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Instabilities play a central role in the physics of foams. Some that change the topology of a dry foam are
indicated by the laws promulgated by Plateau in his 1873 book. Their occurrence is less clearly
predictable in wet foams. Various other instabilities are related to gravitational loading and gas
compressibility. We gather up many examples as a guide to future research and identify problems that
remain, including what we call pre-emptive instabilities, which occur before they are expected on the
basis of Plateau's laws.
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Introduction

The physics of foams began (and almost ended, as it became unfashionable for a time) in the work of J.

A. F. Plateau, culminating in his impressive magnum opus. Of course, it had many antecedents, dutifully
recounted by Plateau himself, but even the basic concept of surface tension/energy had remained obscure
until well into the 19th century. Today it seems obvious and elementary that the (free) energy of a large
enough body of liquid may be usefully expressed as

E= Ebulk + Esurface (1
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where Eq . face = @S. Here, in addition to a term expressing the energy of the bulk liquid and independent

of shape, there is included another term which is proportional to the surface area S. The constant of

proportionality o is the surface energy, or surface tension. In the century of thermodynamics this became

quite natural, but previously it escaped any clear formulation. As Rowlinson? recounts, this is because any

such phenomenological description was obscured by centuries of speculation and wrangling over the
nature, role and consequences of molecular interactions. Concern with detailed microscopic theory held up
macroscopic theory.

From the mists of such debates, there gradually emerged the simple theory that we take for granted
today. Young, Monge, Laplace and others showed how it could be used to explain the various effects
subsumed under “capillarity”.2=* A key result was the Young—Laplace Law, which relates the equilibrium
pressure difference across a fluid interface to its surface tension & and curvature,

ap=22 @)

Iz

where the mean curvature is written as 1/r, but in general represents double curvature, with principal radii

2 1 1
— T e e w—

of local curvature r, and 7, , such that the mean curvature is given by © "> . In equilibrium, Ap and,
hence, r are the same for all points on an interface, but r; and r, may vary. Eqn (2) acquires another

factor of 2 for a soap film on account of its two liquid/gas interfaces. This assumes that the interactions
between the two film surfaces make a negligible contribution to its energy.

In arriving at this long-delayed insight, Young and Laplace used physical and mathematical (or British
and French) perspectives, respectively. While the former talked directly of an isotropic surface tension
with unprecedented clarity, the latter formally introduced a somewhat abstract quantity H, essentially
representing the same thing. Mutual and acrimonious misunderstanding ensued.2 The subject's adherents
still stretch between the two extremes, with contrasting styles.

It fell to Plateau! to promulgate the general principle of minimisation of surface area (and hence
surface energy), usually for a body of liquid considered incompressible and hence of fixed volume, or for
a soap film in a frame. Hence, his name is still honoured by mathematicians in the “Plateau problem”,3
relating to existence theorems that address the mathematical solutions for such films. With the help of his
wife and students he manifested some of the simpler consequences of the principle of minimisation of
surface energy, and with some mathematical assistance from the geometer Lamarle2 showed that it was
sufficient to explain them all. Plateau's achievement in surveying the static structure of films and foams
remains unrivalled, but is inevitably surpassed in scope and sophistication today, with the aid of the
computer.

From the very outset, he focused repeatedly on the instabilities that set bounds to the ranges over
which particular structures can be maintained. They remain of great interest today, in relation to a number
of fields. These include the study of capillary effects under microgravity (e.g. ref. 6), the description of
foam flow in porous media,/ the formation of jets and droplets,® and new developments in microfluidics,
as well as the physics of foams.

We shall concentrate mainly on the core problems of foam physics, directly descended from those of
the 19th century.2 We seek to bring Plateau's conclusions up to date. Most of them have stood the test of
time. As the subject moves from problems of statics to those of dynamics, instabilities gain importance
and often stand at the threshold of new research problems.

The topological instabilities of Plateau set outer bounds to critical points. In some cases they are pre-
empted by an earlier transformation in practice. We shall argue that such pre-emptive instabilities are
common in three dimensions. This does not seem to have been generally appreciated up to the present
point.
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As we shall see, straightforward experiments on foams identify a variety of well-defined instabilities,
most of which result in rearrangements on a time-scale of less than a second, suitable for observation, for
example by video.

