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The SNR8 supersymmetric orbifold sigma model is expected to describe the Infrared limit of the matrix
string theory. In the framework of the model the type IIA string interaction is governed by a vertex which was
recently proposed by Dijkgraaf, Verlinde, and Verlinde. By using this interaction vertex, we derive all four
particle scattering amplitudes directly from the orbifold model in the largeN limit. @S0556-2821~99!00818-8#
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I. INTRODUCTION

To provide a heuristic basis for understanding vario
phenomena arising in superstrings, it was suggested
there exists a fundamental nonperturbative quantum the
in eleven dimensions, called M theory. The appropriate co
pactification of M theory leads to one of the five superstr
theories and, in particular, the compactification onS1 leads
to the ten-dimensional type IIA superstring theory@1,2#. Al-
though at present, we do not know how to formulate
theory as a quantum theory, it has been conjectured@3# that
there is a precise equivalence between the M theory and
large N limit of the supersymmetric quantum matrix mod
which describes the dynamics of D particles@4#.

In the original D-particle language,S1 compactification of
M theory amounts to applying aT-duality transformation
along theS1 direction, thereby turning the D particles into
strings. By adopting this approach, we can cast matrix the
into the form of the two-dimensionalN58 maximally su-
persymmetricU(N) Yang-Mills ~YM ! theory@5#. According
to the matrix theory philosophy, in the limitN˜`, the YM
theory should describe nonperturbative dynamics of type
superstrings. This is a new type of nonperturbative dua
between a gauge theory and a string theory in which
string coupling constant is inversely proportional to the Y
coupling constant:gY M

22 5a8gs
2 @6–8#. Thus, we expect tha

the strong coupling expansion of the YM model describ
the perturbative type IIA free string theory (gs50). Re-
cently, it was conjectured by Dijkgraaf, Verlinde and Ve
linde ~DVV ! @8# that in the infrared~IR! limit, the YM model
reduces to theN58 non-AbelianSNR8 supersymmetric or-
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bifold sigma model. The fact that the orbifold model is no
Abelian comes as no surprise, since in the IR limit, the ori
nal gauge symmetry groupU(N) reduces to the permutatio
groupSN . Furthermore, in@8# it was proposed that the strin
interaction in the orbifold sigma model is governed by

supersymmetric vertex of conformal dimension (3
2 , 3

2 ). This
vertex describes the elementary process of joining and s
ting of strings and from the viewpoint of the gauge theory
responsible for partial restoring of theU(N) gauge symme-
try in some small region of space-time. With the DVV inte
action vertex at hand, one is tempted to deduce string s
tering amplitudes directly from the orbifold sigma model.
should be realized that this is a nontrivial problem due to
non-Abelian nature of the orbifold. Nevertheless, the nec
sary tools for computing tree-level diagrams were recen
developed in@9,10#. In particular, the four-graviton scatter
ing amplitudes for type IIA and IIB strings were calculate
and were shown to be Lorentz invariant in the largeN limit.
It was also observed that the string kinematical factor exh
ited manifest Lorentz invariance even at finiteN.

In this paper, we complete the proof of the DVV conje
ture on the level of tree diagrams by explicitly calculating
four particle scattering amplitudes for type IIA superstrin
directly from the SNR8 supersymmetric orbifold sigma
model and demonstrating their Lorentz and supersymm
invariance. This provides a new consistency check on
matrix model conjecture. Furthermore, this is a new evide
of the hidden supersymmetry invariance of the matrix mo
and its existence is a necessary condition for the mode
describe M theory.

We begin by reviewing the general formalism of th
SNR8 supersymmetric orbifold sigma model developed
@10#. We define theSN invariant vertex operators which cre
ate all massless states of type IIA string theory and wh
form a closed operator algebra. Following the approach
@8#, we describe the DVV interaction vertex which is bo
©1999 The American Physical Society03-1
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space-time supersymmetric andSO(8) invariant. Then, we
construct theS-matrix to the second order in the couplin
constant by sandwiching two DVV vertices in-between t
asymptotic states corresponding to two incoming and
outgoing particles. As a result of this construction, we obt
the expression for theS-matrix element as the sum over sp
cific four-point correlation functions which we explicitly lis
at the end of Sec. II C. The procedure for calculating th
correlation functions was outlined in@10# and in Sec. II D,
we summarize the main results. The appropriate scatte
amplitude can then be obtained from theS-matrix element by
making use of the reduction formula. Since the problem
calculating scattering amplitudes is equivalent to that of c
culating all possible open string kinematical factors, it fo
lows that to prove the DVV conjecture on the level of tr
diagrams, we have to show that all kinematical factors
tained directly from the orbifold sigma model coincide wi
those obtained in the framework of the superstring theo
To this end, we first compute the open string kinemati
factor corresponding to the scattering of two vector partic
and two fermions. In the process of this calculation, we
velop the necessary tools to deal with spinors and focus
the issue of the Lorentz invariance of the model. It turns
that the kinematical factor that we obtain is automatica
Lorentz invariant and coincides with the well-known op
string kinematical factor of the superstring theory. We th
compute the remaining kinematical factors for all massl
particles which make up the complete spectrum of IIA s
pergravity and show that they also coincide with those of
superstring theory. In conclusion, we discuss interes
problems that still remain open.

II. GENERAL FORMALISM

A. Free SNR8 orbifold model

The action that defines the freeSNR8[(R8)N/SN orbifold
sigma model is

S5
1

2pE dtds(
I 51

N S ]tXI
i ]tXI

i 2]sXI
i ]sXI

i

1
i

2
u I

a~]t1]s!u I
a1

i

2
u I

ȧ~]t2]s!u I
ȧD . ~1!

Here Xi are eight real bosonic fields transforming in the8v

representation of the transversal groupSO(8) and ua,u ȧ

a,ȧ51, . . . ,8 aresixteen fermionic fields transforming i
the 8s and8c representations, respectively. As pertains to
orbifold models@11,12#, the fundamental fieldsXi andua are
allowed to have twisted boundary conditions:

Xi~s12p!5gXi~s!, ua~s12p!5gua~s!, ~2!

where in the case of theSNR8 orbifold modelgPSN .
In the conventional QFT, the scattering amplitude to

second order in the coupling constant is extracted from
S-matrix element, schematically written as
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^ f uSu i &;^ f u E dx1dx2T$Vint~x1!Vint~x2!%u i &

by using the reduction formula. Consequently, to comp
scattering amplitudes, we first need to definein (u i &) andout
(u f &) states which are the states in the Hilbert space of
SNR8 orbifold sigma model. Recall that the Hilbert space
an orbifold model decomposes into the direct sum of Hilb
spaces of twisted sectors corresponding to conjugacy cla
of the discrete group defining the orbifold. The conjuga
classes ofSN are described by partitions$Nn% of N and can
be represented by

@g#5~1!N1~2!N2
•••~s!Ns, N5 (

n51

s

nNn , ~3!

whereNn is the multiplicity of the cyclic permutation~n! of
n elements. In any conjugacy class@g#, there is only one
elementgc that has the canonical block-diagonal form

wherevn is ann3n matrix that generates the cyclic perm
tation~n! of n elements. Sincevn generates the groupZn , as
can be easily verified, the Hilbert spaceH[g][H$Nn% is de-

composed into the gradedNn-fold symmetric tensor product
of Hilbert spacesH(n) which areZn invariant subspaces o
the Hilbert space:

The fundamental fields corresponding to the spaceH(n) are
8n bosonic fieldsXI

i and 16n fermionic fieldsua with the
cyclic boundary condition

XI
i ~s12p!5XI 11

i ~s!, u I
a~s12p!5u I 11

a ~s!,

I 51,2, . . . ,n. ~4!

As usual, states of the Hilbert spaceH(n) are obtained by
acting on momentum eigenstates with the string creation
erators. Since the fundamental fields have twisted bound
conditions, the string creation operators have nontriv
transformation properties under the action of the groupSN .
However, the spaceH(n) must beZn invariant and to ensure
this one has to impose the condition on the allowed state
H(n) :

~L02L̄0!uC&5nmuC&,
3-2
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wherem is some integer andL0 is the canonically normal-
ized L0-operator of a single long string obtained by gluin
together the fieldsXI(s)„u I(s)… into one fieldX(s)„u(s)….

Before passing on to the construction of asymptotic sta
corresponding toH(n) , we note that according to@13#, the
Fock space of the second-quantized IIA type string is rec
ered in the limitN˜`, ni /N˜pi

1 , where the finite ratio
ni /N is identified with thepi

1 momentum of a long string. In
this limit, the Zn projection becomes the usual leve
matching conditionL0

( i )2L̄0
( i )50 for closed strings, while

the individualpi
2 light-cone momentum is defined by mea

of the standard mass-shell conditionpi
1pi

25L0
( i ) .

B. Asymptotic states ofSNR8

We will consider the conformal field theory~CFT! on the
sphere with coordinates (z,z̄) obtained from the cylinder
with coordinates (t,s) by performing the Wick rotationt
˜2 i t followed by the map:z5et1 is, z̄5et2 is.

The asymptotic states of the orbifold CFT model are o
tained by acting with theSN-invariant vertex operators on th
Nevell-Schwarz~NS! vacuumu0& which is normalized ac-
cording to

^0u0&5R8N.

HereR is the radius of a circle onto which we compactify th
string coordinatesxI

i in order to regularize the sigma mode
The most natural way to buildSN-invariant vertex opera-

torsV[g] is to first introduce a vertex operatorVg correspond-
ing to a particular group elementg of SN and then sum ove
the conjugacy class ofg. This procedure can be represent
as follows:

V[g]~z,z̄!5
1

N! (
hPSN

Vh21gh~z,z̄!. ~5!

The vertex operatorsVg(z,z̄) should be constructed from
the twist fields of the orbifold model—the fields about whi
the fundamental fields have twisted boundary conditio
Since the monodromy conditions of the bosonic fundame
fieldsXI

i (z,z̄) are given by Eq.~4!, we are led to the follow-

ing definition of the bosonic twist fieldsg(z,z̄):

Xi~ze2p i ,z̄e22p i !sg~0,0!5gXi~z,z̄!sg~0,0!.

