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Abstract

The quadratic action for physical fields of type IIB supergravity model on AdS5×S5 is
derived starting from the recently found covariant action. All boundary terms that have
to be added to the action to be used in the AdS/CFT correspondence are determined.

1 Introduction

It is well-known that the covariant equations of motion for type IIB supergravity [1, 2, 3] can
not be derived from any action because of the presence of a self-dual five-form. However, after
eliminating some unphysical fields, one arrives at equations of motion which are not manifestly
covariant but admit a Lagrangian description. The formal covariance of the Lagrangian can
then be provided by introducing auxiliary non-propagating fields. This idea was successfully
applied in [4, 5] to construct a covariant action for type IIB supergravity. The covariance of
the action has to be taken with a grain of salt since one cannot impose any covariant gauge
conditions on the auxiliary fields. Nevertheless, the very existence of the action allows one to
study in detail the properties of supergravity. The existence of a covariant action for type IIB
supergravity has special interest due to the discovery of the duality between type IIB superstring
theory on the AdS5×S5 background and the four-dimensional N = 4 SU(N) super Yang-Mills
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model [6]. As was argued by Maldacena, in the large N limit and in the limit of large t’Hooft
coupling η = g2

Y MN the SYM model may be described by the classical type IIB supergravity
on AdS5 × S5. In particular, the physical fields of supergravity correspond to local primary
operators of the SYM model.

The conjecture by Maldacena was further elaborated by Gubser, Klebanov and Polyakov
[7] and by Witten [8], who proposed that the generating functional of the connected Green
functions in the SYM model coincides with the minimum of the supergravity action subject to
certain conditions imposed on supergravity fields1 at the boundary of AdS5 × S5. It is worth
noting that to make the AdS/CFT correspondence complete one has to add to a supergravity
action boundary terms. The origin of the boundary terms was recently clarified in [9], where it
was shown that they appear in passing from the Hamiltonian formulation of the supergravity
to the Lagrangian one.

The AdS/CFT correspondence has already been used in [10]-[24] to compute some two- and
three-point Green functions up to normalization constants, and some preliminary results on
four-point Green functions have also been obtained [25, 26, 27]. However, a detailed investi-
gation of the AdS/CFT correspondence requires the knowledge of the type IIB supergravity
action. In particular, to fix the normalization constants of two- and three-point Green functions
one has to know the quadratic and cubic actions for physical fields of supergravity. To this end
one may try to use the covariant action by [4, 5]. In a recent paper [18] the quadratic action
for scalar fields corresponding to the chiral primary operators in the N = 4 SYM was found
by comparing the on-shell values of the covariant action and the most general quadratic action
for the scalar fields. This method cannot be used to determine the complete quadratic type
IIB supergravity action, since for some fields, e.g. fermions, the on-shell value of the action
vanishes, if one does not take into account boundary terms which are in general unknown. Thus
the only way to find the quadratic action is to derive it directly from the covariant one.

The aim of the present paper is to determine the bulk quadratic action for physical fields of
type IIB supergravity. Then, by using the approach of [9] we find all boundary terms, that have
to be added to the bulk action in order to get the action that has to be used in the AdS/CFT
correspondence.

The plan of the paper is as follows. In Section II we briefly discuss the covariant action
of [4, 5] and calculate the quadratic covariant action including all (physical and unphysical)
fields of type IIB supergravity. In Section III we consider the part of the action that depends
on the gravitational fields and the 4-form potential and, in particular, reproduce the result
of [18]. However, contrary to the results of [18], there is no nonlocality in the action. The
antisymmetric tensor fields are considered in Section IV, where we represent the corresponding
action in the first-order formalism. The quadratic action for fermions is obtained in Section V.
In the Conclusion we discuss some possible applications of the results obtained and unsolved
problems. The mass spectrum we obtain coincides with the one found in [28, 29].

1The boundary conditions of [7, 8] can be imposed only on the supergravity physical fields that satisfy
second-order differential equations.
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2 Covariant action

The covariant action of [4, 5] for type IIB supergravity can be written in the form:

S =
1

2κ2

∫

d10x
√−g

(

R− 4

5!
FM1...M5

FM1...M5 +
1

3!

∂La∂Ka

(∂a)2
FLM1...M4

FKM1...M4

+
2

5!
εM1...M10FM1...M5

BM6M7
∂M8

CM9M10
− 3e−ϕ(∂[MBNK])

2 − 3eϕ(∂[MCNK] − χ∂[MBNK])
2

− 1

2
(∂Mϕ)2 − 1

2
e2ϕ(∂Mχ)2

)

+ S(ψ), (2.1)

where M,N, . . . ,= 0, 1, . . . 9 and we use the following notations

FM1...M5
= 5∂[M1

AM2...M5] + 15(B[M1M2
∂M3

CM4M5] − C[M1M2
∂M3

BM4M5]); F = F − F ∗

and all antisymmetrizations are with ”weight”1, e.g. 3∂[MBNK] = ∂MBNK−∂NBMK−∂KBNM .
The dual forms are defined as

ε01...9 =
√−g; ε01...9 = − 1√−g

εM1...M10 = gM1N1 · · · gM10N10εN1...N10

(F ∗)M1...Mk
=

1

k!
εM1...M10

FMk+1...M10 =
1

k!
εN1...N10gM1N1

· · · gMkNk
FNk+1...N10

.

