Suite of novel vectors for ectopic insertion of GFP, CFP and IYFP transcriptional fusions in single copy at the \textit{amyE} and \textit{bglS} loci in \textit{Bacillus subtilis}

Paola Bisicchia, Eric Botella, Kevin M. Devine

PII: S0147-619X(10)00050-8
DOI: 10.1016/j.plasmid.2010.06.002
Reference: YPLAS 1998

To appear in: \textit{Plasmid}

Received Date: 19 March 2010
Accepted Date: 15 June 2010

Please cite this article as: Bisicchia, P., Botella, E., Devine, K.M., Suite of novel vectors for ectopic insertion of GFP, CFP and IYFP transcriptional fusions in single copy at the \textit{amyE} and \textit{bglS} loci in \textit{Bacillus subtilis}, \textit{Plasmid} (2010), doi: 10.1016/j.plasmid.2010.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Suite of novel vectors for ectopic insertion of GFP, CFP and IYFP transcriptional
fusions in single copy at the amyE and bgISloci in Bacillus subtilis

Paola Biscicchia, Eric Botella and Kevin M Devine.

Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2 Ireland.

Correspondence: Paola Biscicchia

E-mail: paolabiscicchia@yahoo.it
Phone: (353)-1-896-2447
Fax: (353)-1-6714968
Abstract

We report the development of a suite of six integrative vectors for construction of single copy transcriptional fusions with the gfpmut3, cfp and iyfp reporter genes in B. subtilis. The promoter fusions are constructed using the highly efficient ligation-independent cloning (LIC) technique making them suitable for high-throughput applications. The plasmids insert into the chromosome by a double cross-over event at the amyEorbgS loci and integration at each site can be verified by a plate-based screening assay. The vectors allow expression of two different promoters to be determined in the same strain using the cfp and iyfp reporter genes since CFP and iYFP are spectrally distinct and have comparable half-lives of approximately 2 hours in exponentially growing B. subtilis cells. We demonstrate the versatility of these vectors by measuring expression of the tuaAand phoA operons singularly and in combination, during growth in phosphate limiting conditions.

Keywords: Transcriptional fusions; Fluorescent proteins; Dual labelling; Bacillus subtilis.

1. Introduction
The use of transcriptional fusions between promoters and reporter genes is a powerful and proven tool in prokaryotic gene expression studies. While a variety of reporter genes have been utilized, the gene encoding the green fluorescent protein (GFP) from *Aequorea victoria* [1] has emerged as the reporter of choice for many applications. Its widespread usage stems from the fact that GFP detection only requires irradiation with blue light and development of fast-folding GFP variants allow detection within minutes of expression [2, 3]. These features allow continuous real-time monitoring of transcriptional activity in living bacterial cells with a temporal resolution of minutes [4, 5, 6]. A number of GFP variants engineered for improved brightness and shifted excitation and emission spectra have been developed [3, 7, 8]: among those are the distinguishable cyan (CFP) and yellow (YFP) fluorescent proteins, which have been employed to visualize differential expression of two genes or localization of two proteins in the same cell [7, 8, 9, 10, 11, 12, 13]. Conveniently, CFP and YFP variants optimized for use in the Gram-positive bacterium *Bacillus subtilis* have been obtained [10, 13, 14, 15].

In this work, we describe a suite of novel vectors designed to generate transcriptional fusions between *B. subtilis* promoters and the *gfpmut3, cfp* and *yfpreporter* genes, using the highly efficient ligation-independent cloning (LIC) technique [16, 17, 18]. Each fusion can be integrated into the *B. subtilis* chromosome in single copy at either the *amyE* or the *bgIS* locus and correct insertion can be verified using a plate assay. We demonstrate the use and versatility of these vectors by determining the expression profile of the *tuaA* and *phoA* promoters singularly and in combination in cells grown under phosphate-limiting conditions.

