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Abstract—Leaky mode analysis has been carried out based on
the compact 2-D finite-difference time-domain (FDTD) method
combined with the uniaxial anisotropic perfectly matched-layer
(UPML) absorption boundary condition and the Padé approxi-
mation transform technique. The imaginary part of the effective
index of these leaky modes can be calculated independent of the
real part, so very small leaky loss can be calculated reliably based
on the proposed scheme. Mode coupling effects have also been
accounted for naturally within the scheme because the simulation
is carried out in the time domain and is full-vectorial. Leaky
modes in the ARROW waveguide and the deep ridge waveguide
have been analyzed by the proposed scheme. Leakage cancellation
behavior for high-order leaky modes in very deeply etched ridge
waveguides at specific ridge widths has been observed.

Index Terms—Compact 2-D finite-difference time-domain
(FDTD) method, leaky mode analysis, Padé approximation trans-
form (PAT), uniaxial perfectly matched layer (UPML).

I. INTRODUCTION

A NALYSIS of leaky modes in optical waveguides is indis-
pensable for designing optical waveguide-based devices.

A group of numerical methods have been proposed to solve
leaky modes, such as the spectral index scheme [1], the eigen-
equation solving method based on the finite-element scheme [2],
[3], the finite-difference method [4], and the imaginary beam
propagation method based on the finite-element scheme [5], [6].
A method based on real propagation has also been used to es-
timate the leaky loss [7]. A common feature of these methods
is that they search the complex effective indexes of the leaky
modes in the complex plane through some iteration processes
and are generally initial-guess-sensitive. Generally, the leaky
loss is calculated from the imaginary part of the leaky mode ef-
fective index, which is rather challenging, especially for leaky
modes with very low leakage loss. This is because the imag-
inary part of the effective index is generally several orders of
magnitude smaller than the real part. For example, even when
the leaky loss reaches a level of 100 dB/cm, the imaginary part
is still just at 1550 nm, which is four orders of
magnitude smaller than the real part, which is generally around
3.2.

The finite-difference time-domain (FDTD) technique is a
powerful tool for modal analysis. Unlike the frequency-domain
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modal solvers mentioned above, it solves Maxwell’s equa-
tions in the time domain through explicit iterations, and the
broadband frequency domain information is naturally involved.
However, it requires large memory and computation time for
3-D simulations. In [8], the compact 2-D FDTD was first
proposed and has been widely employed to analyze uniform
waveguide structures in the microwave regime. By introducing
a variable transform, the 2-D FDTD simulation can run with
real variables and thus save the computation effort further [9].
Recently, we employed a model which combined the compact
2-D FDTD technique with the Padé approximation transform
to analyze high-order leaky modes in deep ridge semiconductor
optical waveguides [10]. This model is simple to implement,
and it can provide reliable analysis because it calculates the real
part and imaginary part of the mode effective index separately,
which is a distinct advantage, especially when analyzing leaky
modes with very low leaky loss.

To employ the compact FDTD method to analyze leaky
modes in optical waveguides, two points are crucial: one is
the absorption boundary condition (ABC); the other is the
transforming tool which changes the FDTD data from the time
domain to the frequency domain. For the ABC, we use the per-
fectly matched-layer (PML) [11] absorption condition which
has been shown to have superior performance over other kinds
of ABCs. To facilitate the extension of the PML from 3-D into
2-D, the so-called uniaxial anisotropic perfect matched layer
(UPML) [12] boundary conditions were adopted to efficiently
terminate the FDTD computation window. In the compact 2-D
FDTD method, the waveguide is treated as a 2-D cavity of
which the resonant modes represent the 3-D propagation modes
of the waveguide. By transforming the FDTD data from the
time domain to the frequency domain, the corresponding mode
spectra can be calculated, from which the mode information can
be extracted. The fast Fourier transform (FFT) is the generally
used tool for this transformation, however, it is inefficient to ob-
tain high-frequency resolution. To reduce the FDTD simulation
time, the efficient Padé approximation transform (PAT) [13] is
used to produce high spectral resolution through short FDTD
data sequences. Through the PAT technique, the mode spectra
can be calculated, and then a Lorentzian fitting can be used to
extract the mode information. Because this approach is based
on the time-domain simulation, it takes into account all mode
coupling effects naturally. For frequency-domain methods, it
could be more difficult to account for the mode-coupling effect,
although they could be more efficient because they analyze a
specific mode for a single run.

