Accepted Manuscript

Title: Curcumin-induced degradation of pκC is associated with enhanced dentate ncam psa expression and spatial learning in adult and aged wistar rats.

Authors: Lisa Conboy, Andrew G. Foley, Noel M. O’Boyle, Marie Lawlor, Helen C. Gallagher, Keith J. Murphy, Ciaran M. Regan

PII: S0006-2952(08)00909-X
Reference: BCP 10054

To appear in: BCP

Received date: 7-11-2008
Revised date: 19-12-2008
Accepted date: 19-12-2008

Please cite this article as: Conboy L, Foley AG, O’Boyle NM, Lawlor M, Gallagher HC, Murphy KJ, Regan CM, Curcumin-induced degradation of pκC is associated with enhanced dentate ncam psa expression and spatial learning in adult and aged wistar rats., Biochemical Pharmacology (2008), doi:10.1016/j.bcp.2008.12.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
CURCUMIN-INDUCED DEGRADATION OF PKCδ IS ASSOCIATED WITH ENHANCED DENTATE NCAM PSA EXPRESSION AND SPATIAL LEARNING IN ADULT AND AGED WISTAR RATS.

Lisa Conboy, Andrew G. Foley, Noel M. O’Boyle, Marie Lawlor, Helen C. Gallagher, Keith J. Murphy and Ciaran M. Regan.

School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, IRELAND.

Corresponding author:
Prof. Ciaran Regan
UCD Conway Institute
University College Dublin
Belfield, Dublin 4, IRELAND.

Tel: +353-1-7166775
Fax: +353-1-7166920
E-mail: ciaran.regan@ucd.ie
ABBREVIATIONS: DMEM: Dulbecco’s modified Eagle’s medium; NCAM: neural cell adhesion molecule; PKC: protein kinase C; PSA: Poly-α2,8-linked sialic acid; PST: polysialyltransferase; curcumin (diferuloylmethane; 1,7-bis-[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) and rottlerin (mallotoxin; 5,7-dihydroxy-2,2-dimethyl-6-[2,4,6-trihydroxy-3-methyl-5-acetylbenzyl]-8-cinnamoyl-1,2-chromine).
ABSTRACT

Polysialylation of the neural cell adhesion molecule (NCAM PSA) is necessary for the consolidation processes of hippocampus-based learning. Previously, we have found inhibition of protein kinase C delta (PKCδ) to be associated with increased polysialyltransferase activity (PST), suggesting inhibitors of this kinase might ameliorate cognitive deficits. Using a rottlerin template, a drug previously considered an inhibitor of PKCδ, we searched the CAP database with the Accelrys® Catalyst programme for structurally similar molecules and, using the available crystal structure of the phorbol-binding domain of PKCδ, found that diferuloylmethane (curcumin) docked effectively into the phorbol site. Curcumin increased NCAM PSA expression in cultured neuro-2A neuroblastoma cells and this was inversely related to PKCδ protein expression. Curcumin did not directly inhibit PKCδ activity but formed a tight complex with the enzyme. With increasing doses of curcumin, the Tyr131 residue of PKCδ, which is known to direct its degradation, became progressively phosphorylated and this was associated with numerous Tyr131-phospho-PKCδ fragments. Chronic administration of curcumin in vivo also increased the frequency of polysialylated cells in the dentate infragranular zone and significantly improved the acquisition and consolidation of a water maze spatial learning paradigm in both adult and aged cohorts of Wistar rats. These results further confirm the role of PKCδ in regulating PST and NCAM PSA expression and provide evidence that drug modulation of this system enhances the process of memory consolidation.

RUNNING TITLE: PKCδ degradation enhances NCAM PSA and cognition.

KEYWORDS: PKCδ; PST; NCAM PSA; curcumin; spatial learning.
1. INTRODUCTION

A significant post-translational modification of the neural cell adhesion molecule (NCAM) involves the attachment of large homopolymers of α2,8-linked polysialic acid (PSA), a modification that is specific to NCAM in the mammalian brain [1] and [2]. This post-translational modification of NCAM has been extensively argued to support structural plasticity in the adult nervous system [3], [4] and [5] and has been implicated in activity-dependent synaptic remodelling [6] and [7]. Moreover, the synaptic remodelling that accompanies task consolidation of spatial learning and avoidance conditioning paradigms [8], [9] and [10] is associated with a transient increase in the frequency of dentate granule cells expressing polysialylated NCAM at the 12 h post-training time [11], [12] and [13] and cleavage of PSA with endoneuraminidase-N impairs the development of long-term potentiation (LTP), a cellular analogue of memory and learning, and the consolidation of spatial learning and avoidance conditioning paradigms [14], [15], [16] and [17]. Intraventricular infusion of anti-PSA, when administered specifically at the 10 h post-training time, has also been demonstrated to impair the consolidation of spatial and avoidance conditioning tasks, further confirming the time-dependent functional requirement of NCAM PSA in memory formation [18]. Polysialylation of NCAM occurs in the trans-Golgi compartment and is catalyzed by two enzymes termed sialyltransferase-X (STX or ST8SiaII) [19] and [20] and polysialyltransferase (PST or ST8SiaIV) [21] and [22]. These two polysialyltransferases regulate NCAM polysialylation state differentially during development as STX is the dominant α2,8-polysialyltransferase in the embryonic and early postnatal period whereas PST is mainly associated with α2,8-polysialylation in the postnatal
brain [23] and [24]. Pulse-labelling studies in vitro have indicated PSA synthesis to occur in the late-Golgi, or post-Golgi, compartment where NCAM becomes rapidly glycosylated with the newly synthesized α2,8-polysialic acid [25].