2. Materials and methods

2.1. Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. Strain TG1 was used for routine cloning in *Escherichia coli*[19]. Bacterial transformation was carried out by standard procedures: *E. coli* TG1 was transformed by the calcium chloride method [20] and *B. subtilis* strains were transformed as described by Leskela et al., [21]. *E. coli* strains were grown in Luria-Bertani (LB) medium [22], and *B. subtilis* strains were grown in low phosphate defined medium (LPDM) and high phosphate defined
medium (HPDM) [23]. Antibiotics were added to cultures when needed at the following concentrations per ml: ampicillin 100 μg; kanamycin 10 μg; chloramphenicol 3 μg.

2.2. DNA manipulation and oligonucleotides
DNA manipulations were carried out according to standard procedures as described by Sambrook et al. [20]. The oligonucleotides used in this study are listed in Table 2.

2.3. Plasmid construction
Plasmid pBPbgIS was constructed by inserting a fragment upstream of bgIS (amplified with primers oBP231 and oBP232) and a fragment overlapping the 3’-end of bgIS (amplified with primers oBP233 and oBP234) either side of the kan’ cassette in pDG780 [24]. Plasmids pGFPbgIS, pCFPbgIS and pYFPbgIS are derived from pBPbgIS by inserting the gfp, cfp and iyfp genes into the unique EcoRI site. Specifically, plasmid pGFPbgIS contains the LIC-gfp-mut3 cassette that was amplified from plasmid pBaSysBioII [25] with primers oBP237 and oBP238. Plasmid pCFPbgIS contains a LIC-cfp cassette that was amplified from plasmid pDR200 [15] using primers oBP354 (contains the LIC sequence) and oBP355. Plasmid pYFPbgIS contains a LIC-iyfp cassette amplified from plasmid pYF[13] using primers oBP262 (contains the LIC sequence) and oBP279.

Plasmid pBPamy is derived from pAC5, generated by amplifying the plasmid backbone using primers oBP275 and oBP276, which excludes the lacZ gene reporter [26]. Plasmids pGFPamy, pCFPamy and pYFPamy are derived from plasmid pBPamy, constructed by inserting the LIC-gfp, LIC-cfp and LIC-iyfp cassettes (detailed above) into the unique EcoRI site.

These plasmids allow ectopic integration of promoter fusion either at the bgIS locus, through double homologous recombination at the bgIS front (427 bp) and bgIS back (398 bp) sites, or at the amyElocus, through recombination at the amyE front (537 bp) and amyE back sites (1037 bp). A schematic diagram of these plasmids is presented in Figure 1, and the complete sequences are available in the GenBank database, under the following accession numbers: HM204934, pGFPbgIS; HM204935, pGFPamy; HM204936, pYFPbgIS; HM204937, pYFPamy; HM204938, pCFPbgIS; HM204939, pCFPamy.
2.4. Cloning of promoter-containing fragments using the LIC site

To construct plasmids with promoter fusions to the gfp, cfp or iyfp reporter genes, DNA fragments carrying the promoter regions of the genes of interest, flanked by LIC sequences allowing ligation-independent cloning, were generated by PCR generated and cloned into one of the six newly generated vector as described by Botella et al[25]. Briefly, the LIC sequence in each vector is TTTAACC GGAGGTTTCCCCGGGAAGGAGGAACT. Each plasmid is linearized with SmaI (sequence in bold above) and treated with T4 polymerase in the presence of dATP for 20 minutes at 22°C followed by 30 minutes at 75°C to inactivate the enzyme - specifically 4 picomoles of vector were treated with 20 units of T4 DNA polymerase in the presence of 1X T4 DNA polymerase buffer and 2.5mM dATP. This generates single-stranded overhangs on either side of the restriction site extending to the underlined A bases. Promoter containing fragments were amplified using oligonucleotides with a 5’ CC CGG GGT TTT CCC AGC 3’ tail sequence added to the forward primer and a 5’ GT TCC TCC TTCCC ACC 3’ tail sequence added to the reverse primer. Fragments were then treated with T4 polymerase in the presence of dTTP for 20 minutes at 22°C followed by 30 minutes at 75°C to inactivate the enzyme – specifically 0.2 picomoles of insert were treated with 0.4 units of T4 DNA polymerase in the presence of 1X T4 DNA polymerase buffer and 2.5mM dTTP. This generates inserts with single-stranded ends that are complementary to those of the treated vectors. Treated plasmids (5 ng) and inserts (15 ng) were mixed with and annealed at room temperature for 10 minutes and transformed into E. coli. This procedure results in directional cloning of promoters into the vectors to generate transcriptional fusions.