Film rupture (and consequent collapse of foam) presents an important type of instability that will be
entirely omitted here. It has its origins in the fluctuations of film thickness and the local influences of
particles and immiscible droplets. Still poorly understood, it is addressed in a rich field of research, but
this is of a different character to what is discussed here. While the cases that we cover may ultimately
lead to consideration of microscopic properties of films, at the onset they have to do with the geometry of
bubbles and the minimisation of their surface energy, within an elementary model.

Types of instability

What do we mean by instability in this context? It has the same commonplace meaning that is familiar in
mechanics, but some explanation may be helpful.

Except where indicated, we shall deal only with static equilibrium structures. One that is in stable
equilibrium remains essentially unchanged when subjected to small displacements (consistent with any
constraints, such as volume conservation). A stable configuration minimises energy with respect to all
displacements. Nevertheless, the term “minimal surface™ is widely used in the weaker sense that the
energy is stationary.

It often happens that, as some control parameter is varied (for example, the dimensions of a frame to
which a soap film configuration is attached, or the prescribed volumes of bubbles in a foam) we reach a
limiting point of stability. This means that continuing beyond this point, the system either

(a) develops an asymmetry without encountering any discontinuity in the configuration, or

(b) jumps away from this initial configuration to settle in another which is not close to it.

The consequences of the former type of instability (second order, in the language of phase transitions)
may often be predicted by purely static modelling. The latter is more problematic and may require a
dynamic model, because the system is out of equilibrium during the transition. Such models are under
scrutiny in current research: they will not be covered in any detail here.

In practice, this desideratum is often disregarded and the system is assumed to settle in the “nearest™
state of stable equilibrium, or that which is reached by some algorithm which seeks out the new
equilibrium in a steepest-descent search. It may be obvious that this is its correct destination, if there are
no other competing choices nearby.

In some cases (in which there is no change in connectivity at the instability), an analysis of the Hessian
matrix, which describes the quadratic variation of energy (surface area) with respect to all possible modes
of small distortion, serves to identify those that are least stable and those that lose stability at the
threshold. The relevant analysis evaluates the lowest eigenvalues of the Hessian matrix, together with
their eigenvectors. See the ESI for an explanation of the Hessian matrix method and its technical details.t

The eigenvalues of the Hessian matrix are the coefficients of the quadratic variation for those modes.
One eigenvalue may go to zero at a point of instability, and is identified with the unstable mode that is
our object of interest. These modes are essentially the “soft modes™ of the solid state physicist. They can
offer indications of the nature of the instability and suggest where it will take the system.

However, the kind of instability which Plateau's classic rules!2 entail is not quite of this character. In
his idealised model for a dry foam, films are infinitesimally thin, and represented in single surfaces
meeting in lines, which in turn meet in vertices. In this case, the instabilities occur as a consequence of an
abrupt topological change. This occurs because Plateau's necessary conditions for equilibrium are not
satisfied, for example by a vertex of more than four lines. There is no hint of the instability until this point
is reached. It is necessary to resolve the vertex into a new configuration of Plateau-allowed vertices
before applying a stability analysis. This may contain linear as well as quadratic terms, in which case the
linear ones have primary significance.

Specific examples of instability
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(a) The Rayleigh—Plateau instability for a cylindrical surface

This classic type of instability was first investigated by Plateau, while Rayleighl? is given credit for its
later elaboration.

Plateau remarked that configurations in which bubbles have large aspect ratios tend to be unstable,
quite generally. Indeed we shall see that a related instability is to be found in confined foams! as in Fig.
1. Moreover, something akin to the Rayleigh—Plateau instability must be at the heart of most common
processes of foam formation. Shaking a liquid/gas mixture is remarkably efficient in creating a foam of
small bubbles, presumably by the elongation of larger ones to a point of instability, rather as in section (h)
below. But here we consider the simplest case, that of a closed cylinder of uniform circular cross section,
diameter D, and length L, which is formed, for example, by a soap film between two solid plates upon
which the film is free to move. The enclosed volume is to be considered fixed. We shall frequently make
such an assumption, so let us note here that a measure of the relative effect of the compressibility of the
enclosed gas is the size variation between adjacent bubbles due to compressibility. For millimetre-sized
bubbles, hence with film curvature radii of the order of 1 cm, egn (2) with o~ 10~ N m~! gives Ap~ 10
Pa = 10~* atm for a typical variation of pressure between bubbles. If we now recall that the
compressibility of an ideal gas is the inverse of its pressure p, and this is typically of the order of 1 atm,