In general, the molecular events associated with regulation of sialyltransferase-mediated glycosylation events still remain to be fully elucidated. The proposed involvement of PKC in the regulation of PST-mediated NCAM polysialylation state stems from the observation that phorbol-12-myristate-13-acetate, which activates diacylglycerol-dependent PKC isoforms, induces a dose-dependent decrease in NCAM PSA expression in neuro-2A neuroblastoma cells and staurosporine, a pan-specific PKC inhibitor, increases NCAM polysialylation state [26]. Moreover, immunoblotting procedures have demonstrated reduced PKCδ expression to be associated with the enhanced polysialylation of NCAM in vitro and, using a polyclonal antibody directed against a conserved 11-amino acid sequence in E. coli polysialyltransferase, hippocampal PKCδ has been found to form complexes with PST that increase as animals age [27] and NCAM PSA expression decreases in an exponential manner [28]. The PST associated with these complexes has also been observed to be phosphorylated on serine residues [27], a mechanism known to be associated with the inhibition of other sialyltransferases [29], [30], [31] and [32]. Phosphorylated tyrosine residues on PST are also found in PST:PKCδ immunocomplexes [27] and this may play a crucial role in regulating PKCδ expression as phosphorylation of conserved tyrosine residues in the hinged bilobal structure, typical of the PKC family of isozymes, confers a specific post-translational control on the rate of proteolytic cleavage [33] and [34].
In previous studies directed to providing evidence for a role of PKCδ in the regulation of NCAM polysialylation in neuro-2A neuroblastoma cells [26], we employed rottlerin to inhibit PKCδ, as this had been reported to have an IC₅₀ value of 3-6uM and to be 5-17 times more potent as a PKCδ inhibitor over other PKC isozymes [35]. Neuro-2A cells exposed to rottlerin (5μM) in the mid-log growth phase, when NCAM PSA expression is dominant, resulted in a rapid and substantial increase in NCAM polysialylation state [26]. Moreover, exposure of the same concentration of rottlerin to cells in contact inhibition, where no NCAM PSA is expressed, resulted in PST activation and expression of polysialylated NCAM. Subsequent studies, however, have failed to confirm rottlerin to be a direct inhibitor of PKCδ [36] but that it may modulate the tyrosine phosphorylation state of PKCδ and indirectly affect enzyme activity [37]. We now demonstrate curcumin to be a chemical similar of rottlerin that indirectly modulates PKCδ activity by modifying its phosphorylation state to increase the rate of degradation.
2. MATERIALS AND METHODS

2.1 Materials

All routine laboratory chemicals, secondary antibodies, rottlerin, staurosporine and curcumin were purchased from Sigma-Aldrich, Ireland. All components of the PKCδ activity assay, including constitutively active recombinant PKCδ, were purchased from Upstate Biotechnology (Charlottesville, VA). [γ-32P]-ATP was purchased from Amersham Biosciences (Buckinghamshire, UK). The BCA assay was purchased from Pierce (Rockford, IL). The monoclonal antibody raised against the meningococcus group B polysaccharides (anti-PSA) was a kind gift of Prof. G. Rougon [2]. Monoclonal primary antibody to PKCδ was purchased from BD Biosciences (Oxford, UK).

2.2 In silico studies

Database searching with Catalyst and protein-ligand docking with Cerius2

Computational studies were carried out using a Silicon Graphics Octane workstation (SGI, Mountain View, CA). Catalyst version 3.4 (Accelrys, Cambridge, UK) was used to search the Compounds Available for Purchase (CAP) database to identify those structurally similar to rottlerin using a template structure based on its side chain (see Figure 1A). Prior to database screening, the search was restricted to drug-like molecules based on the Lipinski rules [38]. Using Cerius2 (version 4.8, Accelrys, UK), the matching compounds were rated using protein-ligand docking to the crystal structure of the PKCδ ligand binding domain which was downloaded from the Brookhaven Protein Data Bank. In preparation for docking, all organic and
inorganic cofactors, the phorbol ester ligand, as well as all water molecules, were removed from
the PKCδ crystal structure. Potential PKCδ inhibitors were sequentially docked to the PKCδ
crystal structure and ligand-enzyme interactions were quantified using the DOCK scoring
function of the LigFit module of Cerius2. The top ranking compounds were screened in in vitro
assays, described below, to determine their potential to modulate NCAM-PSA.