S(ψ) denotes the part of the action that depends on fermions. Since the quadratic action
for fermions can be easily restored by using their equations of motion, we will discuss in this
Section only the bosonic part.

One can easily verify that (2.1) possesses all the gauge and global symmetries of the con-
ventional covariant equations of motion. However, the equations of motion that follow from
(2.1) differ from the conventional ones in many aspects. In particular, the 4-form potential now
satisfies a second-order differential equation.

The general covariance of the action is achieved by introducing an auxiliary scalar field a.
As was shown in [4, 5], there is a gauge symmetry of (2.1) that allows one to set a = x0. Under
this choice the action (2.1) does not depend on the components of the 4-form potential of the
form A0

MNP .
By using the units in which the radius of S5 is set to be unity, the AdS5 × S5 background

solution can be written as

B2 = C2 = ϕ = χ = 0

ds2 =
1

x2
0

(dx2
0 + ηijdx

idxj) + dΩ2
5 = ġMNdx

MdxN

Rabcd = −ġacġbd + ġadġbc; Rab = −4ġab

Rαβγδ = ġαγ ġβδ − ġαδġβγ; Rαβ = 4ġαβ

F̄abcde = εabcde; F̄αβγδε = εαβγδε, (2.2)

where a, b, c, . . . and α, β, γ, . . . are the AdS and the sphere indices respectively and ηij is the
4-dimensional Minkowski metric. Representing the gravitational field and the 4-form potential
as

gMN = ġMN + hMN ; AMNPQ = ȦMNPQ + aMNPQ,
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decomposing (2.1) up to the second order and omitting full-derivative terms, one obtains the
quadratic action2

S =
∫

d10x
√−g

(

−1

4
∇KhMN∇KhMN +

1

2
∇MhKN∇KhMN − 1

2
∇Nh

K
K∇Mh

MN

+
1

4
∇Mh

K
K∇MhN

N − 2

3!
hM

N h
K
L F̄MKM1M2M3

F̄NLM1M2M3 − 4

5!
fM1...M5

fM1...M5

− 8

5!
fM1...M5

TM1...M5 +
1

3!

∂La∂Ka

(∂a)2
(F + T )LM1...M4

(F + T )KM1...M4

+
4

5!
εM1...M10F̄M1...M5

BM6M7
∂M8

CM9M10
− 3(∂[MBNK])

2 − 3(∂[MCNK])
2

− 1

2
(∂Mϕ)2 − 1

2
(∂Mχ)2

)

+ S(ψ), (2.3)

where

fM1...M5
= 5∂[M1

aM2...M5]; F = f − f ∗

TM1...M5
=

1

2
hK

KF̄M1...M5
− 5hK

[M1
F̄M2...M5]K

One can easily check that the 5-form T is antiself-dual.
The gauge symmetry of (2.3) (and of (2.1)) allows one to impose the following gauge con-

ditions:

∇αhaα = 0 = ∇αh(αβ); h(αβ) ≡ hαβ − 1

5
ġαβh

γ
γ (2.4)

∇αaM1M2M3α = 0 (2.5)

∇αBMα = 0 = ∇αCMα (2.6)

This gauge choice does not remove all the gauge symmetry of the theory, for a detailed discussion
of the residual symmetry see [28].

We begin our study of the action with the most difficult part, describing the gravitational
fields and the 4-form potential.

3 Gravitational fields and the 4-form potential

In what follows it is convenient to make the change of variable x0 → ex0 . Then the component
ġ00 of the background metric is equal to unity. In the gauge a = x0 the quadratic action
describing the gravitational fields and the 4-form potential can be rewritten in the form

S(h, a) = S(h) + S(a) (3.1)

S(h) =
∫

d10x
√−g

(

−1

4
∇KhMN∇KhMN +

1

2
∇MhKN∇KhMN − 1

2
∇Nh

K
K∇Mh

MN

+
1

4
∇Mh

K
K∇MhN

N − 2

3!
hM

N h
K
L F̄MKM1M2M3

F̄NLM1M2M3 +
1

3!
T0µ1...µ4

T 0µ1...µ4

)

(3.2)

S(a) =
∫

d10x
√−g

(

− 4

5!
fM1...M5

fM1...M5 − 16

5!
fµ1...µ5

T µ1...µ5 +
1

3!
F0µ1...µ4

F0µ1...µ4

)

(3.3)