In exactly the same manner, we introduce the fermionic tw
field Sg(z,z̄).

In constructing the vertex operatorVg(z,z̄), one is
tempted to consider the tensor product of the bosonic tw
field sg(z,z̄) and the fermionic twist fieldSg(z,z̄). Although
the non-Abelian nature of the orbifold sigma model does
admit the factorization into bosonic and fermionic~holomor-
phic and antiholomorphic! contributions, it was shown in
@10# that this factorization can be assumed provided that
introduces a certain normalization constant, later denoted
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k, at the final stage of scattering amplitude calculation. Th
we define the vertex operatorVg(z,z̄) according to

Vg~z,z̄!5sg~z!Sg~z!s̄g~ z̄!S̄g~ z̄!. ~6!

To clarify the meaning of the holomorphic~anti-
holomorphic! twist field sg(z)„s̄g( z̄)…, we decompose the
fundamental fieldX(z,z̄) into the left- and right-moving
components:

2X~z,z̄!5X~z!1X~ z̄!,

so that now we can definesg(z) and s̄g( z̄) according to

Xi~ze2p i !sg~0!5gXi~z!sg~0!

⇔Xi~ze2p i !sg21~0!5g21Xi~z!sg21~0!

and

X̄i~ z̄e22p i !s̄g~0!5gX̄i~ z̄!s̄g~0!

⇒X̄i~ z̄e2p i !s̄g~0!5g21X̄i~ z̄!s̄g~0!.

Now the formal substitutionz˜ z̄ leads to the conclusion
that the operatorsg is identical to the operators̄g21. For any
elementgPSN with the decomposition

g5~n1!~n2!•••~nNstr
!, ~7!

we representVg(z,z̄) as the tensor product of operators ea
corresponding to some cycle (na):

Vg~z,z̄!5 ^ a51
Nstr V(na)~z,z̄!.

The operator,s (n)(z,z̄)5s (n)(z)s̄ (n)( z̄) is a primary field
@14# that creates the bosonic vacuum state of a twisted se
labeled by (n), at the point (z,z̄). We denote this vacuum
state byu(n)&5s (n)(0,0)u0&. Recall that zero modes of fun
damental fieldsua form the Clifford algebra. Therefore, b
triality, the vacuum state can be chosen to be the direct s
8v % 8c . Consequently, we define the primary spin fields

the holomorphic sectorS (n)
i (z), S (n)

ȧ (z) which create the

fermionic vacuum state:u(n),ṁ&5S (n)
ṁ (0)u0&, where ṁ

5( i ,ȧ). Under the world-sheet parityz˜ z̄ and the space
reflectionX3

˜2X3, twist fields transform as follows:

s (n)~z!↔s̄ (2n)~ z̄!; S (n)
ȧ ~z!↔S̄ (2n)

a ~ z̄!;

S (n)
i ~z!↔S̄ (2n)

i ~ z̄!, iÞ3; S (n)
3 ~z!↔2S̄ (2n)

3 ~ z̄!, ~8!

where (2n) denotes the cycle with the reversed orientati
corresponding to the elementvn

21 . The third direction is
singled out, since in our conventionsg351 ~see Appendix
A!.

Finally, we introduce the primary fieldsg@$ka%#(z,z̄)
corresponding to particles with transversal momentaka .
Suppose thatgPSN has the decomposition~7! so that the
following factorization takes place
3-3
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sg~z,z̄!5 ^ a51
Nstr s (na)~z,z̄!,

thensg@$ka%#(z,z̄) is defined by

sg@$ka%#~z,z̄!5:eika
i Ya

i (z,z̄)/Ana:sg~z,z̄![ ^ a51
Nstr s (na)@ka#,

where n15n25•••5nN1
51,nN1115nN1125•••5nN11N2

52, . . . and

Ya
i ~z,z̄!5

1

Ana
(
I 51

na

XI
i ~z,z̄!.

Combining the fermionic vacuum state with the vacuu
state of the bosonic sector, we find 256 states that desc
the complete spectrum of type IIA supergravity. In partic
lar, the state withk15n/N, transversal momentumk and
polarizationzṁn is generated from the NS vacuumu0& by the
vertex operator1

V(n)@k,z#~z,z̄!5zṁns (n)@k#~z,z̄!S (n)
ṁ ~z!S̄ (n)

n ~ z̄!. ~9!

As was shown in@10#, SN-invariant vertex operators

V[g]@$ka ,za%#5
1

N! (
hPSN

^ a51
Nstr Vh21(na)h@ka ,za# ~10!

creating ground states, i.e., states withka[0, have the same
conformal dimension which is a necessary condition for
orbifold sigma model to originate from the IR limit of th
YM theory.

Next we turn to the description of the DVV interactio
vertex. To this end, we introduce the first excited st
t (n)(z,z̄) of the twisted sector which appears as the m
singular term in the one-pion exchange~OPE!

]XI
i ~z!s (n)~w!5~z2w!2(12

1
n)e

2p i
n It (n)

i ~w!1•••.
~11!

Suppose~n! is a simple transposition (n52) which ex-
changesXI with XJ , then we can define the fieldt IJ
[t (2) . The DVV interaction vertex@8# is then given by

Vint52
lN

2p (
I ,J

E d2zuzu„t i~z!S i~z!t̄ j~ z̄!S̄ j~ z̄!…IJ ,

~12!

where l is a coupling constant proportional to the strin
couplinggs .

The twist field VIJ(z,z̄)[„t i(z)S i(z) t̄ j ( z̄)S̄ j ( z̄)…IJ is a

weight (3
2 , 3

2 ) conformal field and the coupling constantl
has dimension21. As was shown in@8#, this interaction
vertex is space-time supersymmetric,SO(8) invariant and
describes the elementary string interaction. In addition, i

1In what follows, we call the wave function of a particle a pola
ization.
06600
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invariant with respect to the world-sheet parity transform
tion z˜ z̄ and an odd number of space reflections.

C. S-matrix element

With the account of Eq.~12!, the S-matrix element to the
second order in the coupling constantl is given by the for-
mula

^ f uSu i &52
1

2 S lN

2p D 2

^ f u E d2z1d2z2uz1uuz2u

3T„Lint~z1 ,z̄1!Lint~z2 ,z̄2!…u i &, ~13!

whereT means time-ordering:uz1u.uz2u and

Lint~z,z̄!5(
I ,J

VIJ~z,z̄!.

For the initial stateu i &, we choose the state correspondi
to two incoming particles with transversal momentak1 and
k2, polarizationsz1 and z2, and for the final statêf u—the
state corresponding to two outgoing particles with transv
sal momentak3 andk4, polarizationsz3 andz4, respectively:

u i &5C0V[g0]@k1 ,z1 ;k2 ,z2#~0,0!u0&,

^ f u5C` lim
z`˜`

uz`u4D`^0uV[g`]@k3 ,z3 ;k4 ,z4#

3~z` ,z̄`!. ~14!

Recall that SN invariant vertex operatorsV[g]@$ka ,za%#

3(z,z̄) were defined in Eq.~10!. The elementsg0 , g` are
chosen in the canonical block-diagonal form

g05~n0!~N2n0!, g`5~n`!~N2n`!

and to ensure proper normalization, the constantsC0 andC`

have to be equal to

C05A N!

n0~N2n0!
, C`5A N!

n`~N2n`!
.

Following the approach of@8#, we introduce the light-cone
momenta of initial and final particles

k1
15

n0

N
, k2

15
N2n0

N
, k3

152
n`

N
, k4

152
N2n`

N
,

which satisfy the mass-shell condition:ka
1ka

22kaka50 for
eacha, wherea51, . . . ,4.According to@10#, the S-matrix
element can be written as

^ f uSu i &52 i2l2N3d~k1
21k2

21k3
21k4

2!M, ~15!

where the delta function results from the integral overz1 and
M is given by

M5E d2uuuuF~u,ū!. ~16!
3-4
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Here we introduced a concise notation

F~u,ū!5^ f uT„Lint~1,1!Lint~u,ū!…u i &

5C0C` (
I ,J;K,L

^V[g`]@k3 ,z3 ;k4 ,z4#

3~`!T„VIJ~1,1!VKL~u,ū!…

3V[g0]@k1 ,z1 ;k2 ,z2#~0,0!&. ~17!

In what follows, we assume for definiteness thatuuu,1.
From the definition~5! of V[g] , it is clear that Eq.~17! is the
sum over two conjugacy classes corresponding to group
ementsg0 andg` . However, with the account of the invar
ance of the interaction vertex as well as of any correlat
function constructed from vertex operators under the glo
action of the symmetric group, it becomes possible to red
the sum over two conjugacy classes to the single sum:

F~u,ū!5
C0C`

N! (
h`PSN

(
I ,J;K,L

^Vh
`
21g`h`

~`!VIJ~1,1!

3VKL~u,ū!Vg0
~0,0!&. ~18!

The obtained expression can be further simplified, howe
to do so, we need to establish certain properties of corr
tion functions entering Eq.~18!. To this end, we recall tha
the action~1! and the DVV interaction vertex are invarian
under the world-sheet parity transformationz˜ z̄ combined
with the space reflectionX3

˜ 2X3, while the vertex op-
erator Vg@$ka ,za%#(z,z̄) transforms into Ṽg21@$ka ,za%#

3(z,z̄)[Vg21@$k̃a ,z̃a%#(z,z̄), where k̃a , z̃a are the space
reflected momenta and polarization, respectively,k̃352k3.
Let us consider the correlation functio
^Vh

`
21g`h`

VIJVKLVg0
& with the monodromy condition

h`
21g`h`gIJgKLg051⇒h`

21g`h`5g0
21gKLgIJ .

With the account of the world-sheet parity and the sp
reflection symmetries, we obtain the following equality:

^Vg
0
21gKLgIJ

VIJVKLVg0
&5^ṼgIJgKLg0

VIJVKLṼg
0
21&.