2.3 In vitro analysis of NCAM PSA expression

The mouse neuroblastoma cell line, neuro-2A, was maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, UK) supplemented with 10% (v/v) foetal calf serum (Gibco, UK) and
penicillin/streptomycin (100 mg/ml; Sigma, UK) at 37 °C in a humidified atmosphere and 9% CO₂.
To investigate pharmacological modulation of PSA expression, cells were seeded on 96-
well plates at a density of 10^4 cells/cm² and grown until day 3 in vitro (DIV 3). On DIV3, cells
were treated with either vehicle (DMSO not exceeding 1% v/v) or test PKCδ inhibitor ranging in
dose from 1 μM to 500 μM for 5 hours. Specifically, curcumin was administered at
concentrations of 1, 10, 50, 100 and 500 μM. Cells were then fixed with 200 μl of 4%
paraformaldehyde in DMEM for 60 min at room temperature. This was replaced with undiluted
fixative for a further 60 min. Non-specific binding sites were blocked with 2% (w/v) bovine
serum albumin (Sigma-Aldrich, Ireland) and 2% (v/v) normal goat serum (Sigma-Aldrich,
Ireland) in PBS (blocking solution; in which all antibodies were also diluted). PSA was detected
using a monoclonal antibody raised against the meningococcus group B polysaccharides (anti-
PSA) prepared as an ascitic fluid and diluted 1:500. Primary antibody was incubated overnight at
4 °C. Binding of the primary antibody was detected using a secondary goat anti-mouse IgG
conjugated to peroxidase diluted 1: 2000 for 1 hour at room temperature. Peroxidase activity was
determined using the liquid substrate tetramethylbenzidine (Sigma-Aldrich, Ireland), which was incubated for 30 min at room temperature and the reaction was terminated by acidification with 2 M H₂SO₄. Optical density was measured in a microplate reader with a 450 nm measurement filter and 620 nm reference filter.

2.4 PKCδ activity assay

Constitutively active recombinant PKCδ was derived from Sf21 cells and assay of enzyme activity was performed according to the manufacture’s instructions. In brief, 0–20 ng of recombinant PKCδ was incubated with 50 μM PKC substrate peptide (myelin basic protein), in the presence of 200 μM ATP, 30 mM magnesium chloride, 0.05 mg/ml phosphatidylinerine, 0.005 mg/ml diacylglycerol and [γ⁻³²P]-ATP (Amersham Biosciences, UK) for 10 min at 30 ºC. Following incubation 20 μl of each assay was spotted onto phosphocellulose paper and the reaction terminated by washing of the phosphocellulose in 0.75% phosphoric acid for 5 minutes. Following two subsequent 5 minute washes in phosphoric acid, the samples were washed in acetone for a further 5 min. The phosphocellulose paper was dried, transferred to scintillation fluid and the radioactivity counted. Under these conditions, increasing concentrations of PKCδ were associated with increasing levels of radioactivity. Using 20 ng of recombinant PKCδ and the conditions described above, staurosporine (5 nM), rottlerin (10 μM and 100 μM) and curcumin (10 μM and 500 μM) were included in the assay and their ability to inhibit PKCδ kinase activity in a dose-dependent manner was determined. In additional experiments, the assay concentration of ATP was lowered to 40 μM ATP to determine potential competition at the ATP binding site.
2.5 Immobilisation of curcumin on Epoxy-activated Sepharose 6B

To investigate curcumin-PKCδ interactions, curcumin was coupled to epoxy-activated Sepharose™ 6B (Sigma-Aldrich, Ireland). Using a method adapted from [39] a 1 gm aliquot of epoxy-activated Sepharose 6B beads was washed in 50 ml of dH₂O for 5 cycles to give approximately 3.5 ml of swollen beads. For coupling to the epoxy-activated beads, curcumin was prepared as a 20 mM solution in 50% dimethylformamide/0.1 M Na₂CO₃/10 mM NaOH and two volumes of this solution was mixed with one volume of swollen beads and incubated overnight at 30 °C in the dark. The following day, the curcumin-Sepharose suspension was washed 3 times with coupling buffer and the remaining non-specific binding sites were blocked by incubation with 1M ethanolamine overnight at 30 °C. Control beads were prepared by incubating the epoxy-activated Sepharose 6B with 1 M ethanolamine, pH 11. The control and curcumin-coupled beads were finally washed in 3 cycles of alternating low (0.1M acetate buffer, pH 4.0) and high (0.1M Tris-HCl buffer, pH 8, containing 0.5 M NaCl) pH buffers.

Hippocampal PKCδ was prepared by homogenising rat dentate gyrus in 100 mM Hepes buffer, pH 7.6, containing 300 mM NaCl, 1% Triton-X-100, 2 mM EDTA, 2 mM EGTA and 0.1 mM PMSF, 50mM Na₃VO₄ and 1µg/µl aprotinin as protease inhibitors (2X lysis buffer). A 250 µl aliquot of cell lysate was incubated with 20 µl of curcumin-coupled Sepharose, or control beads, with constant mixing for 3 h at 4 °C. Afterwards, the curcumin-Sepharose complex was washed twice with 500 µl of 2X lysis buffer (without protease inhibitor) containing 150 mM NaCl (low salt) followed by 500 µl of 1X lysis buffer containing 1 M NaCl (high salt). Proteins were
isolated from the bead-protein complex by resuspending and boiling the washed beads in SDS-PAGE sample buffer. PKCδ was detected by the immunoblotting procedure described below.

