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In this work we demonstrate that maximally localized Wannier functions �MLWFs� based on Kohn-Sham
band structures provide a very robust and systematic way to construct realistic, materials-specific tight-binding
models for further theoretical analysis. In particular, we construct MLWFs for the Mn eg bands in LaMnO3,
and we monitor changes in the MLWF matrix elements induced by different magnetic configurations and
structural distortions. By comparing our results with commonly used model Hamiltonians for manganites,
where electrons can hop between two “eg-like” orbitals located on each Mn site, we obtain values for the local
Jahn-Teller and Hund’s rule coupling strength, the hopping amplitudes between all nearest and further neigh-
bors, and the corresponding reduction due to the GdFeO3-type distortion. In addition, our analysis allows us to
systematically assess and quantify the limitations of such an effective eg-band description. We find that the
most crucial limitation of such models stems from neglecting changes in the underlying Mn�d�-O�p� hybrid-
ization, which not only lead to a significant difference in hopping for �local� spin majority/minority electrons
but also to a nonlocal effect of the Jahn-Teller distortion and a significant reduction in the local Jahn-Teller
coupling strength due to the GdFeO3-type distortion.
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I. INTRODUCTION

The theoretical description of complex transition-metal
oxides and similar materials is very often based on effective
tight-binding �TB� models, i.e., a representation of the elec-
tronic structure within a certain energy region in terms of
localized atomiclike orbitals. Simplified TB models with a
small number of orbitals can be used to study the essential
mechanisms governing complex physical behavior.1–4

The electronic properties of colossal magnetoresistive
manganites, R1−xAxMnO3 �R: trivalent rare-earth cation and
A: divalent alkaline earth cation�, are often described within
an effective “two-band” TB model, where electrons can hop
between the two eg levels on each Mn site. The correspond-
ing Hamiltonian typically also contains several local terms
describing the coupling of the eg states to the t2g core spin,
to the Jahn-Teller �JT� distortion of the oxygen octahedra,
and/or the electron-electron Coulomb repulsion. It has re-
cently been shown, that such a model �with parameters ob-
tained partly from first-principles calculations and partly
by fitting to experimental data� is able to reproduce the
basic structure of the phase diagram as a function of
doping and temperature found in manganite systems such as
La1−x�Ca,Sr�xMnO3.4

The construction of localized Wannier orbitals from the
Kohn-Sham states calculated using density-functional theory
�DFT� represents an elegant and systematic way to obtain
realistic �materials-specific� TB models.5–12 DFT calculations
are known to give a realistic description of electronic struc-
ture for systems where electronic correlation effects are
not too strong.13,14 Furthermore, for materials where cor-
relation effects are important, a Wannier representation of
the Kohn-Sham band structure can be used to define a
subset of orbitals �the “correlated subspace”�, which can
then be used as basis for a more elaborate treatment of
correlation effects beyond standard DFT. This is done, for

example, in DFT+DMFT �DMFT=dynamical mean-field
theory� calculations,8,9,12,15–17 which aim at an accurate quan-
titative description of materials where electronic correlation
cannot be ignored.

Several different ways to obtain Wannier functions for the
relevant electronic degrees of freedom have been employed
previously, including the construction of maximally localized
Wannier functions �MLWFs�,9,18–20 orthogonalized projec-
tions of specific atomic orbitals on the Bloch functions
within a certain energy window,6,8,11,12 and downfolded
Nth-order muffin-tin orbitals.7,9,21,22

In this work we construct MLWFs corresponding to the
Mn eg states for LaMnO3, the parent compound for many
manganite systems, based on DFT calculations within the
generalized gradient approximation �GGA�. We calculate the
real-space Hamiltonian matrix elements in the MLWF basis
for different structural modifications and for different mag-
netic configurations and we compare the obtained results
with assumptions made in commonly used two band TB
models for manganites.2,4

A number of previous studies have used DFT calculations
to obtain parameters of typical effective eg Hamiltonians for
manganite systems.11,23–25 In most of these cases the Kohn-
Sham band structure was used as reference for the “nonin-
teracting” part of the corresponding model Hamiltonian, and
different fitting procedures to obtain the hopping amplitudes,
Hund’s rule coupling, and Jahn-Teller splitting have been
employed. In contrast, in Ref. 11 the full interacting Hamil-
tonian �in mean-field approximation� has been fitted using
Wannier functions obtained from LDA+U calculations.