2In what follows we omit the common factor 1

2κ
2 in front of the action.
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where µ = 1, 2, . . . , 9.
Consider first the part depending on the 4-form potential. Taking into account that the

nonvanishing components of T are given by

Ta1...a5
= −1

2
(ha

a − hα
α)εa1...a5

; Tαa1...a4
= −hb

αεba1...a4

Tα1...α5
= −1

2
(ha

a − hα
α)εα1...α5

; Taα1...α4
= −hβ

aεβα1...α4
(3.4)

we rewrite the action (3.3) in the form

S(a) =
∫

d10x
√−g

(

− 1

2(3!)2
ε0µ1...µ9∂0aµ1...µ4

∂µ5
aµ6...µ9

− 5

3
∂[µ1

aµ2...µ5]∂
[µ1aµ2...µ5]

+
2

3
ε0ijklhα

0 (∂αaijkl − 4∂laijkα) − 1

3
(ha

a − hα
α)εα1...α5∂α5

aα1...α4

+
2

3
εαβγδεhi

ε(∂iaαβγδ − 4∂αaiβγδ)
)

. (3.5)

As was shown in [28], the gauge condition (2.5) implies that the components of the 4-form
potential of the form aiαβγ and aαβγδ can be represented as follows:

aiαβγ = εαβγ
δε∇δφiε; aαβγδ = εαβγδ

ε∇εb (3.6)

It is also convenient to introduce the dual 1- and 0-forms for aijkα and aijkl:

aijkα = εijk
lalα; aijkl = εijkla (3.7)

Then by using (3.6) and (3.7) and the gauge conditions (2.4) and (2.5), one gets the following
expression for the action (3.5):

S(a) =
∫

d10x
√−g

(

−16∂0b∇2
αa+ 8∇αa∇αa+ 8∇i∇2

αb∇ib− 8∇2
αb∇2

βb− 8(ha
a − hα

α)∇2
βb

+ 16∂0φ
α
i (∇2

β − 4)ai
α − 8aiα(∇2

β − 4)aiα + 8∇ia
i
α∇ja

jα + 16hα
0∇ia

i
α

+ 8∇iφjα(∇2
β − 4)(∇iφjα −∇jφiα) − 8(∇2

β − 4)φiα(∇2
γ − 4)φiα + 16hi

α(∇2
β − 4)φα

i

− 1

2
εi1...i4εα1...α5∂0ai1i2α1α2

∂α3
ai3i4α4α5

− 2∇iajkαβ(∇iajkαβ − 2∇jaikαβ)

+ 2aijαβ(∇2
γ − 6)aijαβ

)

. (3.8)

We see that (3.8) is a sum of actions for the scalar fields, the vector fields and the antisymmetric
tensor fields on AdS5.

The action for the antisymmetric fields will be treated first. Although the action is not
manifestly covariant with respect to the isometry group of AdS5, one achieves the covariance
by introducing the additional fields a0iαβ that obey the follo wing equations:

a0iαβ =
1

4
(−∇2

ρ + 6)−1εijklεαβγδε∇γ∇jaklδε

Then the action for the antisymmetric fields can be rewritten in the equivalent and manifestly
covariant form:

S =
∫

d10x
√−g

(

−1

2
εa1...a5εα1...α5∂a5

aa1a2α1α2
∂α3

aa3a4α4α5
+ 2aabαβ(∇2

γ − 6)aabαβ

)

. (3.9)
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Now expanding the fields aabαβ in terms of the spherical harmonics

aabαβ =
1

2
a+

abαβ +
1

2
a−abαβ , a±abαβ(x, y) =

∑

b
I10,±
ab (x)Y I10,±

[αβ] (y),

where the harmonics are eigenfunctions of the operator

(∗∇)Y[αβ] ≡ εαβ
γδε∇γY[δε]; (∗∇)Y k,±

[αβ] = ±2i(k + 2)Y k,±
[αβ] , k ≥ 0,

we rewrite action (3.9) as follows

S(bab) = −
∫

AdS5

d5x
√−ga

∑

(k + 2)
(

i

2
εa1...a5bk,+

a1a2
∂a3

bk,−
a4a5

+ (k + 2)bk,+
ab b

ab
k,−

)

. (3.10)

Here and in what follows we suppose that the spherical harmonics of all types are orthonormal.
We see that action (3.10) reproduces the part of the spectrum of [28, 29] for the antisymmetric
fields.

This action cannot be used in the AdS/CFT correspondence because it’s on-shell value
vanishes. As follows from [19], one has to add to (3.10) the boundary term

I(bab) =
∫

∂AdS5

d4x
√−ḡ

∑ k + 2

2
b
k,+
ij b

ij
k,−, (3.11)

where the indices i, j are contracted with the help of the metric induced on the boundary of
AdS5, and ḡ is the determinant of the induced metric. Then the sum of the bulk action (3.10)
and the boundary term (3.11) is the action that leads to the conformally-invariant two-point
Green functions [19].