Due to the invariance of the correlation function under
global action ofSN and the fact that the elementsg andg21

belong to the same conjugacy class, we obtain

^Vg
0
21gKLgIJ

VIJVKLVg0
&5^ṼgI 8J8gK8L8g

0
21VI 8J8VK8L8Ṽg0

&

wheregI 8J85hgIJh21, gK8L85hgKLh21, and the elemen
h is such thatg0

215h21g0h. Due to theSO(8) invariance of
the model, the correlation function~17! can depend only on
the scalar products of momentaka and polarizationsza as
well as on their contractions with theSO(8) spin-tensorg ȧḃ

i j .
Obviously, all scalar products are invariant under the sp
reflection, whileg ȧḃ

i j transforms intog̃ab
i j . Here g̃ i5g i for i
06600
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Þ3 and g̃352g3. From the explicit form ofg ȧḃ
i j given in

Appendix A and with the account ofgab
i j [(g i jT) ȧḃ , one can

easily deduce that

g ȧḃ
i j

5g̃ab
i j .

Thus, we are justified to make the replacementk̃a˜ka and
z̃a˜za in the correlation function. Consequently, we arri
at the equality

^Vg
0
21gKLgIJ

VIJVKLVg0
&5^VgI 8J8gK8L8g

0
21VI 8J8VK8L8Vg0

&.
~19!

Now note that while the correlation function on the left-ha
side of Eq.~19! corresponds tôVh

`
21g`h`

VIJVKLVg0
& with

the monodromy condition

h`
21g`h`gIJgKLg051,

the correlation function on the right-hand side of Eq.~19!
satisfies the monodromy condition

h`
21g`h`5gI 8J8gK8L8g0

21⇒h`
21g`h`g0gK8L8gI 8J851.

Therefore, the contribution of terms satisfying either of t
two monodromy conditions coincide. As it was shown
@10#, the only nontrivial terms in Eq.~18! are those that
satisfy precisely these two monodromy conditions. Con
quently, we can include only terms corresponding to one
the monodromy conditions and place a factor of 2 in front
the entire expression. Using the same procedures as tho
establishing Eq.~19!, we now show that the correlation func
tion F(u,ū) is real. To this end, we first consider the res
of complex conjugating the correlation function:

^Vg`
@k3 ,z3 ;k4 ,z4#~`!VIJ~1,1!VKL~u,ū!

3Vg0
@k1 ,z1 ;k2 ,z2#~0,0!&*

5 lim
z`˜`

lim
z0˜0

uz`u24Dg`
[ $k3 ,k4%] uz0u24Dg0

[ $k1 ,k2%] uuu26

3K Vg
0
21@2k1 ,z1 ;2k2 ,z2#S 1

z`
,

1

z̄`
D VKLS 1

u
,
1

ū
D

3VIJ~1,1!Vg
`
21@2k3 ,z3 ;2k4 ,z4#S 1

z0
,
1

z̄0
D L ,

where we took into account the conjugating property o
vertex operator

„Vg@$ka%#~z!…†5z22Dg[ $ka%]Vg21@$2ka%#S 1

zD , ~20!
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and the fact that the DVV vertex is of conformal dimensi

( 3
2 , 3

2 ). Due to theSO(8) invariance, we can make a replac
ment2ka˜ka and after performing the conformal transfo
mationz˜1/z obtain

^Vg`
@k3 ,z3 ;k4 ,z4#~`!VIJ~1,1!VKL~u,ū!

3Vg0
@k1 ,z1 ;k2 ,z2#~0,0!&*

5^Vg
`
21@k3 ,z3 ;k4 ,z4#~`!VIJ~1,1!VKL~u,ū!

3Vg
0
21@k1 ,z1 ;k2 ,z2#~0,0!&
n

n

06600
5^Vg8̀ @k3 ,z3 ;k4 ,z4#~`!VI 8J8~1,1!VK8L8~u,ū!

3Vg0
@k1 ,z1 ;k2 ,z2#~0,0!&,

wherehPSN is the solution ofh21g0
21h5g0 and

h21g`
21h5g8̀ , h21gIJh5gI 8J8 , h21gKLh5gK8L8 .

Now we apply this result to find the complex conjugate
F(u,ū):
F~u,ū!* 5
2C0C`

N! (
h`PSN

8 (
I ,J;K,L

^Vh
`
21g`h`

@k3 ,z3 ;k4z4#~`!VIJ~1,1!VKL~u,ū!Vg0
@k1 ,z1 ;k2 ,z2#~0,0!&*

5
2C0C`

N! (
h`PSN

8 (
I ,J;K,L

^Vh8`
21g`h8̀ @k3 ,z3 ;k4z4#~`!VI 8J8~1,1!VK8L8~u,ū!Vg0

@k1 ,z1 ;k2 ,z2#~0,0!&

5
2C0C`

N! (
h8̀ PSN

8 (
I 8,J8;K8,L8

^Vh8`
21g`h8̀ @k3 ,z3 ;k4z4#~`!VI 8J8~1,1!VK8L8~u,ū!Vg0

@k1 ,z1 ;k2 ,z2#~0,0!&

5F~u,ū!,
-

-

n

where

h21g0
21h5g0 , h21h`

21g`
21h`h5h8`

21g`h8̀

and the prime in the sum overh` indicates that we include
only terms which satisfy the monodromy conditio
h`

21g`h`gIJgKLg051. This completes the proof.
As was shown in@10#, using the globalSN invariance of

the model, one can recastF(u,ū) into the following form

F~u,ū!52N2Ak1
1k2

1k3
1k4

1S (
I 51

n`

^Vg`(I )~`!VI ,I 1N2n`
~1,1!

3Vn0N~u,ū!Vg0
~0,0!&1 (

I 51

N2n`

^Vg`(I )~`!

3VI ,I 1n`
~1,1!Vn0N~u,ū!Vg0

~0,0!&

1 (
J5n011

n`

^Vg`(J)~`!Vn0J~1,1!Vn`N~u,ū!

3Vg0
~0,0!&1 (

J5n01n`11

N

^Vg`(J)~`!Vn0J~1,1!

3Vn01n` ,N~u,ū!Vg0
~0,0!& D , ~21!

where the elementsg` have to be found from the equatio
g`gIJgKLg051.2 To simplify the notation, we did not ex
plicitly indicate the momentak and polarizationsz in Eq.
~21!.

Consequently, theS-matrix element is constructed from
the correlation functions

GIJKL~u,ū![^Vg`
@k3 ,z3 ;k4 ,z4#~`!VIJ~1,1!

3VKL~u,ū!Vg0
@k1 ,z1 ;k2 ,z2#~0,0!& ~22!

corresponding touuu,1 and the correlation functions ob
tained from Eq.~22! by interchanging (u,ū)↔(1,1) and
therefore corresponding touuu.1. Here all possible combi-
nations ofg` , gIJ andgKL , g0 are listed in Eq.~21!.

D. Correlation functions

Taking into account the definition~9! of Vg@ka ,za# and
the expression~12! for the DVV interaction vertex, we ob-
tain the holomorphic contribution to the correlation functio
~22!:

GIJKL~u!5GIJKL
ṁ1ṁ2ṁ3ṁ4z1

ṁ1z2
ṁ2z3

ṁ3z4
ṁ4 ,

2Here we assume for definiteness thatn0,n` .
3-6
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where

GIJKL
ṁ1ṁ2ṁ3ṁ45^sg`

@k3/2,k4/2#~`!t IJ
i ~1!tKL

j ~u!sg0

3@k1/2,k2/2#~0!&

3^Sg`

ṁ3ṁ4~`!S IJ
i ~1!SKL

j ~u!Sg0

ṁ1ṁ2~0!&

[^t it j&~u!GIJKL
ṁ1ṁ2ṁ3ṁ4i j

~u!. ~23!

Without any loss of generality, we will always assume th
the polarizationzṁn can be taken in the formzṁzn.

In the approach of@10#, the calculation of the correlation
function GIJKL(u) was based on the stress-energy ten
method @15# which requires the knowledge of the Gree
function for DN bosonic fields XI

i (z), I 51, . . . ,N, i
51, . . . ,D. Recall thatXI

i (z) have cyclic boundary condi
tions ~4! around the insertion points of the twist field
s (n)(z) and therefore the corresponding Green function
N-valued. So, to find the Green function, and conseque
the correlation functionGIJKL , one needs to construct th
N-fold map from thez-plane, on which it is multi-valued, to
the sphere, which we call thet-sphere, on which it is single
valued. According to@10#, this map is unique, and is give
by the formula

z5S t

t1
D n0S t2t0

t12t0
D N2n0S t12t`

t2t`
D N2n`

[u~ t !, ~24!

where we require the pointt5x to be mapped toz5u. Due
to the projective invariance, the positions of pointst0 , t1,
and t` can be chosen to depend onx in a specific manner
that ist05t0(x), t15t1(x), andt`5t`(x), and one possible
choice of this dependence is described in@10#. If we make
the substitution~see@10#!:

t05x21,

t`5x2
~N2n`!x

~N2n0!x1n0
,

t15
N2n02n`

n`
1

n0x

n`
2

N~N2n`!x

n`@~N2n0!x1n0#
.

Eq. ~24! transforms into a function ofx alone which can be
viewed as the 2(N2n0)-fold covering of theu-sphere by the
x-sphere. Since the number of nontrivial correlation fun
tions in Eq.~21! is also equal to 2(N2n0), as one can easily
verify, we see that thet-sphere can be represented as
union of 2(N2n0) domains and each domain, denoted
VIJKL , contains the pointx corresponding to some correla
tion function from Eq.~21!.

Finally note that as was shown in@10#, the overall phase
of GIJKL(u) cannot be determined and, in principle, can d
pend on the indicesI ,J,K,L. However, below we will show
that the correlation function of the holomorphic sector
complex-conjugated to the correlation function of the an
holomorphic sector. Therefore, by combining the two s
06600
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tors, the phase ambiguity disappears. To prove this asser
we have to take into account the symmetry of a correlat
function under the change

sg@k/2#↔s̄g21@ k̃/2# and Sg
ṁ↔S̄g21

m

to obtain the equality

^Vg`
@k3 ,z3 ;k4 ,z4#~`!VIJ~1!VKL~u!

3Vg0
@k1 ,z1 ;k2 ,z2#~0!&

5^V̄g
`
21@ k̃3 ,z̃3 ; k̃4 ,z̃4#~`!V̄IJ~1!V̄KL~u!