The analysis presented here is closely related to Ref. 25,
which examined the validity of the two band picture by fit-
ting TB model parameters �including the hopping between
nearest and next-nearest neighbors� to the DFT band struc-
ture obtained within the local spin density approximation
�LSDA�. In Ref. 25 the effects of magnetic ordering, Jahn-
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Teller, and GdFeO3 distortions were analyzed separately, to
allow for an independent determination of the various model
parameters. A similar strategy is followed here. However, the
approach based on MLWFs used in the present work is less
biased and more generally applicable and thus allows for a
more systematic analysis of the TB parameters than the vari-
ous fitting procedures employed in previous works.11,23–25

The MLWF approach automatically leads to a TB parameter-
ization of the relevant bands so that the parameters of the
model can simply be “read off” and no fitting procedure is
required. This allows to clearly identify potential discrepan-
cies between a simplified model and the full DFT band struc-
ture. The MLWF approach is also well suited for the con-
struction of the correlated orbital subspace used for DFT
+DMFT calculations.9

This paper is organized as follows. In the following sec-
tion we describe the theoretical background of our work.
Thereby, Sec. II A summarizes the effective two band model
that is often used for a theoretical treatment of manganites,
Sec. II B presents the definition of the MLWFs, Sec. II C
describes the various structural modifications of LaMnO3 in-
vestigated throughout this work and Sec. II D lists some of
the calculational details. The presentation of results starts
with the case of the ideal cubic perovskite structure in Sec.
III A. The individual effects of the staggered JT and the
GdFeO3-type �GFO� distortions are then presented in Secs.
III B and III C, respectively. This is followed by the results
for the combined distortion in Sec. III D and the construction
of a refined TB model and its application to the full experi-
mental structure of LaMnO3 in Sec. III E. Finally, the most
important results and conclusions are summarized in Sec. IV.

II. METHOD AND THEORETICAL BACKGROUND

A. Effective two-band models for LaMnO3

LaMnO3 crystallizes in an orthorhombically distorted per-
ovskite structure with Pbnm space group �see Fig. 1v� and
A-type antiferromagnetic �A-AFM� order of the magnetic
moments of the Mn cations.27,28 The deviation from the
simple cubic perovskite structure �Fig. 1i� can be decom-
posed into a staggered JT distortion of the MnO6 octahedra
within the x-y plane �Fig. 1ii�, the so-called GFO distortion,
consisting of collective tiltings and rotations of the oxygen
octahedra �Fig. 1iii�, and “the rest,” i.e., displacements of the
La cations from their ideal positions plus a homogeneous
orthorhombic strain �Fig. 1v�.25

The electronic structure of LaMnO3 close to the Fermi
energy is dominated by Mn 3d states, which are split by the
cubic component of the crystal field into the lower-lying
threefold degenerate t2g and the higher-lying twofold degen-
erate eg states.25,29,30 The formal electronic configuration
Mn3+: �Ar�3d4 leads to a high spin state of the Mn cation
with fully occupied local majority spin t2g states and one
electron per local majority spin eg state while both t2g and eg
minority spin states are empty.