Promoter regions of tuaA and phoA (400bp and 514 bp respectively) were amplified using primers pair tuaA AF - tuaAR and phoA AF - phoAR respectively. Plasmids pBP128 and pBP231 were generated by inserting the tuaA promoter region into plasmids pGFPbgI S and pCFPbgI S respectively. Plasmids pBP186 and pBP192 were generated by inserting the phoA promoter region into plasmids pGFPamy and pYFPamy respectively. All constructs were confirmed by DNA sequencing.

2.5. Construction of B. subtilis strains
B. subtilis strains, listed in Table 1, were obtained by transforming linearized plasmids into recipient strains, giving ectopic insertion at the amyE locus or at the bglS locus by a double cross-over recombination event. Recombinant plasmids derived from pGFPbglS, pCFGbglS or pYFPbglS were linearized by digesting with BamHI; derivatives of plasmids pGFPamy and pCFPamy were linearized with PstI, while vectors derived from pYFPamy were digested with Scal.

2.6. Verification of integration position

Correct integration at the amyE site was tested by patching transformants onto LB agar plates containing 1% (w/v) starch. Strains were grown overnight at 37°C and stained with a solution containing 0.1% (w/v) potassium iodide and 0.1% (w/v) iodine dissolved in 1N HCl. Lack of amylase activity, indicating correct insertion at the amyE site, was visualized as a lack of halo surrounding the colony (wild type strain 168 was used as a positive control for amylase activity). A similar method was used to test correct insertion at the newly developed bglS integration site: lack of β-glucanase activity was visualized as a lack of halo surrounding colonies grown on LB agar plates containing 0.4 % (W/V) lichenan (Sigma) and stained with a 0.1% (W/V) Congo red solution[27].

2.7. Measurement of growth rate and gene expression

B. subtilis strains were grown overnight in HPDM medium at 37°C and 220 rpm; these cultures were used to inoculate LPDM cultures at a starting OD₆₀₀ of 0.02 in a 96-well plate with optical bottom (Nunc), at a final volume of 100μl per well. Plates were covered with lids to prevent evaporation and incubated in a Synergy™ 2 multimode microplate reader (Biotek) at 37°C, set with constant slow shaking for 7 hours. Growth was monitored turbidimetrically by measuring absorbance at 600 nm. Fluorescence readings were taken by using the following filters: excitation 485/20 nm, emission 528/20 for GFP; excitation 500/27 nm, emission 540/25 for IYFP; excitation 420/50 nm, emission 485/20 for CFP. Readings were taken from the bottom of the plate, with the exception of CFP readings, which were taken from the top using a 455 nm dichroic mirror. Measurements were taken at 15 minutes intervals. To calculate expression levels, the natural fluorescence of three cultures of wild type B. Subtilis strain 168 (containing no reporter gene) were averaged and subtracted from the raw fluorescence value of each
reported strain at the same OD\textsubscript{600} value. Gene expression was then calculated as fluorescence value divided by the OD\textsubscript{600} at the same time point.

2.8. Measurement of CFP and IYFP half-life

The half-lives of CFP and IYFP were calculated as described by Botella \textit{et al} [25].