In this paper, we will introduce this proposed method in detail
and employ it to analyze leaky modes in ARROW waveguides
and in deep ridge waveguides. The paper is organized as follows.
In Section II, the 2-D FDTD method with the UPML boundary
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condition and the PAT technique are introduced. In Section III, a
metal waveguide which has analytical solutions to its mode has
been simulated by the proposed method with results compared
with analytical results. In Section IV, leaky modes in ARROW
waveguides and in deep ridge waveguides are analyzed by this
method. In Section V, conclusions are given.

II. THEORY

Using the compact 2-D FDTD for mode analysis, we first
choose a propagation constant along with a Gaussian exci-
tation pulse for the field within the waveguide core. Then, we
run the FDTD algorithm to update the field both in space and
in time, and, subsequently, the field at some points in the wave-
guide is recorded during the iteration. Finally, the recorded field
time data are converted into the frequency domain by the PAT
technique and the frequency spectrum is obtained at which the
propagation modes in the waveguide exhibit the selected .

A. Compact 2-D FDTD With UPML

The compact 2-D FDTD is a simplification of 3-D FDTD
under the assumption that all of the electromagnetic fields
depend on the propagation direction simply as ,
where is the propagation constant. This is justified for wave-
guide structures that are uniform in the propagation direction. In
compact 2-D FDTD, all electromagnetic fields are represented
by a 2-D mesh, where and occupy the same
mesh points [8].

The PML ABC has been demonstrated as the most effective
boundary condition to truncate FDTD lattices. Among the
various modifications and extensions of the PML, the so-called
UPML [12], usually denoted as unsplit PML, has the advan-
tage of performing as well as split PML while maintaining
Maxwell’s equations in the physical form by the use of uniaxial
anisotropic lossy material. In the UPML regions, there are 12
equations of which six are related to electric fields and mag-
netic fields ; six are related to electric flux densities and
magnetic flux densities . In the compact 2-D FDTD, the PML
conductivity along the propagation direction equals zero,
hence the time-domain differential equations can be written as

(1)

where is the permittivity, is the permeability, and
is the conductivity in the upper and lower (right) PML

(as shown in Fig. 2). Subsequently, the time-dependent field

components can be computed via the standard explicit compact
2-D FDTD update expressions

(2)

where the spatial differentiation is not expanded for compact-
ness. The stability of the compact 2-D FDTD algorithm is en-
sured by choosing the time step to satisfy the stability crite-
rion [14]

(3)

where is the spatial step used for the spatial discretization
which however has not been shown in (2). A uniform spatial
mesh has been assumed. To reduce the pseudo-reflection caused
by discretization, the PML conductivity is defined to
have a polynomial graded profile, which does not vary with

but does vary with as , where
represents the distance between a point inside the PML and

the inner interface of the PML, is the thickness of the PML,
is the order of the polynomial variation, and

is the optimized maximum conduc-
tivity [12]. In the simulation, the PMLs should be placed far
away from the waveguide core region to ensure that their ef-
fects on the mode properties can be negligible.

B. Padé Approximation Transform

In order to obtain mode frequencies and quality factors
( -factors), the FDTD output in the time-domain must be
transformed into the frequency domain. The generally used
tool is the fast Fourier transform (FFT), however, the resolu-
tion of the FFT scheme is inversely proportional to the total
persistence time of the FDTD iteration, i.e., the product of the
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iteration number and the time step. The time step of the FDTD
technique is limited by the Courant limit as demonstrated in
(5), so the FDTD iteration number is required to be very large.
If the propagation loss is very small (i.e., high -factor for the
leaky modes), a very long time FDTD simulation is needed for
FFT to obtain accurate mode -factors and frequencies.

The Padé approximation technique which uses diagonal
Padé approximants to approximate the discrete Fourier trans-
form (DFT) of infinite FDTD data sequences, can obtain high
frequency resolution based on relatively short FDTD data
sequences [13], which can greatly save on the FDTD running
time.

For the infinite time response of an electromagnetic field
component , we can introduce a function
of variable as

(4)

It is obvious that is the discrete Fourier transform of

(5)

Practically through FDTD simulations, we can just get a finite
time response ( is the number of time
steps.). The function at a certain frequency can be ap-
proximated by its diagonal Padé approximant ,
which can be efficiently calculated using Baker’s algorithm. Ap-
plying this Padé approximation to all the frequencies in the in-
terested frequency range we can obtain the frequency spectrum.
To save the computation time of the Padé approximant, gener-
ally the original FDTD output needs to be filtered and decimated
to reduce [13].