Based on this electronic structure, the theoretical descrip-
tion of manganites often employs an effective two-band TB
picture, where electrons can hop between the two eg levels
on each Mn site. This hopping is facilitated by hybridization

with the oxygen 2p states, which, however, are not explicitly
included in the TB model. It is therefore understood, that the
“atomic” eg states used in the TB model are indeed some-
what extended Wannier orbitals that also include the hybrid-
ization with the O 2p states. In contrast, the three t2g elec-
trons are assumed to be tightly bound to a specific Mn site
where they give rise to a local “core spin” S=3 /2. This core
spin then interacts with the valence eg electron spin via
Hund’s rule coupling. In addition, a JT distortion of the sur-
rounding oxygen octahedron splits the two eg levels on the
corresponding Mn site whereas elastic coupling between
neighboring oxygen octahedra gives rise to a cooperative
effect. The GFO distortion in this picture is usually assumed
to simply reduce the effective hopping amplitudes between
neighboring Mn sites due to the resulting nonideal Mn-O-Mn
bond angle. In addition, a local electron-electron interaction
between electrons occupying the same Mn site can be in-
cluded in the model.2,4

The electronic Hamiltonian for such a model can be ex-
pressed as

Ĥ = Ĥkin + Ĥlocal, �1�

where

Ĥkin = �
a,b,R,�R,�

tab��R�ĉb�R+�R��
† ĉaR� + H.c. �2�

describes the electron hopping between orbital �a� �spin �� at
site R and orbital �b� at site R+�R and it is assumed that all
sites are translationally equivalent so that the hopping ampli-
tudes tab��R� depend only on the relative position between
the two sites.

Representing the eg orbital subspace within the usual ba-
sis �1�= �3z2−r2� and �2�= �x2−y2�, and assuming cubic sym-
metry, the nearest-neighbor hopping along the three Carte-
sian directions has the following form:

FIG. 1. �Color online� Different structural modifications of
LaMnO3 investigated in this work, viewed along the �001� direc-
tion: �i� ideal cubic perovskite, �ii� purely Jahn-Teller distorted, �iii�
purely GdFeO3-type distorted, and �v� experimental Pbnm struc-
ture. Pictures have been generated using VESTA �Ref. 26�.
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t��acẑ� = � t 0

0 t�
	 , �3�

t��acx̂� = t

1

4
−

�3

4

−
�3

4

3

4
� + t�


3

4

�3

4

�3

4

1

4
� , �4�

t��acŷ� = t
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Here, ac is the lattice constant of the underlying cubic per-
ovskite structure. The hopping t� between two neighboring
�x2−y2�-type orbitals along ẑ is small due to the planar shape
of this orbital and it is therefore often neglected. In this case,
the nearest-neighbor hopping depends only on a single pa-
rameter t, the hopping along ẑ between �3z2−r2�-type orbit-
als.

Ĥlocal contains all local interaction terms included in the
model, i.e., Hund’s rule coupling with the t2g core spin, the
JT coupling to the oxygen octahedra distortion, and eventu-
ally also the electron-electron interaction. In this work we
will use the GGA Kohn-Sham band structure as reference for
the noninteracting part of the Hamiltonian �similar to Refs.
23–25, and in the same spirit as in the DFT+U and DFT
+DMFT approaches, see, e.g., Refs. 9, 16, 17, and 31�, i.e.,
we will discuss only the Hund’s rule and JT coupling. We
note that this does not imply that the electron-electron inter-
action is unimportant for the physics of LaMnO3. In fact it
has been argued in Ref. 11 that the electron-electron interac-
tion in LaMnO3 is comparable in strength to the JT coupling.
The Hund’s rule and JT coupling terms considered here are
of the form

ĤHund = − J�
R

SR · sR �6�

and

ĤJT = − � �
R,�,a,b

ĉaR�
† �QR

x �ab
x + QR

z �ab
z �ĉbR�. �7�

Here, J is the Hund’s rule coupling strength and SR is the t2g
core spin at site R, which in the following we will consider
as classical vector normalized to �SR�=1. sR
=�a,�,��caR�

† ����caR�� is the corresponding eg valence spin,
� describes the strength of the JT coupling, and ���� are the
usual Pauli matrices. The quantities QR

x and QR
z describe the

JT distortion of the oxygen octahedron surrounding site R

QR
x =

1

2�2
�dR

x − dR
y � , �8�

QR
z =

1

2�6
�2dR

z − dR
x − dR

y � , �9�

where dR
x , dR

y , and dR
z indicate the O-O distances along the x,

y, and z directions, corresponding to the oxygen octahedron
located at site R.

