az)(X—1)[x+ng/(N—ng) ][ X—(N—ng—n,)/(N—ng)] |

Next we contractT'123s4ii (z) with (r, 7;) and substitute the result thus obtained into E4f). After long and tedious
calculations, we arrive at the following expression T¢¢; k):

(LK) = f d2z|z|(/2kika=2) 1 — 2| W2kska=2T[ g, 75, &1 ,u41(2) T U3, o, {1, U] (2), (43)

where
N PP P ij i i1i0ti] 1A, i ioa ii
Tlus,£2,41,Usl(2)= 7 —{(Z= 1) (¥ 1727 Yaa 207 ¥)aga, 8127 = 2(7/19) 3,0, 2= 2(727) 5,0

— 46, 5, p LA PUTUG, (44)

Here to simplify the notation, we introduced the following tensors:

0=k e+ ke T

i, NoNee (N—noc X(x—1) <Ti27i>k_<TiTi2>k+ <7i27i>k )
D=0 | =g [X— o/ (No— )] (x—an)(x—az)  [X—No/(Ng—n)])’

i nw(N—no)<< No )<TilTi>k_<TiTil>k (T k )

T T mne LU N=no) (man(x—ap)  [x—no/(ng—n.)1)"
ili2_nm(N—nm)( <TilTi2>k—<TizTil>k+ (Ti27i1>k ) 45
P =y T (xman(x—ap) | [x—nel(ng—n.)1)

066003-11



G. ARUTYUNOV, S. FROLOV, AND A. POLISHCHUK PHYSICAL REVIEW D60 066003

Note that we purposefully wrote these tensors in terms of the o1

variable x, even though it presents no difficulty to express u"i‘aabugzzull“uz,

them in terms ofz. The point is that by writing them in this

form, we can clearly see that alH” light-cone components

vanish due to Eq(29). which can be easily verified by using the explicit form of
Next we turn to the issue of the Lorentz invariance of thel’-matrices, provided in Appendix A. Now it is straightfor-

theory. To this end, we introduce ten pure imaginary 32ward to replace transversalx@ y-matrices with 3X 32
X 32 I'-matrices which satisfy the Clifford algebf&*,I'"}  -matrices and 8-component spinot€, u?® with 32-
=—27"". Thesel' matrices are constructed as tensor prod-component Majorana-Weyl spinous In addition to fermion
ucts of 2<2 Pauli matricesr; ,i=1,2,3 and 1616 matrices  wave functions, the integran@?3) also depends on vector

Yi=1,....8 polarizations. As usual, in ten dimensions, a polarization of a
: massless vector particle satisfies the transversality condition:
| 0 Yaa k,(#*=0. In. the light-cone gauge, the polar.ization obeys
Y= 7i_ 0/’ {*=0 allowing us to express the componént in terms of
aa

" andk,, as{~=2k'{'/k™. In our model, we only deal with

' . eight transversal polarizatiori$ and can treat this equation
Wherey'aé and 7’;a are defined in Eq(A1). Light-cone com-  as the definition of thellight-cone poIarizgti@ﬁ._An impor-
ponents of ten-dimensional gamma matrices, Te,=T° tant property of the light-cone gauge is théliss=(f¢%
+T9 and T~ =T°-T®, are nilpotent: [*)2=(T'")2=0. =({1{2) which is a direct consequence df =¢;=0.
Evidently, in the integrand43), transversal components of Clearly, the integrand in Eq43) depends on scalar products
ten-dimensional matrices will be contracted with fermionof transversal momente with '. It turns out that by using
wave functionsu® (u?). In the light-cone coordinates, the th€ light-cone momenta and polarizatioks and ¢~ the

32-component Majorana-Weyl spinoyT,u= +u, assumes INtégrand can be written via scalar products of ten-
a a . o . _dimensional vectors. To show that this is indeed the case, we
the form U®,0,0u?). This spinor satisfies the massless Dirac