Now consider the part of (3.8) that depends on the scalar fields b and a. Eliminating the
field a by using it’s equation of motion one gets

S(b) =
∫

d10x
√−g

(

−8∇a∇αb∇a∇αb− 8∇2
αb∇2

βb− 8(ha
a − hα

α)∇2
αb
)

(3.12)

Note that the action is manifestly covariant.
To represent the action for the vector fields in a covariant form we introduce an auxiliary

field ϕ0α which obeys the equation ϕ0α = ∇ia
i
α, and rewrite the action as follows

S(φ) =
∫

d10x
√−g

(

16∂0φ
α
i (∇2

β − 4)ai
α − 8aiα(∇2

β − 4)aiα + 16ϕ0α∇ia
iα − 8ϕ0αϕ

α
0

+ 16hα
0∇ia

i
α + 8∇iφjα(∇2

β − 4)(∇iφjα −∇jφiα)

− 8(∇2
β − 4)φiα(∇2

γ − 4)φiα + 16hi
α(∇2

β − 4)φα
i

)

(3.13)

The field aiα satisfies the following equation of motion

aiα = ∂0φiα + (−∇2
β + 4)−1∇i(ϕ0α + h0α).

Introducing the field φ0α by the formula (∇2
β − 4)φ0α = ϕ0α + h0α and eliminating the field aiα

from (3.13), we get

S(φ) =
∫

d10x
√−g

(

8∇aφbα(∇2
β − 4)(∇aφbα −∇bφaα) − 8(∇2

β − 4)φaα(∇2
γ − 4)φaα

+ 16ha
α(∇2

β − 4)φα
a − 8h0αh

0α
)

(3.14)
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Only the last term violates the manifest covariance of the action. However we will see in a
moment that this term is cancelled by a term coming from the action for the gravitational
fields.

To this end, by using the gauge conditions for the gravitational fields and eq.(3.4), we rewrite
the action S(h) as follows

S(h) =
∫

d10x
√−g

(

−1

4
∇Khab∇Khab +

1

2
∇ah

ab∇chcb −
1

2
∇ah

c
c∇bh

ba

+
1

4
∇Mh

a
a∇Mhb

b +
1

2
habh

ab +
1

2
(ha

a)
2

− 1

2
∇ah

α
α∇bh

ba +
1

2
∇bh

a
a∇bhα

α +
2

5
∇βh

a
a∇βhα

α + 2ha
ah

α
α

+
1

5
∇bh

α
α∇bh

β
β +

3

25
∇γh

α
α∇γh

β
β − 13

5
(hα

α)2

−1

4
∇Kh(αβ)∇Kh(αβ) − 1

2
h(αβ)h

(αβ)

−1

2
∇ahbα(∇ahbα −∇bhaα) − 1

2
∇βhaα∇βhaα − 6ha

αh
α
a + 8h0αh

0α

)

(3.15)

So, we see that although the gauge condition a = x0 violates the manifest covariance of the
quadratic action with respect to the action of the isometry group of AdS5 ×S5, one can restore
it by introducing auxiliary fields.

There is no problem with the fields h(αβ). Being expanded into spherical harmonics they
directly lead to the corresponding part of the spectrum of [28, 29].

Consider the action for the vector fields that is a sum of (3.14) and the last line of (3.15):

S(vect) =
∫

d10x
√−g

(

8∇aφbα(∇2
β − 4)(∇aφbα −∇bφaα) − 8(∇2

β − 4)φaα(∇2
γ − 4)φaα

+ 16ha
α(∇2

β − 4)φα
a − 1

2
∇ahbα(∇ahbα −∇bhaα) − 1

2
∇βhaα∇βhaα − 6ha

αh
α
a

)

(3.16)

Expanding the fields into a set of the spherical harmonics as follows

haα(x, y) =
∑

BI5
a (x)Y I5

α (y); φaα(x, y) =
∑

φI5
a (x)Y I5

α (y);

(∇2
β − 4)Y k

α = −(k + 1)(k + 3)Y k
α ,

and making the change of variables [28]

Ak
a = Bk

a − 4(k + 3)φk
a; Ck

a = Bk
a + 4(k + 1)φk

a

we obtain the final action for the vector fields:

S(vect) =
∫

AdS5

d5x
√−ga

∑

(

k + 1

2(k + 2)

(

−1

4
(Fab(A

k))2 − 1

2
(k2 − 1)(Ak

a)
2
)

+
k + 3

2(k + 2)

(

−1

4
(Fab(C

k))2 − 1

2
(k + 3)(k + 5)(Ck

a )2
)

)

, (3.17)

where Fab(A) = ∂aAb − ∂bAa.
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Now we proceed with the most complicated part of the action S(h, a) which depends on the
gravitational fields hab and the scalar fields hα

α and b:

S(hab, π, b) =
∫

d10x
√−g

(

−1

4
∇Khab∇Khab +

1

2
∇ah

ab∇chcb −
1

2
∇ah

c
c∇bh

ba

+
1

4
∇Mh

a
a∇Mhb

b +
1

2
habh

ab +
1

2
(ha

a)
2

− 1

2
∇aπ∇bh

ba +
1

2
∇bh

a
a∇bπ +

2

5
∇βh

a
a∇βπ + 2ha

aπ

+
1

5
∇bπ∇bπ +

3

25
∇γπ∇γπ − 13

5
π2

−8∇a∇αb∇a∇αb− 8∇2
αb∇2

βb− 8(ha
a − π)∇2

αb
)

(3.18)

where we denote hα
α = π, following [28].