then the typical bubble size variation will be AV~Ap/pg~ 10~* which is usually negligibly small. In real
foams of the usual kind, compressibility becomes important only for extremely small bubble sizes or
pressures,’2 and can provoke a special type of instability there. We will return to this point in section (k).

D

- —_—
v

Fig. 1 Sequence of surfaces in the numerical simulation of the Rayleigh—Plateau instability for
a cylindrical surface, e.g. a soap film, between two plates (adapted from ref. 11).

If the circular ends of the film are free to move on the surface of the plate, the Hessian modes of

expansion and contraction are similar to standing waves.lY The mode of largest wavelength is the first to
become unstable as L is slowly increased. The critical value! is given by

4 3)

This instability is of the second type mentioned above and leads eventually to configurations such as
that indicated in Fig. 1, consisting of one or more distinct bubbles, attached to the plates or free,
depending on the liquid viscosity and other factors.
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(b) Other instabilities of cylindrical surfaces

The above case is only one of a family of possibilities considered by Plateau. Another is the case of two
open rings of diameter D, separated by a distance L along a common axis, as in Fig. 2. The enclosed
volume is no longer conserved.

ring

-

ring

Fig. 2 A cylindrical bubble between two open rings
(adapted from ref. 13).

The solution for the surface which connects these rings and conforms to the Laplace—Young law (with
pressure difference zero) has as its generating curve (which is to be revolved around the axis) the same
catenary curve (y = cosh(x/c)) that provides the solution for a cable suspended between two points. But
such a solution for the generating curve, only exists for L/D= 0.6627. If the ratio is continuously
increased from a small value, the surface must become unstable at or before this point is reached. For L/D
< 0.6627, there are two solutions of which the one with the smaller “neck™ (relative to L or D) is unstable,
and the other is stable up to the critical point.

This example is susceptible to standard variational calculus (see, e.g., ref. 14 and 15). Note that the
transition from the continuous differentiable to the discontinuous solution, occurs when the catenoid still
has a finite radius at x = 0, i.e., the static solution never pinches off to a point.

This is an instructive example in many ways, so we include a geometrical diagram to further explain
its main features (Fig. 3). In particular, this may be regarded as a pre-emptive instability, using a term
adopted for the purpose of this article, with the following meaning. With fixed D, the neck diameter
decreases as the two rings are pulled apart. The naive expectation is instability when the neck vanishes
and the topology must change. However, the actual instability occurs much earlier. A similar analysis
shows that when the diameter D of one ring is fixed and the other diameter D, is reduced, we encounter

the same kind of instability at a point which depends on the separation L.
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Fig. 3 The catenary curve y(x) provides the solution of the
two-ring problem. Here we keep the neck radius R = 1
(also the radius of curvature of the profile) fixed, and
explore solutions with a particular ratio D/L (ring diameter
D and separation L). A straight line with slope D/L
intersects the curve in two points for L/D < 0.6627. Each
such point gives a solution (rescaled as necessary), for
given D and L.

(c) Plateau's topological instabilities in 2d and 3d

Central to Plateau's achievement is his formulation of rules for the local equilibrium of systems composed
of soap films. One such rule is the Laplace—Young Law [egn (2)], mentioned above. In general this
places a condition on the subtle, doubly-curved shape of the films that make up a soap froth and the
bubble pressures. But what of their intersections?

Here we speak of an ideal dry foam, in the first instance. That is, it is considered to consist of films
(lamellae) of infinitesimal thickness, meeting in lines. These lines meet at points (known as vertices,
nodes or junctions). The energy is exclusively contributed by the films.