3V̄g
0
21@ k̃1 ,z̃1 ; k̃2 ,z̃2#~0!&.

Then complex conjugating the obtained expression gives

^V̄g
`
21@ k̃3 ,z̃3 ; k̃4 ,z̃4#~`!V̄IJ~1!V̄KL~u!

3V̄g
0
21@ k̃1 ,z̃1 ; k̃2 ,z̃2#~0!&*

5 lim
z`˜`

lim
z0˜0

z
`

22Dg`
[k3 ,k4]

z
0

22Dg0
[k1 ,k2]

u23

3 K V̄g0
@2 k̃1 ,z̃1 ;2 k̃2 ,z̃2#S 1

z0
D V̄KLS 1

uD V̄IJ~1!

3V̄g`
@2 k̃3 ,z̃3 ;2 k̃4 ,z̃4#S 1

z`
D L .

Because of theSO(8) invariance of the correlation function
we can make the replacement2 k̃˜k, z̃˜z and after per-
forming the conformal transformationz˜1/z obtain

^Vg`
@k3 ,z3 ;k4 ,z4#~`!VIJ~1!VKL~u!

3Vg0
@k1 ,z1 ;k2 ,z2#~0!&*

5^V̄g`
@k3 ,z3 ;k4 ,z4#~`!V̄IJ~1!V̄KL~u!

3V̄g0
@k1 ,z1 ;k2 ,z2#~0!&.

By making the formal substitutionz˜ z̄, we arrive at the
correlation function of the anti-holomorphic sector conta
ing right-moving fermions instead of left-moving ones. Thu
if the anti-holomorphic sector is obtained from the holomo
phic one by the substitution:z˜ z̄, left-moving fermion
˜ right-moving fermion, then the overall phase
GIJKL(u,ū) is irrelevant.

Now we present the solution for the correlation functi
GIJKL(u) that was found in@10#. In particular,^t it j&(u) is
given by
3-7
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^t it j&~u!52d i j
4x~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

~n02n`!~x2a1!2~x2a2!2
1^t it j&k ,

^t it j&k52S @x1n0 /~N2n0!#

n0
k1

i 1
@x2~N2n02n`!/~N2n0!#

n`
k3

i 1
1

N2n0
k4

i D
3F ~x21!k1

j 1xk3
j 1

n02n`

N2n`
S x2

n0

n02n`
D k4

j G , ~25!

while the correlation functionGIJKL
ṁ1ṁ2ṁ3ṁ4i j (u) is equal to

GIJKL
ṁ1ṁ2ṁ3ṁ4i j

~u!5k1/2
iR4

26~n`2n0!~N2n0!
S n`n0~N2n`!

~N2n0! D 1/2S n`2n0

N2n0
D (1/4)k1k3 @x2n0 /~n02n`!#3

u3/2~x2a1!2~x2a2!2

3S x@x2~N2n02n`!/~N2n0!#

@x2n0 /~n02n`!# D 11(1/4)k1k4S ~x21!@x1n0 /~N2n0!#

@x2n0 /~n02n`!# D 11(1/4)k3k4

TIJKL
ṁ1ṁ2ṁ3ṁ4i j

~u!.

~26!

HereTIJKL
ṁ1ṁ2ṁ3ṁ4i j (u) is defined in theSU(4)3U(1) basis according to

TIJKL
A1A2A3A4A5A6~u!5C~g0 ,g`!

xd0~x21!d1@x1n0 /~N2n0!#d2@x2~N2n02n`!/~N2n0!#d3@x2n0 /~n02n`!#d4

@~x2a1!~x2a2!#d5
, ~27!
n
n

c

d
,

let

is

ri-
the coefficientsdi are given by

d05p1p41p6p11p6p4 , d15p6p31p6p41p3p4 ,

d25p1p21p6p11p6p2 , d35p6p21p6p31p2p3 ,

d45p6p11p6p31p1p3 , d552p5p6 ,

d65p1p51p3p51p1p32p2p6

and

uC~g0 ,g`!u5
n0

p1p5n`
p3p5~N2n`!p4p6~n`2n0!d42d5

~N2n0!d6
.

~28!

A few comments are in order. First, recall thatk was intro-
duced in Sec. II B as a multiplicative factor which compe
sates for the non-Abelian nature of the orbifold. This co
stant is equal to 23 ~for derivation see@10#!.

Secondly, computation of the fermionic correlation fun

tion ^Sg`

ṁ3ṁ4(`)S IJ
i (1)SKL

j (u)Sg0

ṁ1ṁ2(0)& was done by

bosonizing the fermions@10# in the framework of the
SU(4)3U(1) formalism@16# which is concisely presente
in Appendix B. Here we only note that in this formalism
there is a one-to-one correspondence between theSU(4)
3U(1) indexA[$A,Ā% and the weight vectorp. Specifi-
cally, if A corresponds to8v , thenpA(pĀ)5eA(2eA) and if
it corresponds to8c , then pA(pĀ)5qȦ(2qȦ), where 6eA

has componentsdB
A and6qȦ is defined in Eq.~B1!.
06600
-
-

-

Before we go on to consider the scattering amplitude,
us point out the remarkable property of^t it j&k , namely

^t1tm&k505^tmt1&k . ~29!

To prove this assertion, we note that the ‘‘1’’ light-cone
component of the first factor in̂t it j&k is equal to

@x1n0 /~N2n0!#

n0
k1

11
@x2~N2n02n`!/~N2n0!#

n`
k3

1

1
1

N2n0
k4

1

5
1

N F S x1
n0

N2n0
D2S x2

N2n02n`

N2n0
D2

N2n`

N2n0
G50,

~30!

while the ‘‘1’’ light-cone component of the second factor
equal to

~x21!k1
11xk3

11
n02n`

N2n`
S x2

n0

n02n`
D k4

1

5
1

N Fn0~x21!2n`x2~n02n`!S x2
n0

n02n`
D G50.

This property will be used in establishing the Lorentz inva
ance of scattering amplitudes.
3-8
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1. Scattering amplitude

Up to now we considered the correlation functio

GIJKL
ṁ1ṁ2ṁ3ṁ4(u,ū) correspoding touuu,1. It turns out that the

correlation function corresponding touuu.1 is again given
by Eq. ~26! and so the time-ordering in Eq.~17! can be
omitted. Consequently, from Eqs.~21!, ~22! and ~23!, we
find thatM is equal to

M52N2Ak1
1k2

1k3
1k4

1 (
IJKL

E d2uuuuGIJKL
ṁ1ṁ2ṁ3ṁ4~u!ḠIJKL

n1n2n3n4

3~ ū!z1
ṁ1n1z2

ṁ2n2z3
ṁ3n3z4

ṁ4n4 .

Substituting Eq.~26! for the holomorphic part of the corre
lation functionGIJKL(u,ū) and its complex conjugate for th
anti-holomorphic part so as to get rid of the phase ambigu
we arrive at the following expression forM:

M5
R8

28Ak1
1k2

1k3
1k4

1 S n0n`~N2n`!

N~N2n0! D 2S n`2n0

N2n0
D (1/2)k1k3

3E d2uUdu

dxU
2Ux@x2~N2n02n`!/~N2n0!#

@x2n0 /~n02n`!#
U (1/2)k1k4

3U~x21!@x1n0 /~N2n0!#

@x2n0 /~n02n`!#
U (1/2)k3k4

3 (
IJKL

TIJKL
ṁ1ṁ2ṁ3ṁ4~u!TIJKL

n1n2n3n4~ ū!z1
ṁ1n1z2

ṁ2n2z3
ṁ3n3z4

ṁ4n4 ,

where we introduced a concise notation

TIJKL
ṁ1ṁ2ṁ3ṁ4~u!5^t it j&TIJKL

ṁ1ṁ2ṁ3ṁ4i j
~u!. ~31!

Recall that under the transformationu˜x, the u-sphere is
mapped onto the domainVIJKL . Taking this into account and
performing the change of variables@9#

z5
x@x2~N2n02n`!/~N2n0!#

@~n`2n0!/~N2n0!#@x2n0 /~n02n`!#

⇒dz5
~x2a1!~x2a2!

@~n`2n0!/~N2n0!#@x2n0 /~n02n`!#2
dx,

~32!

the expression forM assumes the conventional form

M5
R8

28Ak1
1k2

1k3
1k4

1 S n0n`~N2n`!

N~N2n0! D 2E d2zUdx

dzU
2

3uzu(1/2)k1k4u12zu(1/2)k3k4Tṁ1ṁ2ṁ3ṁ4~z!

3Tn1n2n3n4~ z̄!z1
ṁ1n1z2

ṁ2n2z3
ṁ3n3z4

ṁ4n4 . ~33!

Now it follows from Eq. ~15! that in the limit R˜`, the
expression for theS-matrix element to the second order
the coupling constantl is given by
06600
y,

^ f uSu i &52 il22282Ndm11m21m31m4,0dS (
i

ki
2D

3dDS (
i

k i D S )
i 51

4

~ki
1!e(ṁ i )~ki

1!e(n i )

)
i 51

4

ki
1 D 1/2

I~z;k!

~34!

where

I~z;k!5S n0n`~N2n`!

N2n0
D 2S )

i 51

4

~ki
1!2e(ṁ i )~ki

1!2e(n i )D 1/2

3E d2zUdx

dzU
2

uzu(1/2)k1k4u12zu(1/2)k3k4Tṁ1ṁ2ṁ3ṁ4~z!

3Tn1n2n3n4~ z̄!z1
ṁ1n1z2

ṁ2n2z3
ṁ3n3z4

ṁ4n4 . ~35!

Here e (ṁ i )(e (n i )) is equal to 0, ifṁ i(n i) corresponds to8v

and is equal to 1, ifṁ i(n i) corresponds to8c (8s). Also note
that we have restoredd-functions responsible for the mo
mentum conservation law and represented the light-cone
mentaki

1 aski
15mi /N. In the next section, we will compute

all open string kinematical factors and show that all dep
dence onN in I(z;k) is absorbed into the light-cone mo
mentaki

1 and, hence, we are justified to consider the lim
N˜` in Eq. ~34!. In this limit, the combination
Ndm11m21m31m4,0 goes tod(( iki

1) and formula ~34! ac-
quires the form

^ f uSu i &52 il2dD12S (
i

ki
mD S )

i 51

4

~ki
1!e(ṁ i )~ki

1!e(n i )

)
i 51

4

ki
1 D 1/2

3228I~z;k!. ~36!