. : i > first note that' "=t *"'=0 and the same holds for all tensors
equationk,I"*u=0, or equivalentlyul'*k, =0, whereu is i Eq. (45). This is a direct consequence of E89). Taking
the Dirac conjugated spinor, i.eu=u'T'°. In the chosen into accoun{I",T*}=0 and " *)?=0, the first term in Eq.
basis, the Dirac equation takes the fo(see, e.g.[16)) (44) becomes

K*ud+y, Kud=0, 40
aa U1F+FI1§I1F|2§I2FItIJFJUZZU1F+FI1§I1F|2§|2FI(%F+tl_
o +t"T")u,
k~u?+ 9. k'u=0. (47) — iy i AT
:Ulr+FI1§I1F|2§|2FITIV1—‘VU2

The first of these equations allows one to express terms =...

f u?: —
oru T N N AN A NN

ut=— k_+7aaklua' (48)  Pproceeding in the same manner, we find

Therefore, eight components ot correspond to eight physi- — _ _ _

cal degrees of freedom. Upon the substitution of E4f) u DT 7 ) Tup=u T T 7, 7,)T Uy,
into Eq.(47), one obtains the equation of which is just the
Klein-Gordon equatiork?=0. In order to express the inte-
grand(44) in terms of ten-dimensiondl-matrices and 32-
component Majorana-Weyl spinong, we need the follow-
ing identities:

uy I T2 2u,=u T T 4T Uy,

U3(y'1y/29/294) U0 = Uy a2l el o, Upl TR (77, ) {2Up = ug T T T (7, 7,) .
al ’

a; g i . b_ 17 i i . . .
U(¥'1y'2)aplp=— zus I T 2y, Imposing the Dirac equatiok,,,I'“u,=0 and the transver-
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sality condition kq,l§=0=k,,{5, the expression for Finally, we perform the integration over the spherez) to
Tlus,>,{1,U4](2) acquires a particularly simple form: get:

T[u3,¢5,41,Us](2) (& k) =K(Uuz, 82, 81,Us;K)K(U3,82,81,Us;K)C(S,L,U),

N _
= Uz 1)3Usl T LT LTkl kyUy

— _ where
— Ul "Tkal'kqUsd1 8o+ 2usl T [(2— 1)Tkydoks
— 2T'Kgd ok Jug+2u5T o[ (2= 1) (Tkad 1k = Tk1£1K3)
— S—
+42k3{1ka]us— 2u3T "u,[ {1Kad kg — 2L 1K3d oK1} K(u3,§2,§1,u4;k)=24[ - Eusl"gzl"(kﬁ— Ky {1Uy

+t(Usl'faugky {o— Uzl ougkady

The last step in rendering us,{,,{1,U4](z) the Lorentz
covariant form, requires us to impose the Dirac equation —U3Fk1U4§1§z)]- (50)
usl'*k;,=0. To this end, one has to anticommut&; all
the way to the left until it multiplies the spinar; and anni-
hilates it. This procedure will generate additional terms due
to the anticommutation relation df-matrices. The appear- Now one can recognize iK(us,{,,{1,Us;K) the standard
ance of these terms can be easily traced in the example bepen string kinematical factor of the superstring the@ge

low: [17]). Futhermore, as was mentioned earlier, all dependence

onN in K(uy,{5,Us,44;K) was absorbed int&*.

— — B. Fermion+vector particle — fermion+vector particle
zUsl T 0T ol Kalkyug= — U3l " T Tkal" oIk Uy

N
Ual™ T'Z1kadol ks particle and a fermion in the initial state and the same type of
_ %@F*FngglI‘ngklua, particles in the final state is computed in complete analogy
with the kinematical factor found in the previous section. In
+usl &kl &,k Uy particular, here we need to determine the spin-tensor
— Tal23341l (7) which we decompose int®&Q(8) invariant
— U3l ' 1kadolk Uy rank six spin-tensors as follows
= —Ugl' {4 T T KUgks
+ Uzl " {1kal LT kquy Triz%l(z) = ‘1_‘7“2'4”]5153(:1(2) + %7[”]51535IZI4C2(Z)