2.6 Immunoblot analysis of PKCδ expression

Neuro-2A cells were seeded in 75 cm² plates (10⁴ cells/cm²) and exposed to increasing concentrations of curcumin for 5 h during the mid-log growth phase, as described above. The cells were then washed 3 times in phosphate-buffered saline, scraped and pelleted by centrifugation for 10 min at 900 rpm. The pellet was solubilised in RIPA buffer (50 mM Tris, pH 8.0, containing 50 mM NaCl, 1.0 % NP-40, 0.5% sodium deoxycholate, and 0.1% SDS,) containing protease inhibitors for 30 min on ice. The supernatant was then collected by centrifugation at 3000 g and the protein concentrations determined by the BCA assay. Samples, of equal protein concentration, were boiled for 10 min in a reducing sample buffer of 70 mM Tris-HCl, pH 6.8, containing 33 mM NaCl, 1 mM EDTA, 2% (w/v) SDS, 0.01 % (w/v) bromophenol blue, 10% glycerol and 3% (v/v) dithiothreitol reducing agent (New England Biolabs, UK). Samples containing equal amounts of protein were separated on 10 % polyacrylamide minigels and electrophoretically transferred to nitrocellulose membranes and successful transfer was confirmed by ponceau S staining of the membrane (not shown). The nitrocellulose was then blocked using washing buffer (10 mM Tris-HCl, pH 7.4, containing 150 mM NaCl, and 0.05% [v/v] Tween-20) with 5% (w/v) non-fat milk powder for 1 h at room temperature. The monoclonal primary antibody to PKCδ was diluted 1:1000 in blocking buffer and incubated overnight at 4 °C with the nitrocellulose membrane. The primary antibody was then detected using goat anti-mouse IgG peroxidase conjugated secondary antibody. Following membrane washing, the immuno-complexes were detected using a chemiluminescence
peroxidase substrate and exposure of the membranes to x-ray film (Kodak, Dublin, Ireland).

Equal protein loading was verified by stripping the blots and re-probing them with an anti-actin monoclonal antibody (Sigma-Aldrich, Ireland) diluted 1: 20000. The developed x-ray films were scanned using Adobe Photoshop 7.0.

2.7 Quantitative immunohistochemical analysis of NCAM PSA in vivo

Male Wistar rats (postnatal day 80) were obtained from the Biomedical Facility, University College Dublin, and housed singly in a 12 h light/dark cycle at 22 ± 2°C, with ad libitum access to food and water. Curcumin (75 mg/kg), dissolved in a methylcellulose (0.5% w/v) vehicle, was administered daily by gavage for an 8-day period. Control animals received the methylcellulose vehicle for the same 8-day period. At 24 h after the final drug administration, the animals were sacrificed by cervical dislocation and the whole brain was quickly dissected. The brains were coated immediately in an optimal cutting temperature compound (Gurr, Poole, UK), snap-frozen in CO₂-cooled n-hexane, and stored at -80°C until required for further processing. The frequency of hippocampal polysialylated neurons was determined using PSA immunohistochemistry, as described previously [11]. Briefly, cryostat axial sections of 12µm sections were fixed in 70% (v/v) ethanol and incubated overnight with anti-PSA ascitic fluid diluted 1:500 in phosphate buffered saline (PBS). The sections were exposed for 3 h to fluorescein-conjugated goat anti-mouse IgM diluted 1:100 in PBS and mounted in Citifluor® (Citifluor Ltd., UK), a fluorescence-enhancing medium. The total numbers of PSA-immunopositive neurons at the infragranular cell layer of the dentate gyrus, at –5.6 mm with respect to bregma, were counted in seven alternate 12µm sections. The sections were counter-stained with propidium iodide (60 s; 40 ng/ml) (Sigma-Aldrich, Ireland) to facilitate cell identification and the use of alternate sections precluded
double counting of the 5-10 µm perikarya. Cell counts were expressed per unit area of the
dentate granule cell layer (0.15mm²) and the mean ± SEM for each treatment group calculated.

2.8 Water maze spatial learning paradigm
Separate cohorts of male Wistar rats (postnatal day 80 and postnatal day 540), sourced and
maintained as described above, were used in these studies. On each of the 2 days preceding
commencement of water maze studies, animals were handled and assessed in an open field arena
for locomotor activity, rearing and general behaviour over a 5 min period. Each cohort of
animals was treated for 8 days with 75 mg/kg curcumin by gavage. An extended 40-day
treatment period did not confer any additional advantage on the parameters under investigation
(data not shown). The control groups received vehicle alone. Water maze training was initiated
at 24 h following the final drug administration. The water maze apparatus consisted of a large
circular pool (1 m diameter, 80 cm high, water temperature 26 ± 1 °C) with a platform (11 cm
diameter) submerged 1.5 cm below the water surface [12]. The water was 50 cm deep and the
wall of the pool was 30 cm above the level of the water. Both the pool and the platform were
constructed of black polyvinyl plastic and offered no intra-maze cues to guide escape behaviour.
The experimental room contained several extra-maze visual cues. During testing the platform
was hidden in the same quadrant 30 cm from the side wall. Animals were trained in 4 training
sessions separated by 24 h and each session, consisting of 5 trials, was separated by an inter-trial
test interval of 300 s. Each trial started with the rat facing the wall of the maze at one of three
fixed points A, B, or C arranged triangularly around the pool (separated by 120°). The starting
positions were used sequentially over the five trials of each training session and continuity in the
pattern of starting positions was maintained over different sessions so that all starting points were used the same number of times. Computerised tracking software (Watermaze 3.1) was used to measure relevant parameters that included swim angle, swim speed, escape latency and path length. The time taken by the rat to find the hidden platform within a 60 s criterion period was defined as the escape latency time. On the first trial, rats failing to locate the platform within the 60 s period were placed on it for 10 s. Escape latencies were measured over 5 trials in each training session. Probe trials were performed at 1 and 3 days following the final training session. In these trials the platform was removed and the time spent in each quadrant of the pool was tracked over a 60 s period.