First of all we need to remove the mixed terms of the form πhab and bhab, i.e. linear in hab.
To this end we make the following shift of the gravitational fields:

hab = ϕab +
1

5
ġabη + 2∇a∇bζ (3.19)

The requirement that there is no term linear in ϕab fixes η and ζ to be

ζ = (−∇2
α + 3)−1(

1

5
π − 6b); η = −10ζ − 20b− π (3.20)

Then after straightforward but cumbersome calculations the action (3.18) is found to be

S(hab, π, b) = S(ϕab) + S(π, b),

S(ϕab) =
∫

d10x
√−g

(

−1

4
∇Kϕab∇Kϕab +

1

2
∇aϕ

ab∇cϕcb −
1

2
∇aϕ

c
c∇bϕ

ba

+
1

4
∇Mϕ

a
a∇Mϕb

b +
1

2
ϕabϕ

ab +
1

2
(ϕa

a)
2
)

(3.21)

S(π, b) =
∫

d10x
√−g

(

4(−∇2
α + 3)−1(

1

5
π − 6b)(∇2

a − 5)(
1

5
π − 6b) + 48(∇ab)

2

−80(∇αb)
2 − 2

25
(∇aπ)2 − 2

25
(∇απ)2 − 16

5
∇ab∇aπ − 16∇αb∇απ + 240b2

−4π2 − 16bπ −8∇a∇αb∇a∇αb− 8∇2
αb∇2

βb
)

(3.22)

The absence of higher-derivative terms in (3.22) is explained by the general covariance of (2.1).
Now to get the final action for the scalar fields we expand them in the spherical harmonics

as

π(x, y) =
∑

πI1(x)Y I1(y); b(x, y) =
∑

bI1(x)Y I1(y); ∇2
αY

k = −k(k + 4)Y k
α ,

and make the redefinition of the fields [18]

πk = 10ksk + 10(k + 4)tk; bk = −sk + tk

8



Then, after some algebra we obtain the action

S(s, t) =
∫

AdS5

d5x
√−ga

∑

(

32k(k − 1)(k + 2)

k + 1

(

−1

2
∇ask∇ask −

1

2
k(k − 4)s2

k

)

+
32(k + 2)(k + 4)(k + 5)

k + 3

(

−1

2
∇atk∇atk −

1

2
(k + 4)(k + 8)t2k

)

)

. (3.23)

Note that the action for the scalar fields sk coincides with the one found in [18]. The fact that
(3.23) does not depend on s0 and s1 means that these modes are gauge.

Finally we discuss the action (3.21) for the gravitational fields. Expanding the fields in a
set of spherical harmonics, we see that the zero mode describes a massless graviton on AdS5.
We need to show that the massive modes describe traceless symmetric tensor fields. This can
be done in two ways. First of all one can use the equation of motion3 ha

a + 3
5
π = 0 that enters

the complete set of equations of motion. Then by using the equations of motion for b and π one
can easily show that ϕa

a vanishes on shell. The second way is to decouple ϕa
a from the traceless

part of ϕab. To this end we make the following change of variables:

ϕab = φ(ab) +
1

5
ġabφ− 3

5
∇a∇b∇−2

α φ (3.24)

ϕa
a = φ− 3

5
∇2

a∇−2
α φ, (3.25)

where φ(ab) is a traceless symmetric tensor.
Then the action (3.21) acquires the form

S(ϕab) = S(φ(ab)) + S(φ),

S(φ(ab)) =
∫

d10x
√−g

(

−1

4
∇Kφ(ab)∇Kφ(ab) +

1

2
∇aφ

(ab)∇cφ(cb) +
1

2
φ(ab)φ

(ab)
)

(3.26)

S(φ) =
∫

d10x
√−g

(

1

5
(φ− 3

5
∇2

a∇−2
α φ)(−∇2

α + 3)φ
)

(3.27)

So, we see that (3.26) is the action for the traceless massive symmetric tensor field that leads
to the same equations of motion and the same spectrum as was obtained in [28, 29].

It is obvious that the action (3.27) leads to the equation

φ− 3

5
∇2

a∇−2
α φ = 0 = ϕa

a (3.28)

Thus we again conclude that ϕa
a vanishes on shell. Although the field φ satisfies the second-

order equation it does not describe any dynamical mode. The reason is that to make the
transformation (3.25) well-defined we have to impose a certain boundary condition on the field
φ, ensuring the invertibility of the operator 1− 3

5
∇2

a∇−2
α . Then from (3.28) we get that φ always

vanishes on shell.
Thus, we have completed the discussion of the gravitational fields and the 4-form potential,

and now we proceed with the antisymmetric fields B and C.