. L Lol - sigi
_U3F+r§lk3gzrk1U4. (49) +27 2 31335403(2)

+ 39021, 5 S9C,(2)+ 14, 5 52Cs(2)
Proceeding .in. this fashion, it can be _easily shown thgt all +%7“i4]‘é‘1‘;"35i2jcﬁ(z)
trzrerISt: containing’ " cancel and we arrive at the following +%,},[i2i4].alé135ijc7(z)+ 5élé35i2i45ijcs(z)
+85,2,0284Cy(2)
+85,2,0 264 Cyo(2).
T[us,82,81,Us)(2) =~ ;@ngr(kl—k kg)T'{1Uq

To fix the functionsC;(z), we transform to theSU(4)

z _
+ 5 (Ugl'{yUgky {5~ Ul Eousky Ly X U(1) basis, as we did in the previous case. After fixing
- relative signs ofC;(z), we arrive at the following expression

—ugTkyuysl145). for Ta123s14ii (Z):

066003-13

The kinematical factor corresponding to a massless vector



G. ARUTYUNOV, S. FROLOV, AND A. POLISHCHUK PHYSICAL REVIEW D60 066003

el )1 (yil'yiz'yi'yj),éllé\3
T (2= (o) X — DX+ o (N= o) X (N—ng— ) /(N—ng)]

1 N—n, (V7)) 2,074
2 N—Ng X[X— (N=Ng—Nn..)/(N=ng)J[X—No/(Ng—N..)]
1 n. (Y7 a,2,02
2N, Nng X(X— 1)[x—(N—ng—n..)/(N—ng)][X—Ng/(Ng—N..)]
1 (V' ¥'4)a,2,02
2 X[x+ng/(N=ng)][x—(N—ng—n..)/(N—ng)]
1 n, (7'29)5,4,6'%
2 n.—ng (x=1)[x+ng/(N=ng)][x—(N=no—n..)/(N=ng)][x—Ng/(ng—n..)]
1 N-ng (7'27)3,2,0'% 1 ng (7'27'9)3,2,0"
~2N-n, X(X=21)[x+ng/(N—=ng)] * 2 N, —Ng X[X+Ng/(N—ng) J(X— aq)(X— ay)
no 82814 8, 4 (x=1)
B N,,—Ng X[X+Ng/(N—=ng)][X—(N—ng—n,)/(N=ng)][X—ng/(Ng—N.,)]
nw(N_nO) 5i2i5i4j55153[X+n0/(N—n0)]

(N —nNg)(N—N.,) X(X—1)[X—=(N—ng—n.)/(N—ng) [[X—Nng/(Ng—n.,)]

. No(N=ng) 5248 53, 0(x— 1)
(N..—ng)2 X[X—No/(Ng—N.)J(X—ag)(X—az) |’

Next we contract®1i28si4il (z) with (7, 7;)(2) in order to obtainai23sia = Tatizasiail (7, 7j). After long calculations, we find
thatZ(¢{;Kk) is equal to

I((;k)=f d22|z|(1/2)k1k4—2|1_Z|(1/2)k3k4—2Téli253i4(z)-|-a1j2a3j4(z)uilalgizzi2u23a3€i44]4,

where

o N(N—-n,) {(riTi)—{(7jmi)e 1 . . L
(7I27|4y|71)élé3 Ne—Ng (XI—JCM)(X—ICIYQ) +Z(ylyj)élé35I2|4

N(N—N) (77— {77k
Ne—Ny (X—a)(X—ay)

(z=1)

| -

Tau 253i4( 2)=

N(N—ng)
n.,—nNg

<TiTi4>k_<Ti4Ti>k( _N—no—nm) (7i,Ti)k

1
_5(727)5153 (X—a)(X—ay) N—ng [X—ng/(Ng—n..)]