3. Results and discussion

3.1 Characteristics of the new vectors

We have constructed a suite of six vectors for generating transcriptional fusions in \textit{B. subtilis}. A schematic diagram of these plasmids is shown in Figure 1. The plasmids combine several features that make them especially useful for high-throughput determination of real-time expression profiles in \textit{B. subtilis}. (1) DNA fragments are cloned into all six plasmids by the same LIC mechanism allowing a choice of both reporter gene (\textit{gfp, cfp} and \textit{yfp}) and integration site (\textit{amyE, bglS}) for each promoter fusion. The LIC cloning system is highly efficient and amenable to automated cloning technology. (2) Integration occurs by a double cross-over event, ensuring that only one copy of the promoter fusion is present on the chromosome (a promoter fusion integrated by a Campbell-type event can be sometimes present in multiple copies on the chromosome due to amplification or to integration of a dimeric plasmid). Promoter fusions are also stably integrated into the \textit{amyE} and \textit{bglS} chromosomal sites since repeated sequences are not generated during the integration event. (3) These plasmids allow \textit{B. subtilis} to be used as a model system to study heterologous promoters since the required sequences for homologous integration are plasmid encoded. (4) Three fluorescent proteins, GFP, CFP and IYFP are used as reporters of gene expression. A particular advantage is that CFP and IYFP are spectrally distinct and can be used to monitor expression of two different promoters in the same strain. (5) Integration of each reporter fusion can be made at both the \textit{amyE} and \textit{bglS} loci, from which several advantages accrue: (a) correct integration can be verified by an easy plate screening assay; (b) our development of the \textit{bglS} locus as a site of integration allows these plasmids to be used in conjunction with the multitude of existing plasmids that integrate at the widely used \textit{amyE} locus and (c) expression of two different promoters can be determined
in the same strain using the spectrally distinct CFP and IYFP reporters, integrating one fusion at the *amyE* locus and the second at the *bglS* locus. These characteristics confer considerable versatility on the usage of this plasmid suite in expression studies, especially to monitor promoter activity of genes in growing cultures in a high-throughput and automated way with a temporal resolution of minutes.

3.2 Measurement of CFP and IYFP protein half-life in *B. subtilis*.

Knowledge of the half-life of each reporter protein is required when different reporters are used to compare the expression profiles of individual promoters. This is especially important when expression of two different promoters is being determined in the same cell, as is possible using the *cfp*- and *iyfp*-containing plasmids reported here. We have previously reported the half-life of GFPmut3 in exponentially growing *B. subtilis* to be approximately 9 hours [25]. Using a similar approach we have determined the half-lives of CFP and IYFP to be approximately 2 hours (two hours and 30 minutes for CFP and two hours and 15 minutes for IYFP,) in exponentially growing *B. subtilis* cells. This makes GFP the reporter of choice in determining promoter activity as described in Botella *et al* [25] since its decay is negligible during short time intervals. However, here we show that CFP and IYFP can both be used to accurately determine the expression profile of different promoters in the same strain since they have comparable half-lives.

3.3 Measurement of the expression profiles of the *P*_{tuaA}and *P*_{phoA} promoters using the pGFPbgls and pGFPamy vectors

The expression profile of two *B. subtilis* promoters was established during growth in phosphate limiting conditions. The *phoA* gene encodes an alkaline phosphatase while the *tuaA* operon encodes teichuronic acid biosynthetic genes and both operons are induced upon phosphate limitation. Plasmids pGFPbgls and pGFPamy were utilized to construct strains BP349 and BP158, which carry the *P*_{phoA}GFPmut3 and *P*_{tuaA}GFPmut3 transcriptional fusions integrated at the *amyE* and *bglS* locus respectively. These strains were grown in low phosphate defined medium (LPDM), and expression profiles were determined as outlined in Materials and Methods. Results are shown in Figure 2. Neither fusion is expressed during exponential growth while both are induced at the onset of phosphate limitation, activated by the PhoPR two-component system[28, 29, 30]. Importantly,
control strains BP370 and BP381 that have pGFPbg1S and pGFPamy without promoters
inserted into the chromosome had only background fluorescence levels throughout the
growth curve (data not shown). We compared expression of the \(P_{phoAgfpmut3} \)
and \(P_{nuaAgfpmut3} \) transcriptional fusions at their homologous chromosomal loci with those
inserted into the \(amyE \) (\(P_{phoAgfpmut3} \)) and \(bglS \) (\(P_{nuaAgfpmut3} \)) loci by a double crossover
event. Results showed that the profile and level of \(P_{nuaAgfpmut3} \) expression was almost
identical at both chromosomal sites (data not shown). However while the profile of
\(P_{phoAgfpmut3} \) expression was similar at both sites, expression at the homologous site was
approximately 3-fold higher that that at the \(amyE \) site. Differential expression of a
particular fusion located at separate chromosomal locations has been previously observed
in several studies [31 and references therein]. Thus chromosomal context is important for
expression of some transcriptional fusions and must be considered when comparisons of
expression profiles are being made.