To begin with, consider a 2d foam, such as may be realised by trapping bubbles between two glass
plates. This is idealised in terms of lines (which in this case represent films in the real system, spanning
the two plates). The lines surround cells and meet at points. Only three lines can meet at such a 2d vertex
(at 120 degrees). If conditions are varied in such a way that the length of one of the cell sides goes to
zero, and forms a fourfold vertex, we necessarily encounter an instability and the system jumps to a
different configuration that is in accord with Plateau's rules. This is the “T1 process” (Fig. 4),1¢ whose
role in disordered 2d foams was underscored by C. S. Smith..Z It punctuates the otherwise smooth
evolution of the structure under coarsening or shear.
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Fig. 4 T1 process in two dimensions.2

The proof of the instability of the fourfold vertex in 2d is quite elementary. It is considered to be
dissociated into two threefold vertices connected by an edge of infinitesimal length. For at least one of the
two possible configurations of this kind, the surface tension forces are unbalanced in such a way as to
increase the length of the new edge.

Although sometimes compounded in avalanches, these T1 changes are indeed the essence of 2d foam
relaxation and rheology and may be displayed in very simple demonstrations. In the case of an ordered 2d
(honeycomb) structure, they provide the mechanism for simple defects (dislocations consisting of adjacent
5- and 7-sided cells) to migrate. The pioneering calculations of Krayniki® are slightly misleading in this
respect, in that he assumed simultaneous T1 changes throughout the honeycomb structure, whereas actual
specimens are deformed by defect migration.12 This is reminiscent of the historic misapprehension of the
nature of the plasticity of metals.

Reverting to three dimensions, we see that the same argument may be used to justify Plateau's rule that
allows films to meet only three at a time. They do so at 120 degrees, to conform to the equilibrium of
surface tensions at the point. But the problem of how many lines (Plateau borders) can meet at a vertex is
not so simple. The most elementary vertex, in 3d, has four lines and six films, and the relevant Plateau
rule stipulates that no other vertex is stable; anything with more lines must dissociate, just as in two
dimensions. To our knowledge there is no straightforward proof of this, treating such vertices in a general
way, and that remains an open problem. Lamarle? achieved a long proof by exhaustion of cases, and this
has been refined by modern mathematicians, but without condensation to anything more compact. He
explicitly described unstable deformations for all of them, except the fourfold case that remains the sole
stable vertex. Again we remark that Lamarle's theorem only sets bounds on stable structures. See in
particular section (e).

(d) Topological changes in frames and foams

Plateau developed his rules by the observation of soap film structures in frames, some of which are of
high symmetry, such that naive expectation would point to a symmetric configuration that is forbidden by
the above rule. The most familiar case is that of the cubic frame (Fig. 5a.b), in which the actual soap film
configuration breaks the symmetry of the frame in which it resides, introducing a central quadrilateral
face, whose normal points in one of the three cubic directions.

n

http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfre...?JournalCode=SM&Year=2007&ManuscriptiD=b608466b&Iss=Advance_Article Page 8 of 20



Instabilities in liquid foams (DOI: 10.1039/b608466b) 11/13/2006 03:19 PM

Fig. 5 Plateau's frames, with attached handles: (a) cubic, with the observed film configuration,
(b) the unstable symmetric configuration for the cubic frame, (c) the tetrahedral vertex, and (d)
the triangular prismatic frame. (adapted from ref. 1).

In a foam, forbidden multiple vertices are commonly approached in the processes of deformation or
coarsening, and topological changes result. Unlike the 2d case, here there are two elementary topological
processes that are the inverse of one another but of different character (Fig. 6). Respectively, they are
provoked when a line or a triangular face shrinks to the point of vanishing.2Y One might suggest that the
notation T1 and T1° would be appropriate, to indicate that these two processes are not the same (as they
are in 2d). These changes are indeed commonly observed in foams although they often occur together in a
compound topological change that results in the rotation of a quadrilateral face.22l We might
symbolically represent this as T3,

T3 =TI + T1’ (rotation of quadrilateral face) 4)
1 2
3 1
> 6
6 3 €

5 4 4
5

face in xy plane edge in 2 direction

Fig. 6 T1' and T1 rearrangements in a 3d dry foam.?