1
__(l

" N(N—n..) { n.. <Ti7i2>k_<7i27i>k( No
2\vY )alaS(nm—no)[x—nol(no—nw)] N

=N (X—ay)(X—ay) —ny {7171,k

L. N(N—n.,) ( ng (7,7ik—{(7,Tik N )

15 {1~ o)X~ /(Mo 1] |~y (x— an)(x—az)  N—n {27k

1 N 1. N
+Z(7"27l4)5153no_nw[(N_n0_n“)k3k4+Nklk4]_E5I2I45é1é’3no_nw[(n°+n”)z+(N_no_n°@)]k3k4'

Note that in the last two lines, we took advantage of @§) should proceed exactly as we did in the previous calculation.
in order to obtain Lorentz invariant scalar products. To re-Namely, here we need the formulas

write this expression in terms of ten dimensiohamatrices S S o

and 32-component Majorana-Weyl spinarg and u;, we Sy Y YY) apu3=2u T T TITH U,
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U(y' yh)apuS=—Lu, I *T'Tiug, Z({;k)=f 27| 7 (V/DKaka=2| 1 — 7| (1/2kaky =2

agab b_ 17 1+ _
TS = 2Ual . X Ty, £, Uada](2) T[Us L2 Usla) (D),
Taking into account these formulas as well as the property . oa
(29), the nilpotency of" * and the fact thafl"',I" "} =0, then
after some algebra, we find thafl[u;,{,,us,{4]

S . . 7
=T34y 203304 is equal to Tlu1,82,U384)(2) = Zusl" Lol (kg +kg)T'L4us
1 R G (k) T
_ Uil g4l (Kot Kg)l GoUs.
T[U1,42,U3,44)(2)= | 5uil’ "T' (oI LTk Tkyus 4
4ng\ 2
—u; T Tk kU304 Finally, we perform the integration over the spherez] to
_ et:
Uyl (TG ) ?

—T ¢, I#ptes)u
v R T(£K) =K (Uy, o, Uz, La KK (U, Lo, Uz, Lo K)C(S L U),

+2u T ug(LhaqP gy — Lhpley) |.
where

Here for convenience, we introduced the following tensors

t—

pH’=khki—zki'ks— (z— 1)kf'ky, K(uy,{2,U3,84;k)=2"" FUil' ol (kg ky) ' dqus

14 14 14 S_
pi=(z—1)kik,+ KKy, + SUal Ll (ko + kg)T'f5Us) .

14 14 0 14 14 . .
pii I(l_n—) kski+ = (z=1ksky+(z—1Dkrky, Now one can recognize iK(uy,{»,Us,4;K) the standard

- ” open string kinematical factor of the superstring the(se
[17]).

n N
9= (z— 1)KEKY+ — (2— 1)KEKE — — K&K
N N C. Fermion+fermion — fermion+fermion
To cast the integrand into the Lorentz covariant form, we Finally, we consider the kinematical factor corresponding
impose the Dirac equatiorﬁll“”klﬂzo. Then all non- totwo fermions in the initial and final states. Our first task is
covariant terms, i.e., terms containidg”, cancel and we to decomposél®1223334i(z) into SQ(8) invariant rank six
obtain: spin-tensors. This decomposition is given by

Ta2a%ll (7) = 3411, o A 2 Cu(2)+ 3915, 80,0,C2(2) + 3 YW 5 4, 82,0,Ca(2) + 3 Y1 4 62.4,Ca(2)

+ 391 4, 82,3,Cs(2) + 3915 4 830, Co(2) + 3V 4 82,5,Co(2) + 85,5,0%2%36' Cq(2)

+ 832, 02481 Co(2) + 83,5, 6727461 Cf 2). (51)

All other SQ(8) invariant spin-tensors can be expressed inshould be at most fourth order iis. Indeed, a term which is
terms of linear combinations of spin-tensors from Esfl)  of higher than fourth order in’s and which has only two
and therefore are not linearly independent. To see this, firstector indices, namelyandj, must contain contractions like
note that the most general expression for such spin-tensar, /1, y!.;  where a,b,c,d are chosen from
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a;,a,,as,a,. However, this contraction is just a liner com- (YY) ap(YY)ea= (YY) aa(¥ ¥be
bination of Kronecker deltas as follows from the identity: s iy
+285:(¥' Y )bat 20ap(Y' ¥ ea