In order to extract the scattering amplitudeA(1,2,3,4) from
theS-matrix element, one needs to make use of the reduc
formula, namely

^ f uSu i &52 idD12S (
i

k i
mD S )

i 51

4

~ki
1!e(ṁ i )~ki

1!e(n i )

)
i 51

4

ki
1 D 1/2

3A~1,2,3,4!. ~37!

Using Eq.~36! for the S-matrix element and taking into ac
count the reduction formula, we obtain the general expr
sion for the four particle scattering amplitudeA(1,2,3,4):

A~1,2,3,4!5l2228I~z;k!.
3-9



o

ng

i-
in

in

pa

t

tor
t-
ela-

-

ing

t a

G. ARUTYUNOV, S. FROLOV, AND A. POLISHCHUK PHYSICAL REVIEW D60 066003
Consequently, the problem of findingA(1,2,3,4) in the
SNR8 orbifold sigma model is reduced to the calculation
I(z;k). In the next section, we will find thatI(z;k) can be
written in the form which is standard in the superstri
theory, namely

I~z;k!5K~z;k!K~z;k!C~s,t,u!, ~38!

where

C~s,t,u!52p
G~2s/8!G~2t/8!G~2u/8!

G~11s/8!G~11t/8!G~11u/8!
. ~39!

Here we introduced open string kinematical factorsK(z;k)
which we will show coincide with the well-known kinemat
cal factors obtained in the framework of the superstr
theory.

III. KINEMATICAL FACTORS

A. Vector particle1vector particle ˜ fermion1fermion

To conform with the standard notation of the superstr
theory, let us denote the polarization of a left-~right-! moving
fermion byuȧ(ua) instead ofz ȧ(za) preservingz for polar-
izations of massless vector particles.

As follows from Eqs.~38! and ~35!, in order to find the
kinematical factor corresponding to two massless vector
ticles in the inital state~i.e., ṁ1˜ i 1 , ṁ2˜ i 2) and two fer-
mions in the final state~i.e., ṁ3˜ȧ3 , ṁ4˜ȧ4), one first has
to find

Ti 1i 2ȧ3ȧ4~z!5^t it j&~z!Ti 1i 2ȧ3ȧ4i j ~z!, ~40!

where the spin-tensorTi 1i 2ȧ3ȧ4i j (z) is determined up to an
unknown phase by Eq.~27!. The overall phase is irrelevan
06600
f

g

g

r-

in our computations, since we choose the kinematical fac
of the right-moving sector to coincide with that of the lef
moving sector. Nevertheless, it is essential to know the r
tive phases, ofTi 1i 2ȧ3ȧ4i j (z) for different values ofSO(8)
indices i m and ȧn . In order to fix these phases, we decom
pose the spin-tensorTi 1i 2ȧ3ȧ4i j (z) into the sum ofSO(8)
invariant rank six spin-tensors:

Ti 1i 2ȧ3ȧ4i j ~z!5 1
4 g [ i 1i 2i j ]

ȧ3ȧ4
C1~z!1 1

2 g [ i 1i 2]
ȧ3ȧ4

d i j C2~z!

1 1
2 g [ i 2 j ]

ȧ3ȧ4
d i 1iC3~z!1 1

2 g [ i 2i ]
ȧ3ȧ4

d i 1 jC4~z!

1 1
2 g [ i 1 j ]

ȧ3ȧ4
d i 2iC5~z!

1 1
2 g [ i 1i ]

ȧ3ȧ4
d i 2 jC6~z!1 1

2 g [ i j ]
ȧ3ȧ4

d i 1i 2C7~z!

1d ȧ3ȧ4
d i 1i 2d i j C8~z!1d ȧ3ȧ4

d i 1id i 2 jC9~z!

1d ȧ3ȧ4
d i 1 jd i 2iC10~z!.

By using theSU(4)3U(1) basis, the functionC1(z) and
C2(z) can be determined up to a phase using the follow
relations:

T1̄24̇4̇3̄4̄52C1 ,

T1̄4̄3̇4̇2̄252
1

2
C12C2 ,

T1̄4̄3̇4̇22̄5
1

2
C12C2 .

Since we know all three functions up to a phase, we ge
nontrivial equation onC1(z) and C2(z) allowing us to de-
termine their relative sign. Namely, from Eq.~27! with the
account of the normalization constant~28!, one obtains
atisfied
e

ntity
2C1;
N2n0

n`2n0

eiw1

x@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#
,

2
1

2
C12C2;

N2n0

n`2n0

eiw2

x~x2a1!~x2a2!
,

1

2
C12C2;

n`~N2n`!

~n`2n0!2

eiw3

@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#~x2a1!~x2a2!
, ~41!

where a common multiplier in all three functions was omitted. Now it can be easily verified that the last equation is s
only if eiw15eiw252eiw3. Since we proved that the overall phase is irrelevant, we can seteiw51 and proceeding in the sam

manner, fix relative signs of all 10 functionsCi(z). For convenience in later computations, it is useful to rewriteTi 1i 2ȧ3ȧ4i j (z)
in terms of ordinary products ofg ’s instead of their antisymmetric combinations. This is achieved with the help of ide
~A3!. The final answer forTi 1i 2i 3i 4i j (z) is
3-10
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Ti 1i 2ȧ3ȧ4i j ~z!5@n`~N2n`!#21/2 H 1

4

N2n0

n`2n0

~g i 1g i 2g ig j ! ȧ3ȧ4

x@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

1
1

2
x~x21!

~g ig j ! ȧ3ȧ4
d i 1i 2

@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#
2

1

2

N2n0

n0

~g i 2g j ! ȧ3ȧ4
d i 1i

x~x21!@x2~N2n02n`!/~N2n0!#

2
1

2

N2n`

n`2n0

~g i 2g i ! ȧ3a4
d i 1 j

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
1

2

N2n0

n`2n0

~g i 1g j ! ȧ3ȧ4
d i 2i

x~x21!@x2n0 /~n02n`!#

1
1

2

N2n`

n`2n0

~g i 1g i ! ȧ3ȧ4
d i 2 j

@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
1

2

n`~N2n`!

~n`2n0!2

~g i 1g ı2! ȧ3ȧ4
d i j

~x2a1!~x2a2!@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

1
N2n`

n`2n0
x~x21!

d i 1 jd i 2id ȧ3ȧ4

@x1n0 /~N2n0!#@x2n0 /~n02n`!#

1
N2n`

n0

d i 1id i 2 jd ȧ3ȧ4

~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#

2
n`~N2n`!

~n`2n0!~N2n0!

d i 1i 2d i j d ȧ3ȧ4

~x2a1!~x2a2!~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#J . ~42!

Next we contractTi 1i 2ȧ3ȧ4i j (z) with ^t it j& and substitute the result thus obtained into Eq.~40!. After long and tedious
calculations, we arrive at the following expression forI(z;k):

I~z;k!5E d2zuzu(1/2)k1k422u12zu(1/2)k3k422T@u3 ,z2 ,z1 ,u4#~z!T@u3 ,z2 ,z1 ,u4#~ z̄!, ~43!

where

T@u3 ,z2 ,z1 ,u4#~z!5
N

4n`
$~z21!~g i 1g i 2g ig j ! ȧ3ȧ4

t i j 12~g ig j ! ȧ3ȧ4
d i 1i 2t i j 22~g i 1g i ! ȧ3ȧ4

pii 222~g i 2g i ! ȧ3ȧ4
qii 1

24d ȧ3ȧ4
r i 1i 2%z1

i 1z2
i 2u3

ȧ3u4
ȧ4 . ~44!

Here to simplify the notation, we introduced the following tensors:

t i j 5k3
i k1

j 1
n`

N2n`
k1

i k4
j 1

n0

N2n`
k3

i k4
j 1

n`~N2n`!

n0
k1

i k1
j ,

pii 25
n0n`

n`2n0
S N2n`

n`2n0

x~x21!

@x2n0 /~n02n`!#

^t i 2
t i&k2^t it i 2

&k

~x2a1!~x2a2!
1

^t i 2
t i&k

@x2n0 /~n02n`!#
D ,

qii 15
n`~N2n0!

n`2n0
S S x1

n0

N2n0
D ^t i 1

t i&k2^t it i 1
&k

~x2a1!~x2a2!
1

^t it i 1
&k

@x2n0 /~n02n`!#
D ,

r i 1i 25
n`~N2n`!

n`2n0
S x

^t i 1
t i 2

&k2^t i 2
t i 1

&k

~x2a1!~x2a2!
1

^t i 2
t i 1

&k

@x2n0 /~n02n`!#
D . ~45!
066003-11
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Note that we purposefully wrote these tensors in terms of
variablex, even though it presents no difficulty to expre
them in terms ofz. The point is that by writing them in this
form, we can clearly see that all ‘‘1’’ light-cone components
vanish due to Eq.~29!.

Next we turn to the issue of the Lorentz invariance of t
theory. To this end, we introduce ten pure imaginary
332 G-matrices which satisfy the Clifford algebra$Gm,Gn%
522hmn. TheseG matrices are constructed as tensor pro
ucts of 232 Pauli matricess i ,i 51,2,3 and 16316 matrices
g i i 51, . . . ,8:

g i5S 0 gaȧ
i

g ȧa
i 0

D ,

wheregaȧ
i andg ȧa

i are defined in Eq.~A1!. Light-cone com-
ponents of ten-dimensional gamma matrices, i.e.,G15G0

1G9 and G25G02G9, are nilpotent: (G1)25(G2)250.
Evidently, in the integrand~43!, transversal components o
ten-dimensional matrices will be contracted with fermi
wave functionsuȧ (ua). In the light-cone coordinates, th
32-component Majorana-Weyl spinoru, G11u51u, assumes
the form (uȧ,0,0,ua). This spinor satisfies the massless Dir
equationkmGmu50, or equivalentlyūGmkm50, whereū is
the Dirac conjugated spinor, i.e.,ū5uTG0. In the chosen
basis, the Dirac equation takes the form~see, e.g.,@16#!

k1ua1gaȧ
i

kiuȧ50, ~46!

k2uȧ1g ȧa
i

kiua50. ~47!