All experimental procedures were approved by the Animal Research Ethics Committee of University College Dublin and were carried out by individuals holding the appropriate national license issued by the Department of Health.

2.9 Statistics

All statistical analysis was carried out using GraphPad Prism (version 4) software. Curcumin effects on NCAM-PSA and PKCδ expression were analysed by using Student’s unpaired two-tailed t-test. Kinase activity assay values were analysed by ANOVA followed by Dunnett’s post-hoc analysis. The effect of drug treatment and trial number on escape latency from the water maze was assessed by repeated measures ANOVA. Specific trials and probe differences were analysed using Student’s unpaired two-tailed t-test. In all cases, P values less than 0.05 were considered to be significant.
3. RESULTS

3.1 Identification of curcumin as a chemical similar of rottlerin

Taking rottlerin as our template structure, we used the substructure highlighted in bold in Figure 1A to search the CAP database for structurally similar chemicals using the Accelrys® Catalyst programme. This allowed the identification of 137 compounds. This list of compounds was further refined using the Accelrys® Cerius2 modelling and simulation program to test for ligand fit to the crystallised C1B phorbol-binding domain of the PKCδ molecule (Figure 1Bi). The C1B domain of the regulatory region of PKCδ, containing the phorbol ester, was obtained from the Protein Data Base (PKCδ C1B domain RCSB PDB entry 1PTQ; [40]; Figure 1Bii). The phorbol ester was removed and the binding site defined using the site search function of Cerius2. The energy of the PKCδ crystal structure was minimised using the Dreiding 2.21 force field and energy minimised rottlerin conformers were docked to the PKCδ phorbol-binding site. The ligand-enzyme score was quantified using the ‘DOCK’ score of the Cerius2 LigFit module, which rated interaction energy and internal ligand energy between enzyme and ligand. DOCK scores of the 137 identified compounds with the PKCδ C1B phorbol-binding domain showed a normal distribution (Figure 1C). Within this distribution, both curcumin and rottlerin exhibited high DOCK scores of 92 and 87, respectively, indicating significant chemical similarity between these compounds. The interaction of curcumin with the PKCδ C1B phorbol-binding domain is illustrated in Figure 1Biii. Using an ELISA based assay, curcumin was also found to enhance NCAM PSA expression in a dose-dependent manner in neuro-2A neuroblastoma cells (Figure 1D). This confirmed curcumin to have the same biological activity of rottlerin, as reported previously [26], and that both compounds most likely influenced PKCδ activity in a similar
manner. The dose of curcumin required to enhance NCAM PSA expression was, however, an order of magnitude greater than that previously reported for rottlerin (5 μM; [26]. This difference in dose-response is most likely related to the unstable nature of curcumin at neutral and basic pH both of which lead to its rapid degradation and formation of ferulic acid, a potent antioxidant [41]. Ferulic acid, however, failed to enhance NCAM PSA expression in the neuro-2A neuroblastoma cell line (data not shown) further confirming the primary role of curcumin in this effect.

3.2 Influence of curcumin and rottlerin on PKCδ kinase activity.

Given that previous studies demonstrated rottlerin to be without effect on PKCδ activity [36] and [37], we determined if curcumin similarly failed to influence enzyme activity. The in vitro assay employed determined the influence of curcumin on the phosphorylation rate of myelin basic protein using purified human recombinant PKCδ protein (Figure 2A) in the presence of [γ-32P]-ATP and phosphatidylserine and DAG lipid activators. Using this assay, the phosphorylation rate of myelin basic protein substrate was found to be directly related to the concentration of PKCδ enzyme present (Figure 2B). We further validated the assay using the non-specific PKC inhibitor staurosporine and found it to inhibit PKCδ kinase activity in a dose-dependent manner (data not shown). Staurosporine exhibited an IC50 value of approximately 5nM which is in close agreement with the IC50 value of 3.5nM reported previously [42]. At 5 nM, staurosporine reduced PKCδ kinase activity to 47.3±9.2% of that observed in the control sample (Figure 2C).

In comparison to rottlerin and curcumin, over concentration ranges of 10-100 μM or 100-500μM, respectively, only staurosporine inhibited PKCδ activity (F[5,12]= 11.09; P<0.05). To further preclude the possibility that rottlerin or curcumin may be acting as competitive inhibitors at the
PKCδ ATP binding site, we determined the consequence of lowering available ATP (200 uM to 40μM) on kinase activity. At this lower ATP concentration, staurosporine further reduced PKCδ kinase activity to 29.5±8.4% of the control value but it was without effect on the ability of curcumin or rottlerin to inhibit PKCδ activity (Figure 2C). These results demonstrated rottlerin to be without any direct effect on PKCδ activity, confirming previous reports [36], and that the related compound curcumin similarly failed to influence enzyme activity.