(53
K. K] - _qs - s - e
kE,I 7 ab 7= 804004~ 80asdhe 52 it becomes clear that there is only one independent spin-
tensor containing all foug’s and it is represented by the first
However, in Eq.(51) we could have included spin-tensors term in Eq.(51). This identity is a direct consequence of
which are fourth order iny’s and which are obtained from (A4). By using theSU(4)x U(1) basis, we fix all functions
P, M5 5, by permuting spinor indicea;,a,,a5,84. Ci(2) and their relative phases. The final answer for

Nonetheless with the account of the identity T212233%41(7) is given by the following expression:

na 1/2(N _ nO) —1/2n; 1/2(N _ nw) -1/2

Télé‘zéséﬂj (2)=

N.—Ng

(YY), (YY) aga, (N=1g) (o= Ng) (X— ) (X— @)
X1~ 4 X(X—21)[x+ng/(N—ng)][Xx—(N—ng—n,)/(N—ng) ][ X—ng/(Ng—N..) ]
(YY) ag0,0,5, no(N—ng)
B 2 X(X—1)[X+no/(N—ng)J[X—No/(Ng—N..)]
(Y'¥)a,0,08,5, No(N—ny)
B 2 X[X+No/(N—ng)J[X—No/(Ng—Nsx)]
(Y Y)a,0,0,8, no(N—n..)
B 2 X[X+Ng/(N=ng)][X—=(N—=ng—n.)/(N=ng)][X—ng/(Ng—N..)]
(V' ¥)a,5,08,5, (N—ng)(n..)
B 2 X[X+Ng/(N=ng)][Xx—(N—ng—n,)/(N—ngp)]
(YYaa b, (N=ng)(N—n.,)

2 (X=1D)[x+ng/(N=ng) ][Xx—=(N—ng—n..)/(N=ng) ][Xx—ng/(No—nN..)]

(Y Y)aa,058,  (N=ng)(n.—ng)
" 2 X(X—1)[x+Ng/(N—1g)]

i No(N—n,)(x—1)
+ 0% 912,92 X+ g TN =g JTX— (N—g— )T (N = ig) T(X— ary) (X— )
s s No(N—no)(N—n.) (x~1)

133 a2a4(n —Ng)[X+Nng/(N—ng) J[X—Ng/(Ng— ) J(X— aq) (X— ap)
+816, . 6 NN~ 1) ]

212 a2a3(noc)(x L)[x+ng/(N=ng)][X—ng/(Ng—No) J(X—ap)(X—ay) |

The contraction ofl éll‘;"25‘354”(2) with (7;7;)(z) is most conveniently performed, if we expressr;), in the form

SR N U | VS YR P B
TTT g N=ng 2" n., N—n.. No—N.| 4

= i
=T abkakb )
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obtained from Eq(25) by using the momentum conservation equation. After commuting® and ' throughT'* and im-
law: k;+k,+ks+k,=0. Since the first term id7;7;) con-  posing the Dirac equation, the first term in E&4) becomes
tains 8, its contraction with ¢*3')5 a,(¥¥')a,a, will pro-
duce terms which are lower than fourth order s and
which at present do not interest us. So, consider contracting
the spin-tensor £'); 2,(¥¥)aza, i-€., the first term in
Eq. (51), with (7;7;), and fermionic polarizations;" : In order to make use of the Dirac equation in the remaining
three terms of Eq(54), we are in need of the identity

— JU TATPT T upual T OT T Uy mogkbky

= _U:LFMUQQFMLMTZLJ(; kjl— . (55)