The first of these equations allows one to expressua in terms
of uȧ:

ua52
1

k1
gaȧ

i
kiuȧ. ~48!

Therefore, eight components ofuȧ correspond to eight physi
cal degrees of freedom. Upon the substitution of Eq.~48!

into Eq.~47!, one obtains the equation onuȧ which is just the
Klein-Gordon equationk250. In order to express the inte
grand ~44! in terms of ten-dimensionalG-matrices and 32-
component Majorana-Weyl spinors,ui we need the follow-
ing identities:

u1
ȧ~g i 1g i 2g i 3g i 4! ȧḃu2

ḃ5 1
2 ū1G1G i 1G i 2G i 3G i 4u2 ,

u1
ȧ~g i 1g i 2! ȧḃu2

ḃ52 1
2 ū1G1G i 1G i 2u2 ,
06600
e

2

-

u1
ȧd ȧḃu2

ḃ5
1

2
ū1G1u2 ,

which can be easily verified by using the explicit form
G-matrices, provided in Appendix A. Now it is straightfo
ward to replace transversal 838 g-matrices with 32332
G-matrices and 8-component spinorsuȧ, ua with 32-
component Majorana-Weyl spinorsu. In addition to fermion
wave functions, the integrand~43! also depends on vecto
polarizations. As usual, in ten dimensions, a polarization o
massless vector particle satisfies the transversality condi
kmzm50. In the light-cone gauge, the polarization obe
z150 allowing us to express the componentz2 in terms of
z i andkm asz252kiz i /k1. In our model, we only deal with
eight transversal polarizationsz i and can treat this equatio
as the definition of the light-cone polarizationz2. An impor-
tant property of the light-cone gauge is thatz1

i z2
i 5z1

mz2
m

[(z1z2) which is a direct consequence ofz1
15z2

150.
Clearly, the integrand in Eq.~43! depends on scalar produc
of transversal momentaki with z i . It turns out that by using
the light-cone momenta and polarizationsk2 and z2, the
integrand can be written via scalar products of te
dimensional vectors. To show that this is indeed the case
first note thatt i 15t1 i50 and the same holds for all tenso
in Eq. ~45!. This is a direct consequence of Eq.~29!. Taking
into account$G i ,G1%50 and (G1)250, the first term in Eq.
~44! becomes

ū1G1G i 1z i 1G i 2z i 2G i t i j G ju25ū1G1G i 1z i 1G i 2z i 2G i~ 1
2 G1t i 2

1t inGn!u2

5ū1G1G i 1z i 1G i 2z i 2G i t inGnu2

5 . . .

5ū1G1Gz1Gz2GmtmnGnu2 .

Proceeding in the same manner, we find

ū1G1G i^t it j&G
ju25ū1G1Gm^tmtn&G

nu2 ,

ū1G1G i 1z i 1G i 2z i 2u25ū1G1Gz1Gz2u2 ,

ū1G1G i 1z i 1G i^t it i 2
&z i 2u25ū1G1Gz1Gm^tmtn&z

nu2 .

Imposing the Dirac equationk4mGmu450 and the transver-
3-12
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sality condition k1mz1
m505k2mz2

m , the expression for
T@u3 ,z2 ,z1 ,u4#(z) acquires a particularly simple form:

T@u3 ,z2 ,z1 ,u4#~z!

5
N

4n`
$~z21! 1

2 ū3G1Gz1Gz2Gk3Gk1u4

2ū3G1Gk3Gk1u4z1z212ū3G1Gz1@~z21!Gk1z2k3

2zGk3z2k1#u412ū3Gz2@~z21!~Gk3z1k42Gk1z1k3!

14zGk3z1k2#u422ū3G1u4@z1k4z2k32zz1k3z2k4#%.

The last step in renderingT@u3 ,z2 ,z1 ,u4#(z) the Lorentz
covariant form, requires us to impose the Dirac equat
ū3Gmk3m50. To this end, one has to anticommuteGk3 all
the way to the left until it multiplies the spinorū3 and anni-
hilates it. This procedure will generate additional terms d
to the anticommutation relation ofG-matrices. The appear
ance of these terms can be easily traced in the example
low:

1
2 ū3G1Gz1Gz2Gk3Gk1u452 1

2 ū3G1Gz1Gk3Gz2Gk1u4

2ū3G1Gz1k3z2Gk1u4

5 1
2 ū3G1Gk3Gz1Gz2Gk1u4

1ū3G1z1k3Gz2Gk1u4

2ū3G1Gz1k3z2Gk1u4

52ū3Gz1Gz2Gk1u4k3
1

1ū3G1z1k3Gz2Gk1u4

2ū3G1Gz1k3z2Gk1u4 . ~49!

Proceeding in this fashion, it can be easily shown that
terms containingG1 cancel and we arrive at the followin
result:

T@u3 ,z2 ,z1 ,u4#~z!52
12z

4
ū3Gz2G~k11k4!Gz1u4

1
z

2
~ ū3Gz1u4k1z22ū3Gz2u4k2z1

2ū3Gk1u4z1z2!.
06600
n

e

e-
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Finally, we perform the integration over the sphere (z,z̄) to
get:

I~z;k!5K~u3 ,z2 ,z1 ,u4 ;k!K~u3 ,z2 ,z1 ,u4 ;k!C~s,t,u!,

where

K~u3 ,z2 ,z1 ,u4 ;k!5224H 2
s

2
ū3Gz2G~k11k4!Gz1u4

1t~ ū3Gz1u4k1z22ū3Gz2u4k2z1

2ū3Gk1u4z1z2!J . ~50!

Now one can recognize inK(u3 ,z2 ,z1 ,u4 ;k) the standard
open string kinematical factor of the superstring theory~see
@17#!. Futhermore, as was mentioned earlier, all depende
on N in K(u1 ,z2 ,u3 ,z4 ;k) was absorbed intok1.

B. Fermion1vector particle ˜ fermion1vector particle

The kinematical factor corresponding to a massless ve
particle and a fermion in the initial state and the same type
particles in the final state is computed in complete analo
with the kinematical factor found in the previous section.
particular, here we need to determine the spin-ten
Tȧ1i 2ȧ3i 4i j (z) which we decompose intoSO(8) invariant
rank six spin-tensors as follows

Tȧ1i 2ȧ3i 4i j ~z!5 1
4 g [ i 2i 4i j ]

ȧ1ȧ3
C1~z!1 1

2 g [ i j ]
ȧ1ȧ3

d i 2i 4C2~z!

1 1
2 g [ i 2 j ]

ȧ1ȧ3
d i 4iC3~z!

1 1
2 g [ i 2i ]

ȧ1ȧ3
d i 4 jC4~z!1 1

2 g [ i i 4]
ȧ1ȧ3

d i 2iC5~z!

1 1
2 g [ j i 4]

ȧ1ȧ3
d i 2 jC6~z!

1 1
2 g [ i 2i 4]

ȧ1ȧ3
d i j C7~z!1d ȧ1ȧ3

d i 2i 4d i j C8~z!

1d ȧ1ȧ3
d i 2id i 4 jC9~z!

1d ȧ1ȧ3
d i 2 jd i 4iC10~z!.

To fix the functionsCi(z), we transform to theSU(4)
3U(1) basis, as we did in the previous case. After fixi
relative signs ofCi(z), we arrive at the following expressio
for Tȧ1i 2ȧ3i 4i j (z):
3-13
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Tȧ1i 2ȧ3i 4i j ~z!5~n0n`!21/2H 1

4

~g i 1g i 2g ig j ! ȧ1ȧ3

x~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#

1
1

2

N2n0

n`2n0

~g ig j ! ȧ1ȧ3
d i 2i 4

x@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
1

2

n`

n`2n0

~g jg i 4! ȧ1ȧ3
d i 2i

x~x21!@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
1

2

~g ig i 4! ȧ1ȧ3
d i 2 j

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#

2
1

2

n`

n`2n0

~g i 2g j ! ȧ1ȧ3
d i 4i

~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
1

2

N2n0

N2n`

~g i 2g i ! ȧ1ȧ3
d i 4 j

x~x21!@x1n0 /~N2n0!#
1

1

2

n0

n`2n0

~g i 2g ı4! ȧ1ȧ3
d i j

x@x1n0 /~N2n0!#~x2a1!~x2a2!

2
n0

n`2n0

d i 2 jd i 4id ȧ1ȧ3
~x21!

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

1
n`~N2n0!

~n`2n0!~N2n`!

d i 2id i 4 jd ȧ1ȧ3
@x1n0 /~N2n0!#

x~x21!@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

1
n0~N2n0!

~n`2n0!2

d i 2i 4d i j d ȧ1ȧ3
~x21!

x@x2n0 /~n02n`!#~x2a1!~x2a2!J .

Next we contractTȧ1i 2ȧ3i 4i j (z) with ^t it j&(z) in order to obtainTȧ1i 2ȧ3i 45Tȧ1i 2ȧ3i 4i j ^t it j&. After long calculations, we find
that I(z;k) is equal to

I~z;k!5E d2zuzu(1/2)k1k422u12zu(1/2)k3k422Tȧ1i 2ȧ3i 4~z!Ta1 j 2a3 j 4~ z̄!u1
ȧ1a1z2

i 2 j 2u3
ȧ3a3z4

i 4 j 4 ,

where

Tȧ1i 2ȧ3i 4~z!5
1

8
~g i 2g i 4g ig j ! ȧ1ȧ3

N~N2n`!

n`2n0

^t it j&k2^t jt i&k

~x2a1!~x2a2!
1

1

4
~g ig j ! ȧ1ȧ3

d i 2i 4
N~N2n`!

n`2n0

^t it j&k2^t jt i&k

~x2a1!~x2a2!
~z21!