3.4 Measurement of the expression profile of two different \(B. \) subtilis promoters in the
same strain using the pCFPamy and pYFPbg1S vectors

The use of two different integration sites and the spectrally distinguishable cyan
(CFP) and yellow (YFP) fluorescent reporter proteins in this vector suite
allow expression of two different promotersto be monitored in the same strain.
Plasmid pYFPamy was used to construct strain BP355 that has \(P_{phoAlyfp} \) integrated at the
\(amyE \) locus and plasmid pCFPbg1S was used to construct strain BP477 that has \(P_{nuaAcfp} \)
inserted at the \(bglS \) locus. In addition strain BP543 was generated that has both
transcriptional fusions, \(P_{phoAlyfp} \) integrated at the \(amyE \) locus and \(P_{nuaAcfp} \) inserted at the
\(bglS \) locus. Expression of these fusions was measured in the three strains grown in
LPDM medium. Results are shown in Figure 3. Only background levels of fluorescence
were observed in strains BP371 and BP482 into which the plasmids pCFPbg1S and
pYFPamy without promoters were inserted (data not shown). The expression profiles of
both fusions were similar to that obtained using the GFP reporter protein, although the
CFP and YFP signals are less. This could be due to decreased sensitivity or to the
increased turnover of both protein when compared to GFP. Importantly the expression
profiles of both fusions determined in strain BP543 are virtually identical to those
obtained in the strains that harboured each of the single fusions (Figure 3 A, B). This
confirms that the presence of both IYFP and CFP proteins in cells does not interfere with fluorescence measurements of either protein.

Exponentially growing and phosphate limited cells of strains singly carrying the promoter fusions were analyzed by fluorescence microscopy. Only background fluorescence was observed in exponentially growing cells, while a homogeneous population of cells with comparable fluorescence levels was observed in phosphate limited cells (data not shown).

4. Conclusions

We have developed a new suite of vectors for analysis of gene expression using the gfpmut3, iyfp and cfp reporter genes in B. subtilis. Promoter-containing fragments are cloned using the highly efficient LIC system that is amenable to high-throughput automated procedures and the plasmids can integrate at two separate chromosomal loci. We establish that CFP and IYFP proteins have comparable half-lives of approximately 2 hours in exponentially growing cells and demonstrate the versatility of these plasmids by monitoring expression of two different promoters in the same strain.

Acknowledgments: This work was funded by Science Foundation Ireland Principal Investigator Award 08/IN.1/B1859 and by BaSysBio grant LSHG-CT-2006-037469. P.B was partly supported by an IRCSET award. We thank David Z. Rudner for the kind gift of vector pDR200.