3.3 Curcumin binding promotes PKCδ degradation.

Given curcumin failed to inhibit PKCδ activity, despite its high DOCK score for the phorbol-binding site of the enzyme, we determined if curcumin formed a complex with the enzyme. To achieve this, we covalently coupled curcumin to epoxy-activated Sepharose 6B, via its available hydroxyl groups, and used these beads to bait PKCδ in lysates of rat dentate gyrus solubilised with a non-ionic detergent, a procedure employed previously to identify the cellular targets of other protein kinase inhibitors [39]. Incubation of the dentate lysate with curcumin-coupled Sepharose resulted in PKCδ forming a tight linkage to curcumin. Following removal of weakly-bound proteins by a cycle of low- and high-salt wash and rigorous boiling in SDS gel sample buffer, the remaining Coomassie blue-stained electrophoretic protein profile was found to be comparable across all treatment conditions (Figure 3A; equal protein loading). Immunoblot analysis with anti-PKCδ, however, revealed the enzyme to be associated with the curcumin-coupled Sepharose 6B and not with the control Sepharose 6B (Figure 3B; lanes 1 and 2).

Moreover, the curcumin-coupled Sepharose 6B bound all of the PKCδ in the lysate as immunoblot analysis of the remainder failed to detect any enzyme immunoreactivity (Figure 3B; lane 4) and this was in contrast to the abundant PKCδ immunoreactivity observed in the lysate.
following incubation with the control Sepharose 6B (Figure 3B; lane 5). Moreover, the tight association of PKCδ with curcumin appeared to exert an allosteric effect that rendered the enzyme more amenable to Tyr311 phosphorylation. Exposure of the neuro-2A neuroblastoma cell line to curcumin for a 5 h period resulted in a dose-dependent decrease in PKCδ protein expression with no effect being observed on actin protein levels (Figure 4A and B). This increase in PKCδ protein degradation was paralleled by a dose-dependent increase in the phosphorylation of the Tyr311 residue of PKCδ, accompanied by Tyr311 phosphorylated enzyme protein fragments (Figure 4C), suggesting the association of curcumin with PKCδ directed its degradation which is in agreement with previous work relating PKCδ Tyr311 phosphorylation to its increased proteolysis [34].

3.4 Curcumin enhances NCAM polysialylation state and spatial learning in adult Wistar rats.

Given the transient increase in polysialylated neurons in the hippocampal formation that accompanies consolidation of an avoidance conditioning paradigm [11] is associated with a decrease in PKCδ degradation [27], we determined if curcumin, administered in vivo, would similarly increase NCAM polysialylation state in the infragranular zone of the dentate gyrus of adult rats (postnatal day 80). Following daily administration of curcumin (75 mg/kg by gavage) for an 8-day period, we counted a two-fold increase in polysialylated dentate neurons ($P<0.05$, Student’s two-tailed t-test) (Figure 5B). Moreover, the arborisation of these polysialylated neurons in the upper granule cell layers and inner molecular layer was substantially increased, suggesting curcumin induced a substantial remodelling of the dentate neuronal architecture (Figure 5A).
Curcumin-induced change in dentate NCAM polysialylation state also correlated with improved acquisition and consolidation of the water maze spatial learning paradigm in cohorts of both adult (postnatal day 80) and aged (postnatal day 540) Wistar rats. Adult animals treated with curcumin exhibited a significant difference in task acquisition over 4 sessions (F[1,72]=4.34, \(P=0.041 \); two-way repeated measure ANOVA), as compared to the vehicle-treated controls (Figure 6A). These animals also spent significantly more time in the target quadrant during subsequent probe trials (F[1,72]=3.9; \(P=0.05 \); two-way repeated measure ANOVA) and this became significant at the 72 h recall time (Figure 6B), as judged by Bonferroni post-test and Mann-Whitney \(U \)-test (\(P<0.05 \)). These results demonstrated curcumin treatment to exert a marked improvement on both the acquisition and consolidation of the spatial learning task. Curcumin treatment also resulted in significant improvements in both acquisition and consolidation of the water maze task in the cohort of aged animals. Drug-treated animals exhibited a superior performance to their vehicle-treated controls in task acquisition when assessed over 4 training sessions (F[1,40]=6.7; \(P=0.01 \); two-way repeated measure ANOVA) (Figure 6C). Moreover, curcumin-treatment produced a most significant effect on task recall when measured at both the 24 and 72 h probe trials (Figure 6D), as judged by a two-way repeated measure ANOVA (F[1,44]=8.2; \(P=0.006 \)) and Bonferroni post-test and Mann-Whitney \(U \)-test (\(P<0.05 \)).
4. DISCUSSION