3This equation is valid only for the k ≥ 2 modes. One can apply the remaining conformal diffeomorphism
to obtain ha

a
= − 3

5
π [28].
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4 Antisymmetric fields

The action for the antisymmetric tensor fields extracted from (2.3) is given by

S =
∫

d10x
√−g

(

−∇MBNK(∇MBNK −∇NBMK −∇KBNM)

− ∇MCNK(∇MCNK −∇NCMK −∇KCNM)

− 4εαβγδεBαβ∂γCδε − 4εabcdeBab∂cCde

)

(4.1)

Although the equations of motion obtained from the action coincides with the ones from [28],
they are not diagonal, and the fields B and C do not correspond to primary operators of the
N = 4 SYM model. Therefore, the main purpose of this section is to introduce a proper set
of fields and to rewrite the action in terms of the fields. To this end it is convenient to replace
the two real fields by one complex field:

A =
√

2(B + iC), Ā =
√

2(B − iC), B =
1

2
√

2
(A+ Ā), C =

1

2
√

2i
(A− Ā)

Rewriting (4.1) in terms of A and Ā, one gets, up to total derivative terms,

S =
∫

d10x
√−g

(

−1

2
∇M ĀNK(∇MANK −∇NAMK −∇KANM)

+ iεαβγδεĀαβ∂γAδε + iεabcdeĀab∂cAde

)

(4.2)

Taking into account that the fields AMN satisfy the gauge conditions ∇αAαβ = ∇αAαb = 0,
one can rewrite action (4.2) as follows

S =
∫

d10x
√−g

(

−1

2

(

∇aĀαβ∇aAαβ + ∇γĀαβ∇γAαβ + 6ĀαβA
αβ
)

+ iεαβγδεĀαβ∂γAδε

−
(

∇aĀbα(∇aAbα −∇bAaα) + ∇βĀaα∇βAaα + 4ĀaαA
aα
)

− 1

2

(

∇aĀbc(∇aAbc −∇bAac −∇cAba) + ∇αĀab∇αAab
)

+ iεabcdeĀab∂cAde

)

(4.3)

It is obvious that the first and second lines of (4.3) are just the actions for scalar and vector
fields respectively on AdS5. These actions directly lead to the spectrum found in [28, 29].

Let us consider the action describing the antisymmetric tensor fields on AdS5:

Sas =
∫

d10x
√−g

(

−1

2

(

∇aĀbc(∇aAbc −∇bAac −∇cAba) + ∇αĀab∇αAab
)

+ iεabcdeĀab∂cAde

)

(4.4)

Introducing the auxiliary fields Pab and P̄ab, we rewrite the action in the first-order formalism:

Sas =
∫

d10x
√−g

(

− i

2
εabcdeP̄ab∂cAde +

i

2
εabcdePab∂cĀde

− 2P̄abP
ab − 1

2
∇αĀab∇αAab + iεabcdeĀab∂cAde

)

(4.5)
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Changing the variables

A1 =
1

2
(−∇α∇α + 4)

1

4A+ (−∇α∇α + 4)−
1

4 (P − A)

A2 =
1

2
(−∇α∇α + 4)

1

4 Ā− (−∇α∇α + 4)−
1

4 (P̄ − Ā)

one gets the following action

Sas = −
∫

d10x
√−g

(

i

2
εabcde(Ā1ab∂cA1de + Ā2ab∂cA2de)

+ (
√

(−∇α∇α + 4) + 2)Ā1abA
ab
1 + (

√

(−∇α∇α + 4) − 2)Ā2abA
ab
2

)

(4.6)

Taking into account that the eigenvalues of the operator
√

(−∇α∇α + 4) are equal to k+2; k ≥
0, one obtains the spectrum of [28, 29]. This action has the same form as the action (3.10) for
the antisymmetric fields coming from the 4-form potential, and, therefore, one has to add to
the action the following boundary term

Ias =
∫

∂AdS5×S5

d9x
√−ḡ

(

1

2
Ā1ijA

ij
1 +

1

2
Ā2ijA

ij
2

)

(4.7)

There is no need to add boundary terms to the actions obtained in the previous section for the
scalar, vector and symmetric tensor fields. The actions can be directly used for c omputing
two-point Green functions in the framework of the AdS/CFT correspondence. Thus we have
completed the discussion of the quadratic action for bosonic fields of type IIB supergravity, and
now we proceed with the analysis of the fermions.