Through the PAT technique the mode spectra can be calcu-
lated. A Lorentzian fitting can be used to find the mode fre-
quency and the 3-dB bandwidth . The mode
quality factor can be calculated as . Then the prop-
agation loss (imaginary part of the mode effective index) of the
waveguide mode at is given by [15]

(6)

The real part of the mode effective index can be calculated
from , where is the free-space wave number,
and is the group index of the waveguide mode, which is cal-
culated from the n- dispersion curve

(7)

C. Mode Field Distribution

After the mode frequency being extracted from the mode
spectrum by PAT for a given , the mode field distribution can be
calculated through DFT by running the FDTD simulation again.

Fig. 1. Propagation constant and quality factor of the fundamental mode versus
mode frequency in a metallic waveguide as shown in the inset, calculated by the
compact 2-D FDTD method and the PAT technique (dots) and by the analytical
formula (line).

We can build the DFT into the FDTD solver, so that we can per-
form the DFT while updating the FDTD iterations. For the mode
with the frequency , the DFT is defined as [16]

(8)

where is the number of time steps, is the mesh point in
the computational window, is the time step, and represents
an electromagnetic field component.

III. MODEL VALIDATION

Before using the approach to analyze leaky modes in real
semiconductor waveguides (as in such cases the leaky loss could
be quite low), first we demonstrate that the PAT technique can
efficiently analyze very low level of modal losses. For this val-
idation a perfect metal waveguide with the mode quality factor
as high as is considered. The structure we simulated
is a square waveguide with the side length of 1.0 m formed
by perfect metals and filled with a slightly lossy medium

S/m), as shown in the inset of Fig. 1. The
mode frequency and quality factor of the fundamental mode of
this metal waveguide can be calculated analytically using the
following formula:

(9)

where is the light velocity in free space. The compact 2-D
FDTD method is used to simulate the field evolution in the 2-D
cavity formed by the waveguide, and the PAT technique is used
to calculate the mode spectrum from which the mode frequen-
cies and quality factors are extracted. The discrete space cell
used in the simulation has a dimension of 0.01 m and the
FDTD program is generally iterated in the time domain by 10
000 steps after the pulse finished. The obtained mode frequen-
cies and quality factors of the fundamental mode are plotted
in Fig. 1, which agrees well with the analytical results. A typ-
ical example is that, when , the mode frequency and
quality factor of the fundamental mode calculated by this model
are 211.982 THz and , respectively, which are in
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good agreement with the theoretical values: 211.985 THz and
.

IV. NUMERICAL ANALYSIS

The waveguides we analyze in the following have mirror
symmetry with respect to the waveguide axis, so the symmetry
or anti-symmetry conditions can be added to the electric field
components at the symmetry plane to excite the even and
odd modes, respectively, which will save the computation
domain by half and thus save the computation time greatly.
The Gaussian function modulated cosine impulse is added to
the field at several arbitrary points inside the waveguide core as
the exciting source along with the proper propagation constant

. The excitation is added to the component which is
the major electric field. We avoid those high symmetry points
in our selection because at these positions the specific mode
field could be zero. Several modes can be excited simultane-
ously. The time variations of the field component at several
selected points different from those excitation points inside the
waveguide core are recorded as the FDTD output. Then we
calculate the field spectrum from the FDTD output by the Padé
approximation transform. We can use any field component and
get same results for the calculation.

Using the compact 2-D FDTD we can calculate the mode in-
formation at a given propagation constant , which means the
analyzed mode is operated at the wavelength . To analyze the
mode at a specific wavelength , the proper propagation con-
stant should be predicted and selected to excite this mode.
Generally, we first calculate the effective index of the wave-
guide mode through the effective index method (EIM) and get a
propagation constant at the wavelength . We run the FDTD
solver at this and calculate the mode wavelength by the
PAT technique. Next we change the wavelength and get the new
propagation constant by the EIM method, with which we run the
simulation again and calculate the new mode wavelength. After
several simulations a - dispersion curve can be obtained, from
which we can extract the proper propagation constant rela-
tive to the wavelength .