Very careful observation (or calculation) is required to conclude whether any of these changes is made
pre-emptively. Kraynik has noted a pre-emptive T3 change in simulations of shear for the Kelvin
structure.22 In the next section, we shall argue that this pre-emptive character is rather general, taking
another special case as prototype.

(e) The triangular frame and the T1' change

Although the implications are rather general, let us examine the problem of pre-emptive instability in the
context of a triangular prismatic frame (Fig. 5d), another of Plateau's classic constructions. He described
what we have called the T1 and T1’ processes. What follows is based on a rather crude repetition of his
experimentZ:24 using a frame whose axial ratio c/a (= height/width) may be varied. The case of T1 is
straightforward, with instability at the point of vanishing edge length. That of T1’ is more problematical.
Indeed we undertook this experiment after being puzzled by the nature of the limiting state as the Plateau
instability is approached: it entails the approach to infinity of components of local curvature. In practice,
it was observed that this crisis was avoided by a pre-emptive instability, as c/a was varied slowly, so as to
decrease the area of the triangular face at the centre (Fig. 5d).

At a certain critical value of c/a, the triangular face collapses spontaneously, shrinking to a point, and
this provokes the T1 change to the configuration shown in Fig. 5d.

(f) Wet foams

Up to now we have been dealing with an ideal dry foam. A real foam has a finite liquid fraction. While
the soap films may still be idealised as infinitesimally thin, the lines at which they meet in the dry foam
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are to be replaced by Plateau borders of finite cross-sectional area, which swell as further liquid is
incorporated. In such a model, we may still talk of topology, but Plateau's topological rules are less and
less respected as we move away from the dry limit. This gradual relaxation of rules that are strict in the
dry limit is not fully worked out as yet—Ilet us summarise some of the existing conventional wisdom.

In a 2d wet foam, there are finite Plateau borders and there can be stable multiple borders with more
than three sides,22:2%.g. a fourfold border (Fig. 7). The T1 process occurs in two stages: border
coalescence, and border separation as is illustrated in Fig. 7.

Fig. 7 For a wet foam the intermediate configuration may

be stable, as demonstrated here.22 A stable fourfold border
is formed upon increasing the liquid fraction.

There has been no general treatment by simulation of instabilities in 3d wet foam, along the lines of
that of Bolton and Weaire22 for two dimensions. Qualitatively, it seems clear that the gradual relaxation of
Plateau's rules should proceed in a similar way.

An interesting question (and one that occurred to Plateau himself) is as follows. How much liquid is
required to stabilise the eightfold symmetric vertex in the cubic frame of Fig. 5b? Inspired by experiments
in which this liquid was introduced in a continuous draining process (Fig. 8), it was suggested by in het
Panhuis er al.Zl that the answer might be paradoxical. It might be that any finite liquid fraction, however
small, stabilises the vertex against small displacements, in the model that we have defined. (They were
unaware that Plateau had performed rather better experiments with density-matched liquids, also finding
a very close approach to the “dry” symmetric vertex.)
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Fig. 8 Increasing the liquid fraction by introducing
steady drainage (by liquid input) at the top can
restore a stable eightfold vertex2cf. Fig. 5.

o

However, exhaustive calculations by K. Brakke2822 countered this notion and resulted in an estimate
of the critical liquid fraction for stability of the 8-connected vertex, ¢ = 0.000278. This seems
extraordinarily small, and as yet inexplicably so.
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A further complication for wet foams is the observed concatenation of many elementary T1 changes,
in cascades or avalanches.12:3? The wetter the foam, the larger these avalanches become.

(g) Other 3d instabilities in wet foam

An interesting case occurs wherever a face shrinks and vanishes in a 3d wet foam, upon increasing the
liquid fraction. At this point two bubbles lose contact. Whether this is necessarily a point of instability is
not obvious, but it would seem so from observation. The classic example is that of the Kelvin (bcc)
structure (Fig. 9), in which each dry foam cell has eight hexagonal faces and six quadrilateral faces,
closely related to those exhibited by Plateau's cubic frame (Fig. 5) As liquid is added, the films associated
with the quadrilateral faces are reduced to a small circle and then vanish. At (or just before?) this point an
instability is observed.