2
1

2
~g i 2g i ! ȧ1ȧ3

N~N2n0!

n`2n0
F ^t it i 4

&k2^t i 4
t i&k

~x2a1!~x2a2! S x2
N2n02n`

N2n0
D1

^t i 4
t i&k

@x2n0 /~n02n`!#
G

2
1

2
~g ig i 4! ȧ1ȧ3

N~N2n`!

~n`2n0!@x2n0 /~n02n`!#
F2

n`

n`2n0

^t it i 2
&k2^t i 2

t i&k

~x2a1!~x2a2! S x1
n0

N2n0
D1^t it i 2

&kG
1d ȧ1ȧ3

N~N2n`!

~n`2n0!@x2n0 /~n02n`!#
S n0

n`2n0

^t i 2
t i 4

&k2^t i 4
t i 2

&k

~x2a1!~x2a2!
1

N

N2n`
^t i 2

t i 4
&kD

1
1

4
~g i 2g i 4! ȧ1ȧ3

N

n0n`
@~N2n02n`!k3k41Nk1k4#2

1

2
d i 2i 4d ȧ1ȧ3

N

n0n`
@~n01n`!z1~N2n02n`!#k3k4 .
re
ion.
Note that in the last two lines, we took advantage of Eq.~29!

in order to obtain Lorentz invariant scalar products. To
write this expression in terms of ten dimensionalG-matrices
and 32-component Majorana-Weyl spinorsu1 and u3, we
06600
-
should proceed exactly as we did in the previous calculat
Namely, here we need the formulas

u1
ȧ~g ig jgkg l ! ȧḃu3

ḃ5 1
2 ū1G1G iG jGkG lu3 ,
3-14
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u1
ȧ~g ig j ! ȧḃu3

ḃ52 1
2 ū1G1G iG ju3 ,

u1
ȧd ȧḃu3

ḃ5 1
2 ū1G1u3 .

Taking into account these formulas as well as the prop
~29!, the nilpotency ofG1 and the fact that$G i ,G1%50, then
after some algebra, we find thatT@u1 ,z2 ,u3 ,z4#

5Tȧ1i 2ȧ3i 4u1
ȧ1z2

i 2u3
ȧ3z4

i 4 is equal to

T@u1 ,z2 ,u3 ,z4#~z!5
N

4n0
S 1

2
ū1G1Gz2Gz4Gk1Gk4u3

2ū1G1Gk1Gk4u3z2z4

1ū1G1~Gz2Gmrmnz4
n

2Gz4GmpI
mnz2

n!u3

12ū1G1u3~z2
mqmnz4

n2z4
mpII

mnz2
n! D .

Here for convenience, we introduced the following tenso

rmn5k4
mk1

n2zk1
mk3

n2~z21!k1
mk1

n ,

pI
mn5~z21!k1

mk4
n1k4

mk1
n ,

pII
mn5S 12

N

n`
D k3

mk1
n1

n0

n`
~z21!k3

mk4
n1~z21!k1

mk4
n ,

qmn5~z21!k1
mk2

n1
n0

n`
~z21!k4

mk3
n2

N

n`
k1

mk3
n .

To cast the integrand into the Lorentz covariant form,
impose the Dirac equationū1Gmk1m50. Then all non-
covariant terms, i.e., terms containingG1, cancel and we
obtain:
i

fir
ns

06600
ty

e

I~z;k!5E d2zuzu(1/2)k1k422u12zu(1/2)k3k422

3T@u1 ,z2 ,u3z4#~z!T@u1 ,z2 ,u3z4#~ z̄!,

where

T@u1 ,z2 ,u3z4#~z!5
z

4
ū1Gz2G~k31k4!Gz4u3

1
12z

4
ū1Gz4G~k21k3!Gz2u3 .

Finally, we perform the integration over the sphere (z,z̄) to
get:

I~z;k!5K~u1 ,z2 ,u3 ,z4 ;k!K~u1 ,z2 ,u3 ,z4 ;k!C~s,t,u!,

where

K~u1 ,z2 ,u3 ,z4 ;k!5224S t

2
ū1Gz2G~k31k4!Gz4u3

1
s

2
ū1Gz4G~k21k3!Gz2u3D .

Now one can recognize inK(u1 ,z2 ,u3 ,z4 ;k) the standard
open string kinematical factor of the superstring theory~see
@17#!.

C. Fermion1fermion ˜ fermion1fermion

Finally, we consider the kinematical factor correspondi
to two fermions in the initial and final states. Our first task
to decomposeTȧ1ȧ2ȧ3ȧ4i j (z) into SO(8) invariant rank six
spin-tensors. This decomposition is given by
Tȧ1ȧ2ȧ3ȧ4i j ~z!5 1
4 g [ ik]

ȧ1ȧ2
g [k j ]

ȧ3ȧ4
C1~z!1 1

2 g [ i j ]
ȧ3ȧ4

d ȧ1ȧ2
C2~z!1 1

2 g [ i j ]
ȧ2ȧ4

d ȧ1ȧ3
C3~z!1 1

2 g [ i j ]
ȧ2ȧ3

d ȧ1ȧ4
C4~z!

1 1
2 g [ i j ]

ȧ1ȧ4
d ȧ2ȧ3

C5~z!1 1
2 g [ i j ]

ȧ1ȧ3
d ȧ2ȧ4

C6~z!1 1
2 g [ i j ]

ȧ1ȧ2
d ȧ3ȧ4

C7~z!1d ȧ1ȧ4
d ȧ2ȧ3d i j C8~z!

1d ȧ1ȧ3
d ȧ2ȧ4d i j C9~z!1d ȧ1ȧ2

d ȧ2ȧ4d i j C10~z!. ~51!
All other SO(8) invariant spin-tensors can be expressed
terms of linear combinations of spin-tensors from Eq.~51!
and therefore are not linearly independent. To see this,
note that the most general expression for such spin-te
n

st
or

should be at most fourth order ing ’s. Indeed, a term which is
of higher than fourth order ing ’s and which has only two
vector indices, namelyi andj, must contain contractions like
(k,lg

[kl]
ȧḃg [kl]

ċḋ where ȧ,ḃ,ċ,ḋ are chosen from
3-15
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ȧ1 ,ȧ2 ,ȧ3 ,ȧ4. However, this contraction is just a liner com
bination of Kronecker deltas as follows from the identity:

(
k,l

g [kl]
ȧḃg [kl]

ċḋ58d ȧċd ḃḋ28d ȧḋd ḃċ . ~52!

However, in Eq.~51! we could have included spin-tenso
which are fourth order ing ’s and which are obtained from
g [ ik]

ȧ1ȧ2
g [k j ]

ȧ3ȧ4
by permuting spinor indicesȧ1 ,ȧ2 ,ȧ3 ,ȧ4.

Nonetheless, with the account of the identity
06600
~g igk! ȧḃ~gkg j ! ċḋ5~gkg j ! ȧḋ~g igk! ḃċ

12d ȧċ~g ig j ! ḃḋ12d ȧḃ~g ig j ! ċḋ

~53!

it becomes clear that there is only one independent s
tensor containing all fourg ’s and it is represented by the firs
term in Eq. ~51!. This identity is a direct consequence
~A4!. By using theSU(4)3U(1) basis, we fix all functions
Ci(z) and their relative phases. The final answer
Tȧ1ȧ2ȧ3ȧ4i j (z) is given by the following expression:
Tȧ1ȧ2ȧ3ȧ4i j ~z!5
n0

21/2~N2n0!21/2n`
21/2~N2n`!21/2

n`2n0

3H 2
~gkg i ! ȧ1ȧ2

~gkg j ! ȧ3ȧ4

4

~N2n0!~n`2n0!~x2a1!~x2a2!

x~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
~g ig j ! ȧ3ȧ4

d ȧ1ȧ2

2

n0~N2n0!

x~x21!@x1n0 /~N2n0!#@x2n0 /~n02n`!#

2
~g ig j ! ȧ2ȧ4

d ȧ1ȧ3

2

n0~N2n0!

x@x1n0 /~N2n0!#@x2n0 /~n02n`!#

2
~g ig j ! ȧ2ȧ3

d ȧ1ȧ4

2

n0~N2n`!

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

2
~g ig j ! ȧ1ȧ4

d ȧ2ȧ3

2

~N2n0!~n`!

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#

2
~g ig j ! ȧ1ȧ3

d ȧ2ȧ4

2

~N2n0!~N2n`!

~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#@x2n0 /~n02n`!#

1
~g ig j ! ȧ1ȧ2

d ȧ3ȧ4

2

~N2n0!~n`2n0!

x~x21!@x1n0 /~N2n0!#

1d i j d ȧ1ȧ4
d ȧ2ȧ3

n0~N2n`!~x21!

x@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#~x2a1!~x2a2!

2d i j d ȧ1ȧ3
d ȧ2ȧ4

n0~N2n0!~N2n`!~x21!

~n`2n0!@x1n0 /~N2n0!#@x2n0 /~n02n`!#~x2a1!~x2a2!

1d i j d ȧ1ȧ4
d ȧ2ȧ3

n0n`~N2n`!

~n`!~x21!@x1n0 /~N2n0!#@x2n0 /~n02n`!#~x2a1!~x2a2!
J .

The contraction ofTȧ1ȧ2ȧ3ȧ4i j (z) with ^t it j&(z) is most conveniently performed, if we express^t it j&k in the form

^t it j&k5S x

n0
k1

i 2
1

N2n0
k2

i 1
~x21!

n`
k3

i D F ~x21!k1
i 2xk3

i 1
n02n`

N2n`
S x2

n0

n02n`
D k4

i G[tabka
i kb

j ,
3-16
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obtained from Eq.~25! by using the momentum conservatio
law: k11k21k31k450. Since the first term in̂t it j& con-
tainsd i j , its contraction with (gkg i) ȧ1ȧ2

(gkg j ) ȧ3ȧ4
will pro-

duce terms which are lower than fourth order ing ’s and
which at present do not interest us. So, consider contrac
the spin-tensor (gkg i) ȧ1ȧ2

(gkg j ) ȧ3ȧ4
, i.e., the first term in

Eq. ~51!, with ^t it j&k and fermionic polarizationsui
ȧi :

2~gkg i ! ȧ1ȧ2
~gkg j ! ȧ3ȧ4

u1
ȧ1u2

ȧ2u3
ȧ3u4

ȧ4^t it j&k

52 1
4 ū1GkG iG1u2ū3GkG jG1u4^t it j&k

52 1
4 ū1GmGrG1u2ū3GmGsG1u4t24k2

rk4
s

2 1
4 ū1GmGrG1u2ū3GmGsG1u4t21k2

rk1
s

2 1
4 ū1GmGrG1u2ū3GmGsG1u4t31k3

rk1
s

2 1
4 ū1GmGrG1u2ū3GmGsG1u4t34k3

rk4
s . ~54!