= (YY), (YY) aga UL VU U 77y )i — — — m
18y 38471 ©2 Y3 Y4 ulI"‘FPI‘+u2u3FMFUF+U4=_U1FMFUF+U4UZF+FPFMU3
_ 1 rkpiT L TKrIT +
=—zUT*T'T TuousTFTIT Tug( i m T
4_1 2_3 4< i 1>k _4ull—~ﬂu3u4rﬂu277p+7](r+
= — U AT PT Fuugl  TOT FuymogkBkg

0 i — 20, THugu (T T, 7P
—%Ulr”FpF+u2U3F#FUF+U4721k’2)ki'
+I, I TP97 )uy,
— LU TP *upugl , TOT T U, 7a1kBkS
L 278 47Ta1%5 which allows one to plac&” next tou, (or uz) when it is
_ %EF'LLFPF+U2U3FMFUF+U47'34k§kZ—- (54) contracted withk5 (or k§) thereby making it possible to im-
pose the Dirac equation. This identity just like E§3) is a
Here again we used the property(afr;),, namely Eq(29), direct consequence of EGA4). As a result of this procedure

the nilpotency ofl'* and the fact that satisfies the Dirac and with the account of Eq$54) and (55), we obtain:

ag a,_ (N—Ng)(N.—No) (X—a)(X—az)
T4 N2 X(X=1)[x+Ng/(N=ng) ][Xx—=(N=ng—n)/(N=ng)]

ilil'azé3l34 'al éz
T (z)uiu?u

N—ng (Xx—1)[x+ng/(N—ng)]

. N.—Ng  [X—No/(No—N.)]

—upMugu,l’ ,u;, +u M usugl Uy |

Substituting this result into Eq35), we arrive at the expression fa@x {; k)
I({;k):f d?z|z|(M/20aka=2|1 — 7| (/2kska=2T Uy Uy, Ug, U] (2) T Ug Uz, U3, Ug](2),
where
1-z— 1 1-z zZ—

T[uq,uUs,uUz,us](2) =TulF”u3U4F#u2+ZEF”UZUJ‘#UAF - TUZF”“U3U1FMU4+ZU1F”“U2U4FMU3.

Finally, we perform the integration over the spherezf to ~ sake of comple_teness below, we provide the kine_matical f_ac—
get: tor corresponding to four massless vector particles which

was calculated in10].

I(Z;k)=K(uq,Uy,uz,uy; KK (Uq,Uy,Uz,U,;K)C(S,,U),
D. Vector particle + vector particle — vector particle

where + vector particle

The four graviton scattering amplitude was found 109]
) _E_lw —r and is equal to
K(ug,uy,uz,uy;k)=2 Sl Usus I, Uy -
A(1,2,3,4=N\"2""1({k),

t_ _
+5u M uyu,l ,us where

2

o _ LK) =K(£1,82:43,£4: KK (L1,82,43,44:K) C(s,,U)
We recognize irkK(uq,U,,U3,U,;K) the standard open string
kinematic factor of the superstring theaisee[17]). For the  and
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AN T+ 44/ T=281]
K(§11§2!§31§4;k)=272 —%(St§1§3§2§4+su§2§3§1§4 7(7) ‘Y(’Y)