Fig. 9 Kelvin (bcc) structure.

Observing this in the surface layers of a draining foam, Weaire ef al.3! interpreted it in terms of the
instability of a bee atomic structure when second-nearest neighbour interactions are absent. While this
argument makes a connection with those made in metallurgy, it would be better in this case to make an
analysis in terms more closely related to surface energy and bubble interactions. This instability is also

related to the problem of the interface in the three-dimension honeycomb of the bee, or the analogous

foam structure.32

Bulk Kelvin structures have been produced only to a limited extent,333% but remarkably so, since this

is not the structure of lowest energy for monodisperse dry foam.32 The question of what bulk structure
would emerge from the above instability, upon producing a wet Kelvin foam, remains unanswered.

(h) 2d-3d foam transitions

A two-dimensional foam which consists (for example) of a mass of bubbles trapped between two adjacent
plates, undergoes a progressive transformation to a three-dimensional foam, as the plate spacing is
increased. How does this proceed? This question was answered by Cox et al.,1 using experiments,
simulations and an approximate mathematical treatment.

As a convenient example, a 2d “flower™ cluster of cells obtained by trapping bubbles between two
glass plates or between one plate and a liquid surface, was used. A central bubble is surrounded by n
petals, all of the same volume. As the spacing increases by changing the height of the cluster, the foam
cells become elongated. One might naively expect this to continue indefinitely, at least in the ideal dry
foam. However, instabilities enter and convert the foam into a double layer of bubbles, as soon as the
spacing is of the order of the cell diameter. It is the cells with less than six sides that are susceptible to the
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initial change, which is essentially the Rayleigh—Plateau instability of section (a), here dubbed the “wine
bottle instability”. As confirmed by Brakke and Morgan,3¢ when the central bubble is small and has fewer
than six sides, it becomes unstable first. When the central cell is large or has six or more sides, it drives
the Rayleigh—Plateau instability of a petal.

Several final different 3d configurations may be obtained in the 2d to 3d transition, depending on the
volume ratio of the petals and the central cell. Fig. 10 shows some examples from the simulations of Cox
et al

initial transient final

W'y
-

Fig. 10 (a) 2d to 3d transition with petals suffering a wine

bottle instability and (b) several possible configurations
after the 2d to 3d transition (adapted from ref. 11).

For cells of equal volume V, the estimated critical plate spacing d_, for the central instability contains
n, the number of cell sides

=3Vx (5)

(i) Ordered double layers

An ordered double layer of monodisperse bubbles presents a perfect hexagonal structure on both sides,
separated by a faceted wall in the middle. For the dry foam, the cells are arranged in the manner of a slice
taken from the Kelvin structure, perpendicular to the {1107 direction (with some small geometrical
adjustment). Upon increasing the liquid fraction, the same sort of instability as considered in section (g) is
found, converting the structure into that of close packing. Upon once more decreasing the liquid fraction,
there is an instability of the Plateau type everywhere as wet multiple vertices become dry and hence
unstable. There is considerable hysteresis, a general property of topological instabilities that we have not
emphasised up to this point.

(j) Ordered cylindrical structures

Structures of monodisperse bubbles contained in cylindrical columns readily form ordered structures
provided that the bubble diameter is not very much smaller than that of the tube.32:38 Originally pursued

http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfr...?2JournalCode=SM&Year=2007&ManuscriptiD=b608466b&Iss=Advance_Article Page 13 of 20



Instabilities in liquid foams (DOI: 10.1039/b608466b) 11/13/2006 03:19 PM

out of curiosity, these systems now excite interest in the context of microfluidics.32

A remarkable sequence of structures of increasing complexity is observed as the bubble diameter is
varied. For any given sample, this may be effected by either introducing a flow of liquid at the top,
producing a steady state that approximates equilibrium2? or by compressing the system with a piston.2!
The most impressive demonstration of foam instability is thereby produced: at certain points the structure
is rearranged by an elaborate sequence of topological changes, which proceeds along the tube in a
periodic manner, reminiscent of Scottish country dancing.