These studies have demonstrated increased PKCδ degradation by curcumin to be associated with an enhanced expression of NCAM polysialylation state in mouse neuro-2A neuroblastoma cells. The ability of curcumin to suppress PKCδ expression is consistent with our previous *in vitro* observations demonstrating phorbol activation and/or staurosporine inhibition of PKCδ to, respectively, suppress and/or enhance PST activity with the direct consequence of regulating the extent to which NCAM is glycosylated with extended chains of α2,8-polysialic acid [21]. The mechanism by which curcumin induces degradation of PKCδ appears to be associated with increased phosphorylation of the Tyr³¹¹ residue which lies within the hinge region between the regulatory and catalytic domains of the enzyme. This finding agrees with previous studies which have demonstrated phosphorylation of the Tyr³¹¹ residue to first activate PKCδ and subsequently render it more susceptible to degradation [34] when the hinge region becomes accessible to proteolytic cleavage during the conformational changes associated with enzyme activation [33]. Activation of PKCδ by phorbol esters is also known to trigger their ubiquitination and degradation [43]. Moreover, the Tyr³¹¹ residue of PKCδ is flanked by a sequence that forms an optimal binding substrate for the Src family of kinases that constitutively complex with PKCδ but not other PKC isoforms, such as PKCα or PKCε [44].

Chronic administration of curcumin *in vivo* was also demonstrated to enhance the polysialylation of neurons in the infragranular zone of the dentate gyrus and this included their dendritic tree which extends into the inner third of the molecular layer. α-Tocopherol, which also reduces PKCδ expression [45], has been found to similarly enhance the polysialylation of neurons in the
adult dentate gyrus and, moreover, generate greater complexity in their dendritic arbor, as
evidenced by increased synaptophysin expression and synapse density in the molecular layer
[46]. Upregulation of dentate NCAM PSA may also, in part, provide a basis for the
neuroprotective actions attributed to curcumin [47] as chronic exposure to deprenyl, purported to
slow nigral cell degeneration in Parkinson’s disease [48], has been demonstrated to increase the
frequency of dentate polysialylated cells [49]. Moreover, hyperthermia-induced upregulation of
NCAM PSA appears to similarly protect against kainate-induced cell death [50]. Curcumin has
been demonstrated to significantly increase the number of newly generated cells in the dentate
infragranular zone [51], however, not all of these are polysialylated [52]. The ability of curcumin
to enhance neuronal polysialylation through suppression of PKCδ activity may more likely relate
to the integration of newborn cells into the dentate neuronal architecture over the 1-2 month
period that follows their birth [53], [54] and [55]. This mechanism would be consistent with the
transient decrease in PKCδ expression and associated increase in dentate polysialylated cell
frequency that is observed at the 12h post-training time following avoidance conditioning [11],
[27] and with other studies that have failed to implicate increased NCAM PSA-mediated
plasticity with neurogenesis [11], [56], [17] and [50].

Chronic administration of curcumin to adult Wistar rats significantly improved their performance
in both the acquisition and consolidation of the water maze spatial learning paradigm. This is not
surprising given that chronic administration of curcumin produces a two-fold increase in the
frequency of polysialylated dentate neurons, the numerical density of which may be directly
correlated to improvement in task performance [57] and [49]. Environmental enrichment, for
example, robustly improves spatial learning and memory and is associated with increased NCAM
polysialylation [58] and [49] and also a decreased expression of PKCδ [27]. Moreover, a pyrazole analogue of curcumin [59] has been demonstrated to facilitate the induction of LTP and performance in an object recognition paradigm in Wistar rats through the induction of Ca²⁺/calmodulin-dependent protein kinase II [60], a mechanism known to be necessary for both spatial learning and NCAM-mediated neuroplasticity [61] and [62]. Although, the dose of curcumin required to enhance NCAM polysialylation and cognition in vivo was relatively high (75 mg/kg), no effect on either parameter was found at a dose of 37.5 mg/kg (data not shown), it was within the range previously reported necessary to induce neuroprotective effects in vivo [63] and [64]. Moreover, the dose at which curcumin mediates these neuroplastic actions is likely to be exceptionally low as its bioavailability is exceedingly poor, the majority being excreted in the feces, and only small fraction of the dose penetrates the brain, estimated to be approximately 0.3% of the administered dose in mice [65] and [47]. The lack of any behavioural toxicity in these studies, and those of others in both animals and humans [66] and [67], further implies the effective dose of curcumin necessary to enhance NCAM PSA expression and cognition to be exceptionally small. This unique action of curcumin may have significant implications in facilitating memory formation as the extent of PSA activation is commensurate with the difficulty experienced with task consolidation [57].

Curcumin also significantly improved spatial learning ability in aged animals despite the significant age-dependent decrease in NCAM polysialylation state [28] and increase in PKCδ expression [27]. However, extensive NCAM polysialylation is not necessary for the acquisition and/or consolidation of behavioural paradigms in aged animals [68] and [18] and appears to relate mainly to the graded, experience-expectant development of explicit memory systems that
continue to evolve into maturity [69]. Curcumin can also regulate the in vivo expression of several other cell signaling systems required for neuroplastic events necessary for memory formation, notably Notch-1 and NFκB [70], [71], [72], [73] and [74]. Nevertheless, facilitation of PSA activation by curcumin, however minimal, may have implications for the treatment of neurodegenerative conditions. In Alzheimer’s disease, the natural autoprotective response to age-related cognitive deficits is a small, but significant, activation of dentate polysialylated cell frequency [75] and, over the past few years, an increasing number of studies have highlighted the therapeutic potential of curcumin for the treatment of this condition [76] and [77], a suggestion further supported by its ability to reduce β-amyloid plaque burden in animal models [78]. Moreover, human populations exposed to curcumin show significantly reduced incidence of Alzheimer’s disease, but not ApOE polymorphisms [79], and improved cognitive ability as compared to a control group [80].
5. REFERENCES

[77] Y. Xu, B. Ku, L. Tie, H. Yao, W. Jiang, X. Ma and X. Li, Curcumin reverses the effects of chronic stress on behaviour, the HPA axis, BDNF expression and phosphorylation of CREB, *Brain Res* 1122 (2006), pp. 56-64.