After the proper propagation constant is extracted, we run the
FDTD solver for a relatively long time at this specific propaga-
tion constant and through the PAT technique we can calculate
the mode information at the particular wavelength. In the PAT
calculation the number (length) of time steps of the field com-
ponent input to the PAT transform are increased from short to
long and the result is recorded only when a converged value has
been obtained. This is the fundamental requirement for the PAT
transform to calculate any mode information. Since the mode
loss is proportional to the 3-dB bandwidth of the mode spec-
trum, the mode with a lower loss generally needs a higher reso-
lution, which means a longer time sequence is needed to obtain
an accurate result because the spectral resolution is generally
inversely related to the length of the time sequence.

A. 3-D ARROW Leaky Waveguide

The 3-D ARROW waveguide we considered first has the same
structure as in [1] which is shown in Fig. 2. The refractive in-
dexes are 3.590 for GaAs, 3.555 for 5% AlGaAs, and 3.452
for 20% AlGaAs, and the operating wavelength is 1.064 m.
Taking the advantage of the waveguide symmetry, only half of
the structure is simulated by employing a perfect electric wall

Fig. 2. Schematic structure of the cross section of the ARROW leaky
waveguide.

Fig. 3. (a) Calculated field intensity spectrum of the fundamental mode;
(b)–(f) Contour plot of the dominant electric field distribution for
�� ��� ��� and �� modes calculated by the built-in DFT.

at the vertical symmetry plane to simulate the first 5 symmetric
transverse electric (TE) modes ( and

). The UPMLs with 100-cell thickness are used to termi-
nate the computation window with a uniform space cell size of
0.0125 m.

The field intensity spectrum of the fundamental mode cal-
culated by the PAT technique from FDTD output sequences
longer than 30 000 after the pulse finished is stable as shown
in Fig. 3(a), which shows a very good Lorentzian line shape.
The contour plots of the main electric field component for
these five modes are also given by the built-in DFT as shown in
Fig. 3(b)–(f) for the fundamental mode as well as the first four
higher order symmetric TE modes. The calculated quality fac-
tors for these first 5 symmetric TE modes at a wavelength of
1.064 m are ,
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TABLE I
CALCULATED IMAGINARY PART OF THE COMPLEX MODE EFFECTIVE INDEXES OF THE FIRST FIVE SYMMETRIC TE MODES IN ARROW LEAKY WAVEGUIDE

Fig. 4. Schematic structure of the simulated deep ridge waveguide.

and , respectively, with the corresponding group in-
dexes calculated as 3.600, 3.618, 3.647, 3.668, and 3.647.
Then the corresponding imaginary part of the mode effective in-
dexes can be calculated. Results are shown in Table I and com-
pared with other methods in the references, which shows that
the difference is within 12% between our results and those ob-
tained by the other methods for four of the five modes in Table I,
and for the mode, the calculated results is in qualitative
agreement [10] with other methods which typically work in the
frequency domain and most of them are finite-element-based.

B. 3-D Deeply Etched Ridge Waveguides

Then we analyze a 3-D deep ridge waveguide as shown in
Fig. 4 with the same structure as in [7], [10] with the refrac-
tive index of 3.2543 for the InGaAsP core with the thickness of
0.5 m at the wavelength of 1.55 m. Also only half of the struc-
ture is considered by employing a perfect magnetic (electric)
wall at the vertical symmetry plane to simulate the
mode. UPML ABCs with a 1 m thickness are applied on all the
other outer boundaries with the distance of 3 m from the ridge
to the PMLs for both the bottom and side boundary. A uniform
space cell is used in the simulation with a size of 0.02 m. In
[10] it is observed that instead of continuously dropping, the
loss of the mode tends to saturate when the etching depth
under the waveguide core goes beyond 2 m for a ridge width
of 2.4 m. It is also found that the loss of both and
modes tends to saturate when the etching depth is very deep for
the ridge width narrower than 3 m [17]. The reason for this
leaky loss saturation with a very deep etching depth is that the
power carried by the minor electric field of these leaky modes in
the ridge waveguide couples to the modes in the lower cladding
slab waveguide, and loses energy downwards.