The most elementary example (apart from the one in the following section, which is special) is the
change from the staircase structure to the bamboo structure (Fig. 11). This is clearly necessary when the
area of the horizontal faces of the staircase structure approaches zero. However, once again, a pre-emptive
instability is found as first noted in calculations by Reinelt et al.38 One can again associate this with a “
curvature crisis”. The horizontal interior Plateau border has a curvature which would tend to infinity in
the limit considered, because of the boundary conditions that require it to be normal to the cylindrical
tube surface, which it meets.

Fig. 11 Transition from the staircase to the bamboo
structure (reproduced by kind permission of the
authors of ref. 38).

(k) Instability of the bamboo structure upon compression

In an ideal model of a dry foam, the instability (bamboo — staircase) which is the reverse of that just
considered, does not occur. The parallel flat films of the bamboo structure may be thought arbitrarily close
together. In practice, the bamboo — staircase transition is clearly observed. It has to do with the
interaction of the finite wall Plateau borders which are absent from the idealised model. When these
touch, instability is provoked and is very similar to the T1 process in a wet 2d foam.

(1) Instability due to gas compressibility

Hitherto we have considered the compressibility of both liquid and gas to be negligible, as is often the
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case. However, as discussed in section (a), compressibility may become significant if the pressure is low

and/or the bubble size is very small. It is difficult to realise these conditions in practice. Nevertheless the

consequences, as predicted by Aref and Vainchtein,12 are interesting. A foam of sufficiently compressible

gas “phase separates” into regions of large and small bubbles with different gas densities. This may be
attributed to the negative second derivative of surface area with respect to bubble volume, which
eventually overcomes the positive energy cost due to expansion/compression of gas. How this would
actually proceed in an experiment is as yet unknown.

(m) 2d flower clusters

Configurations of the type shown in Fig. 12 were introduced by the Lisbon and the Dublin groups#2:43
(but are to be found in the notebooks of Lord Kelvin!). We have already met these in section (h).

Sisitislis

a b C
Fig. 12 2d-Flower clusters with 10 equal petals: (a) symmetrical, (b)
asymmetrical and (c) ejected configurations (adapted from ref. 44).

The simplest 2d flower cluster consists of a central cell surrounded by n equal petals. Exact solutions
were easily provided, as clusters have n-fold symmetry.#2 Simulations with the Surface Evolver were
done to investigate the uniqueness of stable configurations for given topology.2 They revealed that, for a
flower cluster of more than six petals, when the area of its central cell is reduced, there is a symmetry-
breaking instability at a certain point. In a flower cluster with one shell of petals, the critical area
corresponds to the energy minimum and to zero eigenvalues of the Hessian matrix. Beyond this point, the
cluster becomes “floppy”, that is it may be given any configuration within the bounds that maintain its
topology. Asymmetrical configurations arise with lower energy than the symmetrical arrangement.
Asymmetrical configurations (Fig. 12b) were never observed experimentally.

A further type of instability which is observed in experiments for n > 6 is a change in topology due to
the ejection of a bubble (Fig. 12¢) which was initially in contact with the central cell. 4443

No instability occurs for flower clusters with n < 6. The decrease in the central cell area, gives rise
only to the vanishing of the central cell. 2443

(n) Symmetry breaking in the contact of opposed surfaces and bubbles

Firstly suppose that two convex surfaces of liquid (for simplicity, spherical), stabilised by surfactant, meet
and do not coalesce.2¢ Now proceed to push them closer together. A point is reached at which the
symmetry is broken by instability and the two bodies of liquid no longer simply meet “head-on”.

When two 2d bubbles are opposed and form an intervening film (Fig. 13) the effect is much the same
but simpler to describe.#Z48 When deforming two bubbles between two bars as in Fig. 13, instabilities
occur for critical values of bar spacing. The compression of the two bubbles leads, at a critical point, to a
buckling or slant configuration, where the inter-bubble film is inclined. Further compression induces T1
and provokes a topological transition into a bamboo arrangement.
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Fig. 13 Compression of two 2d bubbles between bars.

Compression leads to a buckled or slant configuration.*/

Another instability of this type is the tilting of the inter-bubble film for a compressed pair of 3d
bubbles, was demonstrated by Bohn.%? In both 2d and 3d, this transition may be readily understood in
terms of the “floppy” property of section (m).