5 Fermion fields

We begin the consideration of the fermion fields with the simplest spinor case. The action for
the spinor field that leads to the covariant equations of motion [1, 2, 3, 28] has the form

S =
∫

d10x
√−g

(

ˆ̄λΓMDM λ̂− i

2 · 5!
ˆ̄λΓM1···M5FM1···M5

λ̂

)

(5.1)

Here ˆ̄λ = iλ∗Γ1̂ and DM is a covariant derivative. Recall that M,N, P . . ., a, b, c . . . and
α, β, γ . . . are curved ten-dimensional, AdS5 and S5 indices respectively. We denote M̂, N̂ , P̂ . . .,
â, b̂, ĉ . . ., α̂, β̂, γ̂ . . . the corresponding flat indices. We choose the following representation of
the Γ-matrices

Γa = σ1 ⊗ I4 ⊗ γa, Γα = −σ2 ⊗ τα ⊗ I4

{ΓM̂ ,ΓN̂} = 2ηM̂N̂ , {γâ, γb̂} = 2ηâb̂, {τα̂, τβ̂} = 2δα̂β̂

In this representation the matrix Γ11 is equal to

Γ11 = Γ0̂ · · ·Γ9̂ =

(

I16 0
0 −I16

)
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Since the spinor is right-handed, it has the form

λ̂ =
1

2
(1 − Γ11)λ̂ =

(

0
λ

)

Taking into account that

γ 0̂ · · · γ 4̂ = i · I4, τ 5̂ · · · τ 9̂ = I4

we find

i

2 · 5!
ΓM1···M5FM1···M5

= −
(

0 I16
0 0

)

= −σ+ ⊗ I16 (5.2)

and rewrite (5.1) in the form

S =
∫

d10x
√−g λ̄ (γaDa + iταDα + 1)λ. (5.3)

Here and in what follows we use the same notation γa (τα) for the 4 × 4 matrices and for the
16 × 16 matrices I4 ⊗ γa (τα ⊗ I4). Expanding the spinor in a set of the spherical harmonics

λ(x, y) =
∑

k≥0

(

λ+
k (x)Ξ+

k (y) + λ−k (x)Ξ−
k (y)

)

ταDαΞ±
k = mILΞ±

k = ∓i(k +
5

2
)Ξ±

k ,

we obtain the action for the spinor fields

S =
∫

d5x
√−ga

∑

k≥0

(

λ̄+
k

(

γaDa + k +
7

2

)

λ+
k + λ̄−k

(

γaDa − k − 3

2

)

λ−k

)

(5.4)

It is obvious that the action vanishes on shell. Therefore, in the framework of the AdS/CFT
correspondence one has to add a boundary term to (5.4). This boundary term

I =
1

2

∫

d4x
√−ḡ

∑

k≥0

(

−λ̄+
k λ

+
k + λ̄−k λ

−
k

)

(5.5)

was found in [11] up to a numerical factor, and the factor was fixed in [9] by using the Hamil-
tonian formulation of the action.

Now we proceed with the gravitino field. The action for the gravitino field leading to the
covariant equations of motion has the form

S =
∫

d10x
√−g

(

ˆ̄ψMΓMNPDN ψ̂P +
i

4 · 5!
ˆ̄ψMΓMNPΓM1···M5FM1···M5

ΓN ψ̂P

)

(5.6)

Taking into account that the gravitino field is left-handed

ψ̂M =
1

2
(1 + Γ11)ψ̂M =

(

ψM

0

)

,
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we rewrite (5.6) as follows

S =
∫

d10x
√−g

(

ψ̄a

(

γabcDbψc − iγabταDbψα + iγabταDαψb + γaταβDαψβ − γabψb

)

+ ψ̄α

(

−iταβγDβψγ − iγabταDaψb + γaταβDβψa − γaταβDaψβ + ταβψβ

))

(5.7)

As was shown in [28], by using local supersymmetries, one can choose the gravitino field to be
of the form

ψα = ψ(α) +D(α)ψ + ταη
+

where ταψ(α) = ταD(α)ψ = Dαψ(α) = 0, and η+ is the Killing spinor, which obeys (Dα +
i
2
τα)η+ = 0. Then (5.7) acquires the form

S =
∫

d10x
√−g

(

ψ̄(α)
(

γaDaψ(α) − ψ(α) − iτβDβψ(α)

)

(5.8)

+ ψ̄a

(

γabcDbψc + iγabταDαψb − γabψb − γa(
4

5
D̂2ψ + 5ψ)

)

+ ψ̄D̃(α)

(

−γaDaD
(α)ψ − γaταβDβψa +D(α)ψ + iD̂D(α)ψ

)

(5.9)

+ ψ̄+
a

(

γabcDbψ
+
c +

3

2
γabψ+

b − 5iγabDbη
+ − 10iγaη+

)

+ η̄+
(

−10η+ − 20γaDaη
+ − 5iγabDaψ

+
b − 10iγaψ+

a

))

(5.10)