1) Mode Coupling Effect: When the ridge is deeply etched,
the lower cladding InP layer under the waveguide core forms

Fig. 5. Schematic diagram of the deep ridge waveguide and the lower cladding
slab waveguide.

a slab waveguide confined by the air in the horizontal direc-
tion as shown in Fig. 5. The lower cladding slab waveguide
has its own te and tm modes. The tm mode has the major
electric field component and the minor component, and te
mode only has the component. The ridge waveguide has TE
and TM modes but we focus on the TE mode here. The TE
mode of the ridge waveguide has the major electric compo-
nent and the minor electric component. For the mode cou-
pling to efficiently happen, the mode symmetry-matching and
phase-matching conditions have to be satisfied, which means
the slab modes have the same symmetry properties along the
horizontal direction with the ridge waveguide modes and have
an effective index not less than those of the ridge waveguide
modes. For the symmetry matching, the coupling may happen
between the mode of the ridge waveguide and the funda-
mental te mode or first order tm mode of the lower
cladding slab waveguide; or between the mode and the
first-order te mode or second-order tm mode of the
lower cladding slab waveguide.

We use the effective index method (EIM) method to calculate
the mode effective indexes of the ridge waveguide mode (for
this deep ridge waveguide, the EIM method can generate modal
effective indexes with high accuracy). By solving the three-layer
slab waveguide in the horizontal direction, the mode effective
indexes of the slab modes in the lower cladding slab waveguide
can also be easily calculated. Fig. 6 shows the calculated modal
effective indexes for the ridge width of 1–3 m, from which
we observe that only the mode has an effective index
larger than the mode. This means the coupling
will only occur between the slab waveguide mode and
the ridge waveguide mode, and there will be no
coupling between the mode and the
mode. Therefore, the component of the mode
will couple to the mode in the lower cladding slab
waveguide which will carry energy downwards no matter how
deep the ridge waveguide has been etched (there will be no mode
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Fig. 6. Mode effective indexes of leaky modes in very deeply etched ridge
waveguide and slab modes in the lower cladding slab waveguide.

Fig. 7. Calculated field distribution of � �� �� component of leaky modes
in very deep ridge waveguide with a ridge width of 2.4 �m for the �� mode
from (a) to (c) and the �� mode from (d) to (f).

coupling for the and components). This coupling results
in the leaky loss saturation behavior for the leaky modes when
the etching depth under the waveguide core is very deep.

Fig. 7 shows the field component distributions obtained from
the built-in DFT from 80 000 FDTD iterations for the and

modes in the deep ridge waveguide with an etching depth
under the core of 6 m and a ridge width of 2.4 m. It can be
observed that the and components in the lower cladding
slab waveguide are not excited, while the component is ex-
cited strongly. This confirms the above analysis.

When the coupling effects occur, the propagation constant of
slab waveguide mode can provide a component matching to the
propagation constant of the ridge waveguide mode and simulta-
neously provide another component pointing downward which
carries energy away from the ridge waveguide. From the field
distribution of the component shown in Fig. 7(b) and (e), the

Fig. 8. Field distribution of � along the vertical direction (horizontally at
peak) for (a) �� and (b) �� mode in the deep ridge waveguide with an
etching depth of 6 �m and a ridge width of 2.4 �m.

mode demonstrates propagation behavior in the lower cladding
slab waveguide. For 2.4 m ridge width, the mode effective in-
dexes of the and mode at 1550 nm are calculated to
be 3.1393 and 3.0488, respectively, and are 3.1536 and 3.1098
for the and mode in the lower cladding slab waveguide,
respectively. Therefore, according to the above explanation, the
mode field should propagate in the lower cladding slab wave-
guide downwards with a propagation constant as

(10)

which is 1.50 and 2.49 rad/ m for the and mode,
respectively. We plot the distribution of the component along
the vertical direction (horizontally it is at peak) in Fig. 8(a) and
(b) for the and mode, respectively. The peak-peak
single period length in the vertical direction is around 4.26
and 2.55 m for the and mode, respectively, from
the figure, which results in propagation constants around 1.47
and 2.46 rad/ m which agree well with the above
values. This confirms further that the modes excited in the lower
cladding slab waveguide through mode coupling are the and

mode, respectively.
2) Leakage Cancellation: By simulation it is observed that

the mode could have lower loss than the mode at
some specific ridge widths [17]. Next, we will investigate the in-
fluence of the ridge width on the leaky loss of these high order
leaky modes. We cover a wide range of ridge widths of prac-
tical interest from 1 to 3 m with the etching depth under the
waveguide core of 1, 2, and 6 m. The calculated leaky loss as
a function of ridge width with the etching depth from shallow
to deep is given in Fig. 9(a) and (b) for the and the
mode, respectively. It can be seen that generally the leaky loss
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Fig. 9. Calculated propagation loss of leaky modes in a deep-ridge waveguide
versus ridge width with the etching depth under the core as 1, 2 and 6 �m for
(a) �� and (b) �� mode.