(o) Gravitational instability

In all of the above, gravity has played no part. In a wet foam of large bubbles, it may be significant, not
just in determining the equilibrium distribution of liquid throughout the sample, but also its local
geometrical arrangement. It can even render this unstable, in principle.2?

In practice this has been observed in experiments of continuous drainage,2/ but in foams it may be
pre-empted by yet another instability, that of convection.2!

(p) Instability of bamboo structure under gravity

While instabilities under gravity are in principle quite general, the special case of the bamboo structure in
a vertical tube is particularly interesting on account of its simplicity, and it has been analysed by Carrier.22
It is necessary only to consider a single film in a vertical bamboo structure and determine its form as the
amount of liquid in the Plateau border is increased quasistatically. Initially horizontal, the film develops a
curvature, as there is a pressure difference across the film which supports the weight of the liquid. Beyond
a certain point no solution is found and experiments show that the cylindrical symmetry is broken by the
formation of a droplet ejected from the wall Plateau border, more or less maintaining the system in its

marginally stable state.

(q) 3d bubble chains

Under increasing extension (Fig. 14) the bubble chain provides another example of a pre-emptive
instability (and the curvature crisis that we have associated with other cases). Bohn's exhaustive

description®? of this system, identifying both stable and unstable solutions, should be a model for the
general understanding of more complicated cases, including the T1 process of section (e) above.
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Fig. 14 Instability of a 3d bubble chain under elongation as observed by
Bohn.#2 The middle configuration is transient. (Reproduced by kind
permission of the author of ref. 49).

We may tentatively advance the generalisation that topological instabilities which entail any infinite
curvature upon their approach are generally pre-empted, but as yet have no proof of this (even for special
cases).

Viscous effects

In a quasistatic description we generally consider the system to jump instantaneously to its new
configuration. In practice a finite time is required. It is dictated by effects that we may vaguely
characterise as “viscous”, but in most cases they have not been unambiguously identified. One
experimental observation that relates to this finite time of relaxation was made on the cylindrical
structures of section (j)23 in which a transition proceeds down the column with a finite velocity, related to
the time of relaxation and the energy difference that is the driving force for the structural change.

In the 2d case, detailed simulations>* have shown the relaxation after a T1 change, within a model in
which (in addition to the usual idealisations for a dry foam) a viscous drag is exerted on moving lines
(and is in reality attributed to the viscous drag exerted on the wall Plateau borders as they slide on the
confining plates). In this model, the velocity of the dissociating vertices is initially infinite, varying with
time as its inverse square root, and eventually decaying to zero exponentially. This “toy model™ is
probably quite unrealistic, and some experiments already point to that conclusion.22 The matter is best left
there, in anticipation of much research in the coming years.

Conclusions

Although our subject is a classic one, famously founded a century and a half ago, both experiment and
close scrutiny of theory continue to raise questions. With increasing attention being paid to the world of
soft matter, these questions are of lively interest. As the subject progresses in its basic competencies from
static to dynamic effects, instabilities may not appear in so clear-cut a form as in the above examples, but
they will always be part of the framework of qualitative understanding and its essential vocabulary.
Furthermore, the stationary properties of foam structures must be intimately related to problems of
existence and uniqueness of equilibrium structures and the fashionable topic of “energy landscapes™. A
foam has a rich energy landscape if alternative topological arrangements are included. But for one fixed
topological structure, is the stable minimum (if it exists) unique? This is the kind of question raised by
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Graner et al.2¢ and it provoked the studies described in section (m). It was a question largely disregarded

by Weaire and Kermode? in formulating the first full simulation of an ideal 2d dry foam. They used

Plateau's laws, not energy minimisation, but were sufficiently aware of the problem to repeat simulations
with added random initial perturbations, to confirm that they returned to the same configuration. Indeed it
seems that for practical purposes the 2d case is rather straightforward, although Graner's conjecture would

appear to be false.3

But this assertion should not be carried over casually into three dimensions, where there are stronger
possibilities of complicated landscapes.

Even in the case of static structures, Plateau's research programme is clearly far from exhausted.
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