Here D̂ ≡ ταDα, D̃(α) ≡ Dα − 1
5
D̂τα, ψ+

a denotes the lowest mode of the gravitino field that is
proportional to a Killing spinor, and ψa does not contain ψ+

a in its expansion into harmonics.
Expanding the spinor ψ(α) into a set of the spherical harmonics

ψ(α)(x, y) =
∑

ψIT (x)ΞIT

(α)(y)

γβDβΞIT

(α) = mIT ΞIT

(α) = ∓i(k +
5

2
)ΞIT

(α), k ≥ 1,

we represent the action (5.8) for the spinor fields in the form

S =
∫

d5x
√−ga

∑

ψ̄IT

(

γaDa + imIT − 1
)

ψIT . (5.11)

One has to add to the action a boundary term of the form (5.5).
To show that the action (5.9) leads to the spectrum obtained in [28], we expand the gravitino

field ψa and the spinor field ψ into harmonics and rewrite (5.9) as follows

S =
∫

d5x
√−ga

∑

(

ψ̄IL

a

(

γabcDbψ
IL

c + (imIL − 1)γabψIL

b − (
4

5
m2

IL
+ 5)γaψIL

)

− (
4

5
m2

IL
+ 5)ψ̄IL

(

γaDaψ
IL − γaψIL

a − (1 +
3i

5
mIL)ψIL

))

(5.12)

Performing the shift of the gravitino fields

ψIL

a → ψIL

a +Daχ
IL

1 + γaχ
IL

2
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and requiring the decoupling of the fields from ψIL, we find

χIL

1 =
3

5
· 5 + 2imIL

1 + 2imIL

ψIL

χIL

2 =
1

5
· (1 − imIL)(5 + 2imIL)

1 + 2imIL

ψIL

Then the action (5.12) acquires the form

S =
∫

d5x
√−ga

∑

(

ψ̄IL

a

(

γabcDbψ
IL

c + (imIL − 1)γabψIL

b

)

(5.13)

+
2(5 + 2imIL)(5 − 2imIL)2

25(1 + 2imIL)
ψ̄IL

(

γaDaψ
IL + (3 + imIL)ψIL

)

)

(5.14)

The action (5.13) is the standard action for the Rarita-Schwinger field. To show that the mode
γaψa is unphysical one can make the change of variables

ψIL

a = ϕIL

(a) +Daχ
IL − 1

3
(imIL − 1)γaχ

IL

γaψIL

a = γaDaχ
IL − 5

3
(imIL − 1)χIL

and get the following expression for (5.13)

S =
∫

d5x
√−ga

∑

(

ϕ̄
(a)
IL

(γbDbϕ
IL

(a) − (imIL − 1)ϕIL

(a)) (5.15)

+ (
4

3
(imIL − 1)2 − 3)χ̄IL(γaDaχ

IL − 5

3
(imIL − 1)χIL)

)

(5.16)

The same reasoning as after (3.28) leads to the conclusion that the spinor χ always vanishes on
shell. We see that the kinetic term for the gravitino fields is just the sum of the kinetic terms
for the spinor fields. 4 Then, one can easily show by using the results obtained in [20, 21] and
the Hamiltonian approach of [9], that the boundary term one has to add to (5.15) again has
the form (5.5).

The consideration of the modes ψ+
a and the Killing spinor η+ goes the same way. One makes

the shift

ψ+
a → ψ+

a +
5

3
iη+

and arrives at the action (5.13) for the massless gravitino and the action

S =
∫

d5x
√−ga

40

3
η̄+
(

γaDaη
+ − 11

2
η+
)

(5.17)

for the Killing spinor. This completes our derivation of the quadratic action for type IIB
supergravity on AdS5 × S5.

4Since the derivative Da contains the Christoffel symbols, (5.15) is not a sum of actions for spinor fields. We
thank O.Rychkov for a discussion of the point.
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6 Conclusion

An important feature of the quadratic action we obtained in this paper is that, although we
started from the noncovariant gauge condition, the final action possesses manifest invariance
with respect to the isometry group of the AdS5 × S5 background. It allows one to expect that
there may exist a covariant description of the complete action for type IIB supergravity on
AdS5 × S5. It is an interesting problem to find such a description.

As the first step in this direction one could try to obtain the cubic action for supergravity.
The solution of the problem would provide us with the knowledge of the relative factors in
front of the two- and three-point Green functions computed in the framework of the AdS/CFT
correspondence and would allow one to compare them with the ones found in the N = 4 SYM.

The next step is to find the supergravity action up to the fourth order in the physical fields.
Then one will be able to compute the four-point Green functions and to verify whether the
logariphmic singularities found in [26] cancel.

Another problem to be solved is to find the spectrum and the quadratic action for the
supergravity on the AdS5 × E5 background, where E5 is an Einstein manifold. A particularly
interesting example is the manifold E5 = T 1,1. As was shown in [30] the supergravity on this
background is dual to a certain large N N = 1 superconformal field theory, which describes a
non-trivial infrared fixed point of the SU(N) × SU(N) gauge model.
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