of both the and mode decreases with the ridge width
increase for the three etching depths under the waveguide core.
This is because the narrow ridge waveguide has a smaller mode
effective index as shown in Fig. 6. From the above analysis
when the ridge is really deeply etched, a lower cladding slab
waveguide is subsequently formed and supports slab modes.
The higher order leaky ridge mode will couple to the slab mode
and loses energy downwards once the slab mode satisfies both
phase-matching and horizontal symmetry-matching to the ridge
waveguide mode. As shown in Fig. 6, the narrow ridge wave-
guide has a bigger difference of the effective refractive indexes
between the coupled mode and mode,
the leaky energy will be larger than that of the wide ridge wave-
guide. However, from Fig. 9(a) and (b) it is also observed that
at specific ridge width, the leaky loss nearly disappears. For the
waveguide with etching depth under the core near 1 m, the can-
cellation phenomena are very weak, while they become signif-
icant with the etching depth increases at the same ridge width.
When the etching depth reaches 6 m, the cancellation peaks
become very sharp and in this case the leaky loss is very low,
generally several order of magnitude lower than normal values,
and the leakage at the narrow ridge width is larger than that at
the wide ones. In the simulated ridge width range, the cancel-
lation ridge widths are around 1.2 and 1.84 m for the
mode, and 1.12, 1.6 and 2.44 m for the mode. This can-
cellation effect is due to the fact that the coupled slab mode
in the lower cladding slab waveguide interferes destructively
at specific ridge widths, which prevents energy leaking to the
substrate.

Fig. 10. Contour plot of the field distribution of the � component of ��
mode at ridge width of: (a) 2.12 �m and (b) 1.84 �m.

Fig. 11. Contour plot of the field distribution of the � component of ��
mode at ridge width of: (a) 2.12 �m and (b) 2.44 �m.

To understand the above leakage cancellation behavior, we
analyze the mode field distributions of these two modes for very
deep etching depths up to 6 m. Fig. 10 shows the com-
ponent distribution of the leaky modes at the cancellation and
normal ridge width calculated from the embedded DFT. It can
be obviously seen from Fig. 10(a) that the coupled slab mode
shows strong propagation in the lower cladding slab waveguide
and the energy strongly leaks to the substrate for the mode
at ridge width of 2.12 m, while from Fig. 10(b) the field in the
slab and substrate is much weaker which means no significant
coupling occurs at the cancellation ridge width of 1.84 m. For
the mode given in Fig. 11, at the ridge width of 2.12 m
the field in the slab is strongly leaky through the slab while at
the cancellation ridge width of 2.44 m the field in the slab is
much weaker in (a) and (b), respectively.

Similar phenomena have been observed in [18]–[21]. In their
case, the mode coupling happens in the lateral direction, how-
ever, in our case the coupling happens in the vertical direction.
So it is not easy to directly take the same theory to explain our
observations. The mechanism of the cancellation dependence
on the ridge width in our case for the high order leaky modes
is complicated. However, the fundamental mechanism could be
the same: the “destructive interference” in the lower cladding
causes the loss cancellation. This unwanted leakage cancellation
behavior for the high-order leaky modes can deteriorate the per-
formance of devices based on deep ridge waveguides and there-
fore should be carefully avoided in practical applications.
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V. CONCLUSION

The compact 2-D FDTD method with UPML boundary con-
dition combined with the PAT technique has been introduced
for leaky modes analysis. Compared with the frequency domain
mode solvers based on the complex root searching, this model
is easy to implement and can calculate the mode loss and the
propagation constant separately and reliably. As a time-domain
method it takes into account all mode coupling effects natu-
rally in the simulation, which makes it very suitable to analyze
leaky modes with a very low level of leakage. To validate the
efficiency of this model, a perfect metal waveguide and a 3-D
ARROW waveguide are analyzed. The approach is also used to
analyze a 3-D deep ridge waveguide and leakage cancellation
behavior for high order leaky modes in very deeply etched ridge
waveguides at specific ridge widths has been observed.
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