L (1 0 0 1 0 1)
S Y= ® ®
+tulalalala) + 5 (L1kalskalols 0 /71 0/ -1 0
0 1 0 1 0 1
+ {oKalak1l1l3 2_
Y o1 0/%l-1 0o/%l-1 0
+ {1K3laKalala+ {oKal3K1{144)
t . . 0 1 10 1 0
+§(§2k1§4k3§3§1+§3k4§1k2§2§4 r=ly= 1 0/®0 1/%0 -1
+ 2Kad1kal3lat {3k14aka{1L2) s (10 o 1 0 o 01
u 7lo 1/%l0 -1)%1-1 o
+ §(§1k2§4k3§3§2+ {3Kadok1l184
6 ( 0 1 10 0 1)
Yy == ® ®
-1 0 0 1 10
+ {1KaloK3la s+ §3k2§4k1§1§2)) :
. (1 0 0 1 1 0)
Y= ® ®
IV. CONCLUSION 0 -1/ \-1 0/ 10 1
In this paper, we obtained kinematical factors and there- 0 1 0 1 1 0
fore scattering amplitudes for all massless particles of type/®= 10 ® 1 0 ® 0 1/
IIA superstrings directly from the interactirg'R® orbifold
sigma model. Our kinematical factors showed to coincide M= 01 (A1)
with those obtained in the framework of the superstring 2216
theory. This provides further evidence of the duality between 0 i
the YM theory in the IR limit and the superstring theory in T=ig.®| . 7)
. . . 3 inNT 3
the week coupling limit. ()" O
In computing the scattering amplitudes, we did not im- _
pose any kinematic restrictions on momenta and polariza- i=1,....8,
tions of particles. Nevertheless, the obtained kinematical fac- o .
tors which define scattering amplitudes exhibit manifest IP=io1®1,
Lorentz invariance even at finité. All dependence ol was o1 9
absorbed into the light-cone momerka. =TT .. . IP=030030 1.

Moreover, if one restores the dependence on the radiu
R_ of the compactified directiox_ (remind thatN was
identified withR_), then any dependence dhdisappears.
Since theS'R® orbifold model can be embedded into the YWW]:E > (= 1)Pwne)yryryrye
S”R® orbifold model, this suggests that the latter might have - P
a deformed(quantum Lorentz symmetry realized in the

1
space of the twist field&{, . The deformation parameter =€(Y[“V1Y“P]+Y["P]Y[“V]
seems to be identified witxp(27i/R_).

By definition,

=

— Y [Ny lvol —ylvely [N 4y lroly [vA]
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APPENDIX A g v 7 7
. . . . (A3)
We use the following representation gfmatrices satis-
fying the relation In D=10, I'’s satisfy the following equalitysee, e.g.[16]):
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(FOI‘“)mn(FOFM)pqu(POF")mp(FOFM)qn Bosonization of the fermions and their twist fields up to
0 0 cocycles is realized in terms of four bosonic fielg§ as
(T T#) (T ) np=0. (A4) _
A_dape®  GA_dape®  GA_ddh
Here it is assumed that spinor indices have definite chirality. 0=, St=e%e®, $'=e?,

where the weights of the spinor representati®nand8. are
APPENDIX B given by

With respect to theSU(4)x U (1) subgroup representa- qt=%(-1-1,11; o?*=%i(-11-11;
tions, 8,, 8 and8. are decomposed as
_ . q3=%(11_11_111); q4=%(111111]);
8s—dpta 1p, 8—4 1ptdyp, 86+ 1L +1 . . ,
: . : o q'=3(-1113; ¢’=3(-1-1,-11;
The corresponding basis for the fermio#% and their spin . ’
fields® 32 and3' consistent with this decomposition is given g®=3(1,1-1,2); qg*=3(1,-1,1,2). (B1)
by
The Cartan generators &U(4)xU(1) in the bosonized
form look asH”=id¢".

1 ) - 1 ]
@A:E(0A+|0A+4), ®A=E(0A—I0A+4), Bosonization of the fermions of the orbifold model is
achieved by introducingMd bosonic fields and reads as
) ] ] A i A ,B
SA=i(EA+iEA+4) SA=i(EA—iEA+4) ®|(Z)—e'qs¢|(z).
V2 V2 Twist fields o4 creating twisted sectors for the fields“(z)
are introduced in the same manner as in Sec. IIB. The spin
P i(EZA—1+i22A) szi(EZA‘l—iEZA) twist fields of the orbifold model can be realized as
; Siy(@) =61 2 B (2)= 0 [](2),
whereA=1, ... ,4.Note that the spin field&* and>* trans-
form as1; and1_,, respectively. i A
1 and 1.y, respecively Sty (@)= 2 H00(2)= o (2)
(B2
3See, e.q.[18] for a detailed discussion of spin fields. where€e” is a weight vector 0B, with component@@.
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