ACKNOWLEDGEMENTS

We would like to thank Suzanne Prenter for technical assistance. This work was supported by Enterprise Ireland.
FIGURE LEGENDS

Figure 1: *In silico* approach to identification of curcumin as a rottlerin analogue.

The chemical structure of rottlerin and curcumin with the pharmacopore side chain in bold is shown in Panel A. Crystal structure of the PKCδ CIB binding site is shown in Figure 1Bi along with its interaction with the phorbol ester (Figure 1Bii) and curcumin (Figure 1Biii). Figure 1C shows a histogram plot of the 137 rottlerin-like molecules and their strength of their interaction, based on dock score, with the PKCδ CIB domain (Figure 1C). Figure 1D demonstrates the curcumin-induced, dose-dependent increase in PSA expression in neuro-2A neuroblastoma cells.

Figure 2: Influence of curcumin and rottlerin on recombinant PKCδ activity. Panel A illustrates the purity of the enzyme preparation (lane 1: enzyme preparation; lane 2: molecular weight markers) and Panel B shows enzyme activity with increasing concentrations of recombinant PKCδ. Panel C demonstrates inhibition of enzyme activity, in the presence of 40 μM (filled columns) and 200 μM (open columns) ATP, using staurosporine as a positive control. This panel also shows rottlerin and curcumin to be without effect on PKCδ activity. The data is expressed as the mean±SEM (n=3) and values significantly different (p<0.05) from the vehicle-treated controls are indicated with an asterisk.

Figure 3: Association of curcumin-conjugated Sepharose-6B with PKCδ in lysates from the hippocampal dentate gyrus. Panel A shows the Coomassie blue-stained gel analysis of bead-associated protein (lanes 1 and 2) and the remaining lysate following bead incubation (lanes 4
and 5). Lane 5 shows the protein profile of the lysate. All lanes had equal protein loading. Panel B shows the immunoblot analysis of the same lanes with anti-PKCδ.

Figure 4: Influence of curcumin on PKCδ expression in neuro2A neuroblastoma cells. The immunoblot in Panel A illustrates a curcumin-induced, dose-dependent decrease in PKCδ enzyme protein and the histogram in Panel B shows the same data expressed in a semi-quantitative densitometric manner. Equal protein loading is shown with the actin immunoblot in Panel A. Panel C shows the dose-dependent increase in PKCδ tyrosine311 phosphorylated PKCδ and its fragments in the presence of curcumin and Panel D is a semi-quantitative densitometric of the same data. All data is expressed as the mean±SEM (n=3) and values significantly different (p<0.05) from the vehicle-treated controls are indicated with an asterisk.

Figure 5: Influence of chronic curcumin administration on polysialylated cell frequency in the infragranular zone of the hippocampal dentate gyrus of the adult Wistar rat (postnatal day 80). Panel A and B form a qualitative comparison of dentate polysialylated cells (see arrow heads in Panel B) and Panel C represents their quantitative analysis. The animals received 75 mg/kg curcumin by gavage each day for 8 days. All data is expressed as the mean±SEM (n=3) and values significantly different (p<0.05) from the vehicle-treated controls are indicated with an asterisk.

Figure 6: Influence of chronic administration of curcumin on spatial learning in adult and aged Wistar rats. Panels A and B illustrate the influence of curcumin on acquisition and consolidation, respectively, of the water maze paradigm in adult animals. Task acquisition was carried out over
four daily sessions of five trials and consolidation was assessed by determining recall at 24 h and 72 h following the last training session. Panels C and D illustrate the same data for the aged animal group. Both the adult (n=10 for both vehicle and curcumin groups) and aged (n=7 for vehicle group; n=5 for the aged group) cohorts received 75 mg/kg curcumin by gavage each day for 8 days. Significant difference in task acquisition over 4 daily sessions was determined using a two-way repeated measure ANOVA with Bonferroni post hoc test and Mann-Whitney U-test employed to determine significance at the 24 h and 72 h recall times (* P<0.05 vs. vehicle).
Figure 1; Conboy et al.
Figure 2; Conboy et al.
Figure 3; Conboy et al.

A Coomassie blue

Lane number

1 2 3 4 5

116 kDa 66 kDa 26 kDa

B anti-PKCδ

PKCδ 78 kDa

1: Curcumin-coupled Sepharose 6B
2: Sepharose 6B
3: Total lysate
4: Lysate post-curcumin-coupled Sepharose 6B
5: Lysate post-Sepharose 6B
Figure 4; Conboy et al.
Figure 5; Conboy et al.
Figure 6; Conboy et al.
Curcumin increases NCAM polysialylation state through degradation of the PKCδ inhibitor of polysialyltransferase and improves spatial learning in adult and aged Wistar rats.