Here again we used the property of^t it j&k , namely Eq.~29!,
the nilpotency ofG1 and the fact thatu satisfies the Dirac
g

06600
g

equation. After commutingGr andGs throughG1 and im-
posing the Dirac equation, the first term in Eq.~54! becomes

2 1
4 ū1GmGrG1u2ū3GmGsG1u4t24k2

rk4
s

52ū1Gmu2ū3Gmu4t24k2
1k4

1 . ~55!

In order to make use of the Dirac equation in the remain
three terms of Eq.~54!, we are in need of the identity

ū1GmGrG1u2ū3GmGsG1u452ū1GmGsG1u4ū2G1GrGmu3

24ū1Gmu3ū4Gmu2hr1hs1

22ū1Gmu3ū4~GsG1Gmhr1

1GmG1Grhs1!u2 ,

which allows one to placeGr next tou2 ~or u3) when it is
contracted withk2

r ~or k3
r) thereby making it possible to im

pose the Dirac equation. This identity just like Eq.~53! is a
direct consequence of Eq.~A4!. As a result of this procedure
and with the account of Eqs.~54! and ~55!, we obtain:
Tȧ1ȧ2ȧ3ȧ4~z!u1
ȧ1u2

ȧ2u3
ȧ3u4

ȧ45
~N2n0!~n`2n0!

N2

~x2a1!~x2a2!

x~x21!@x1n0 /~N2n0!#@x2~N2n02n`!/~N2n0!#

3S 2ū1Gmu3ū4Gmu2

N2n0

n`2n0

~x21!@x1n0 /~N2n0!#

@x2n0 /~n02n`!#
1ū1Gmu2ū3Gmu4D .

Substituting this result into Eq.~35!, we arrive at the expression forI(z;k)

I~z;k!5E d2zuzu(1/2)k1k422u12zu(1/2)k3k422T@u1 ,u2 ,u3 ,u4#~z!T@u1 ,u2 ,u3 ,u4#~ z̄!,

where

T@u1 ,u2 ,u3 ,u4#~z!5
12z

4
ū1Gmu3ū4Gmu21

1

4
ū1Gmu2ū3Gmu452

12z

4
ū2Gmu3ū1Gmu41

z

4
ū1Gmu2ū4Gmu3 .
fac-
ich
Finally, we perform the integration over the sphere (z,z̄) to
get:

I~z;k!5K~u1 ,u2 ,u3 ,u4 ;k!K~u1 ,u2 ,u3 ,u4 ;k!C~s,t,u!,

where

K~u1 ,u2 ,u3 ,u4 ;k!5224S 2
s

2
ū2Gmu3ū1Gmu4

1
t

2
ū1Gmu2ū4Gmu3D .

We recognize inK(u1 ,u2 ,u3 ,u4 ;k) the standard open strin
kinematic factor of the superstring theory~see@17#!. For the
sake of completeness below, we provide the kinematical
tor corresponding to four massless vector particles wh
was calculated in@10#.

D. Vector particle 1 vector particle ˜ vector particle
1 vector particle

The four graviton scattering amplitude was found in@10#
and is equal to

A~1,2,3,4!5l2228I~z;k!,

where

I~z;k!5K~z1 ,z2 ,z3 ,z4 ;k!K~z1 ,z2 ,z3 ,z4 ;k!C~s,t,u!

and
3-17
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K~z1 ,z2 ,z3 ,z4 ;k!5222S 2 1
4 ~stz1z3z2z41suz2z3z1z4

1tuz1z2z3z4!1
s

2
~z1k4z3k2z2z4

1z2k3z4k1z1z3

1z1k3z4k2z2z31z2k4z3k1z1z4!

1
t

2
~z2k1z4k3z3z11z3k4z1k2z2z4

1z2k4z1k3z3z41z3k1z4k2z1z2!

1
u

2
~z1k2z4k3z3z21z3k4z2k1z1z4

1z1k4z2k3z3z41z3k2z4k1z1z2! D .

IV. CONCLUSION

In this paper, we obtained kinematical factors and the
fore scattering amplitudes for all massless particles of t
IIA superstrings directly from the interactingSNR8 orbifold
sigma model. Our kinematical factors showed to coinc
with those obtained in the framework of the superstr
theory. This provides further evidence of the duality betwe
the YM theory in the IR limit and the superstring theory
the week coupling limit.

In computing the scattering amplitudes, we did not i
pose any kinematic restrictions on momenta and polar
tions of particles. Nevertheless, the obtained kinematical
tors which define scattering amplitudes exhibit manif
Lorentz invariance even at finiteN. All dependence onN was
absorbed into the light-cone momentak1.

Moreover, if one restores the dependence on the ra
R2 of the compactified directionx2 ~remind thatN was
identified with R2), then any dependence onN disappears.
Since theSNR8 orbifold model can be embedded into th
S`R8 orbifold model, this suggests that the latter might ha
a deformed~quantum! Lorentz symmetry realized in th

space of the twist fieldsS (n)
ṁ . The deformation paramete

seems to be identified withexp(2p i /R2).
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APPENDIX A

We use the following representation ofg-matrices satis-
fying the relation
06600
-
e

e

n

-
a-
c-
t

us

e

e
e

nt
t

g i~g j !T1g j~g i !T52d i j I

g15S 1 0

0 1D ^ S 0 1

1 0D ^ S 0 1

21 0D
g25S 0 1

21 0D ^ S 0 1

21 0D ^ S 0 1

21 0D
g351 g45S 0 1

21 0D ^ S 1 0

0 1D ^ S 1 0

0 21D
g55S 1 0

0 1D ^ S 1 0

0 21D ^ S 0 1

21 0D
g652S 0 1

21 0D ^ S 1 0

0 1D ^ S 0 1

1 0D
g75S 1 0

0 21D ^ S 0 1

21 0D ^ S 1 0

0 1D
g85S 0 1

1 0D ^ S 0 1

21 0D ^ S 1 0

0 1D .

G05s2^ 116, ~A1!

G i5 is3^ S 0 g i

~g i !T 0 D ,

i 51, . . . ,8,

G95 is1^ 116,

G115G0G1 . . . G95s3^ s3^ 18 .

By definition,

Y [mnlr]5
1

4! (
P

~21!P(mnlr)YmYnYlYr

5
1

6
~Y [mn]Y [lr]1Y [lr]Y [mn]

2Y [ml]Y [nr]2Y [nr]Y [ml]1Y [mr]Y [nl]

1Y [nl]Y [mr] !. ~A2!

HereY can be eitherg or G.
In terms of ordinary products ofY-matricesY [mnlr] is

expressed as follows

Y [mnlr]5YmYnYlYr2YlYrhmn1YnYrhml

2YnYlhmr2YmYrhnl1YmYlhnr

2YmYnhlr1hmnhlr2hmlhnr1hmrhnl.

~A3!

In D510, G ’s satisfy the following equality~see, e.g.,@16#!:
3-18



lit

-

n

to

is

pin

LORENTZ INVARIANCE AND SUPERSYMMETRY OF . . . PHYSICAL REVIEW D 60 066003
~G0Gm!mn~G0Gm!pq1~G0Gm!mp~G0Gm!qn

1~G0Gm!mq~G0Gm!np50. ~A4!

Here it is assumed that spinor indices have definite chira

APPENDIX B

With respect to theSU(4)3U(1) subgroup representa
tions,8v , 8s and8c are decomposed as

8s˜41/214̄21/2, 8c˜421/214̄1/2, 8v˜601111121 .

The corresponding basis for the fermionsua and their spin
fields3 S ȧ andS i consistent with this decomposition is give
by

QA5
1

A2
~uA1 iuA14!, Q Ā5

1

A2
~uA2 iuA14!,

S Ȧ5
1

A2
~S Ȧ1 iS Ȧ14!, S AG 5

1

A2
~S Ȧ2 iS Ȧ14!,

SA5
1

A2
~S2A211 iS2A!, SĀ5

1

A2
~S2A212 iS2A!,

whereA51, . . . ,4.Note that the spin fieldsS4 andS 4̄ trans-
form as11 and121, respectively.

3See, e.g.,@18# for a detailed discussion of spin fields.
y

c-

06600
y.

Bosonization of the fermions and their twist fields up
cocycles is realized in terms of four bosonic fieldsfA as

QA5eiqB
AfB

, S Ȧ5eiqB
ȦfB

, SA5eifA
,

where the weights of the spinor representations8s and8c are
given by

q15 1
2 ~21,21,1,1!; q25 1

2 ~21,1,21,1!;

q35 1
2 ~1,21,21,1!; q45 1

2 ~1,1,1,1!;

q1̇5 1
2 ~21,1,1,1!; q2̇5 1

2 ~21,21,21,1!;

q3̇5 1
2 ~1,1,21,1!; q4̇5 1

2 ~1,21,1,1!. ~B1!

The Cartan generators ofSU(4)3U(1) in the bosonized
form look asHA5 i ]fA.

Bosonization of the fermions of the orbifold model
achieved by introducing 4N bosonic fields and reads as

Q I
A~z!5eiqB

Af I
B(z).

Twist fieldssg creating twisted sectors for the fieldsf I
A(z)

are introduced in the same manner as in Sec. II B. The s
twist fields of the orbifold model can be realized as

S(n)
Ȧ ~z!5e( i /n) (

I P(n)
qB

Ȧf I
B(z)s (n)~z!5s (n)@qȦ#~z!,

S(n)
A ~z!5e( i /n) (

I P(n)
f I

A(z)s (n)~z!5s (n)@eA#~z!,

~B2!

whereeA is a weight vector of8v with componentsdB
A .
s.

s.

-
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