References

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG-1</td>
<td>supE hsd 5 thi (lac-proAB) F'(traD36 proAB lacF lacZ M15)</td>
<td>Gibson (1984)</td>
</tr>
<tr>
<td>B. subtilis strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>trpC2</td>
<td>Laboratory stock</td>
</tr>
<tr>
<td>BP158</td>
<td>trpC2 bglS::tauA-gfpmut3 Kan'</td>
<td>pBP128→168</td>
</tr>
<tr>
<td>BP349</td>
<td>trpC2 amyE::phaA- gfpmut3 Cm'</td>
<td>pBP186→168</td>
</tr>
<tr>
<td>BP355</td>
<td>trpC2 amyE::phaA- iyp Cm'</td>
<td>pBP192→168</td>
</tr>
<tr>
<td>BP370</td>
<td>trpC2 bglS::gfpmut3 Kan'</td>
<td>pGFPbglS→168</td>
</tr>
<tr>
<td>BP371</td>
<td>trpC2 bglS::iyfp Kan'</td>
<td>pYFPbglS→168</td>
</tr>
<tr>
<td>BP372</td>
<td>trpC2 amyE::iyfp Cm'</td>
<td>pYFPamy→168</td>
</tr>
</tbody>
</table>

Table 1. Bacterial strains and plasmids.
<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oBP231</td>
<td>CCGGATCCGCCCTTCACATTTATCGGTTGTCTCACCC</td>
</tr>
<tr>
<td>oBP232</td>
<td>AAACTCGAGCTCAGTTAACTATCATCTATCTTCCTCCTG</td>
</tr>
<tr>
<td>oBP233</td>
<td>CCGCTCGAAGGACGAGGCTCTTTTCACATTGCTG</td>
</tr>
<tr>
<td>oBP234</td>
<td>CCGGAATTCTTCTTTACCGCGGGGCTTTTC</td>
</tr>
<tr>
<td>oBP237</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTC</td>
</tr>
<tr>
<td>oBP238</td>
<td>CCGAATTCTTTTTACGCGGGGCTTTTC</td>
</tr>
<tr>
<td>oBP354</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
<tr>
<td>oBP355</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
<tr>
<td>oBP262</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
<tr>
<td>oBP279</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
<tr>
<td>oBP275</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
<tr>
<td>oBP276</td>
<td>CCGGAATTCTTTTTACGCGGGGCTTTTCCCGGGAAGGAACATATGTTTCAAAAAAGCGAAGAACTG</td>
</tr>
</tbody>
</table>

Table 2. Oligonucleotides used in this study.

The table lists the names and sequences of the oligonucleotides used in the study. The sequences are given as 5’ to 3’ orientations and are provided for functional and cloning elements used in the research.
Figure legends

Figure 1. Schematic presentation of plasmids for generating GFP, CFP and IYFP transcriptional fusions at the *amyE* and *bglS* loci using the LIC cloning methodology in *B. subtilis*. Vector names, antibiotic resistance genes and origins of replication are indicated. The reading frames encoding the GFP, CFP and IYFP fluorescent proteins are shown in green, cyan and yellow respectively. The Ligation-Independent-Cloning (LIC) sites for ligation-free cloning of promotors to the fluorescent protein-encoding genes are shown in red. The restriction site used for plasmid linearization is indicated. Integration into the *B. subtilis* chromosome occurs via a double cross-over event at the *amyE* or the *bglS* locus, resulting in selection for chloramphenicol or kanamycin resistance respectively.

Figure 2. Growth and expression profiles of strains carrying transcriptional *gfpmut3* fusions grown in low phosphate defined medium (LPDM). Growth profiles are shown by open symbols and expression by closed symbols: squares BP349 (*phoA-gfpmut3*); triangles, BP158(*tuaA-gfpmut3*). Time zero indicates the point of transition between the exponential phase and the phosphate-starvation induced stationary phase of growth.

Figure 3. Growth and expression profiles of strains carrying transcriptional fusions to the *iyfp* and *cfp* reporter genes, grown in low phosphate defined medium (LPDM). Growth profiles are shown by open symbols and expression profiles by closed symbols. Time zero indicates the point of transition between the exponential phase and the phosphate-starvation induced stationary phase of growth. A: strain BP355 (*phoA-iyfp*, squares) and strain BP477(*tuaA-cfp*, triangles). B: strain BP543 (*phoA-iyfp tuaA-cfp*), carrying both...
thehpaA-iyfp (squares) and tuaA-cfp (triangles) transcriptional fusions. Open circles indicate growth.