B. Maximally localized Wannier functions

As is well known from basic solid-state physics, the
eigenfunctions within a periodic crystal potential are ex-
tended Bloch waves, classified by a wave-vector k and a
band-index m. These Bloch waves can in turn be expressed
as a Bloch sum of “atomiclike” localized TB basis functions
or Wannier functions. For an isolated group of N Bloch states
��mk�, i.e., a group of bands that are energetically separated
from all lower- or higher-lying bands throughout the entire
Brillouin zone �BZ�, a set of N localized Wannier functions
�wnT�, associated with lattice vector T, is defined via the
following transformation:18,19

�wnT� =
V

�2��3

BZ
��

m=1

N

Umn
�k���mk��e−ik·Tdk . �10�

Here, U�k� is a unitary matrix mixing Bloch states at wave-
vector k. Different U�k� lead to different Wannier orbitals,
which are not uniquely determined by Eq. �10�. However,
Marzari and Vanderbilt showed that a unique set of MLWFs
can be obtained by minimizing the total quadratic spread of
the Wannier orbitals, defined as18

	 = �
n

N

��r2�n − �r�n
2� , �11�

where �Ô�n= �wn0�Ô�wn0�.
For the case of entangled Bloch bands, i.e., bands that are

not energetically separated from other groups of higher- or
lower-lying states, an energy window �Emin,Emax� can be de-
fined such that there are Nwin

�k� 
N Bloch bands within the
energy window at each k vector, and then an N-dimensional
manifold of mixed Bloch states is obtained as19

��mk
dis � = �

l�Nwin
�k�

Ulm
dis�k���lk� . �12�

The corresponding Wannier functions can then be obtained
from the mixed Bloch states by replacing ��mk� with ��mk

dis � in
Eq. �10�. The unitary rectangular Nwin

�k� �N matrix Udis�k� is
also uniquely determined by the condition of maximal local-
ization, i.e., it can be obtained by minimizing
	�U�k� ,Udis�k��.19

A starting value for the unitary matrix U�k� ·Udis�k� is usu-
ally obtained by projecting a set of localized trial orbitals
�gm� on the Bloch states within the chosen energy window

��mk� = �
l�Nwin

�k�
��lk���lk�gm� �13�

and subsequent orthogonalization
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��̃nk� = �
m

�S−1/2�mn��mk� , �14�

where Smn= ��mk ��nk�. Since the Wannier functions obtained
as Fourier transforms of the orbitals ��̃nk� are often already
well localized, and furthermore allow to maximize a certain
orbital character in the resulting Wannier function, the func-
tions ��̃nk� have often been used without further minimiza-
tion of the spread functional.6,8,11,12

Once a set of MLWFs is obtained, the corresponding
Hamilton matrix, H�W��k�, is constructed by a unitary trans-
formation

H�W��k� = �U�k��†�Udis�k��†H�B��k�Udis�k�U�k� �15�

from the �diagonal� Hamilton matrix in the Bloch basis,
Hnm

�B��k�=
nk�nm, with eigenvalues 
nk. The MLWF Hamil-
tonian in real space is then calculated as a Fourier transform
of H�W��k�, which in practice is replaced by a sum over Nk
points in k space

hnm
T =

1

Nk
�
k

e−ik·THnm
�W��k� . �16�

Thus, the real space representation of the Hamiltonian in the
MLWF basis is equivalent to a TB description of the full
Hamiltonian within the corresponding orbital subspace

Ĥ = �
T,�T

hnm
�TĉnT+�T

† ĉmT + H.c., �17�

where cmT is the annihilation operator for an electron in or-
bital �wmT�. The real-space MLWF matrix elements hnm

T can
therefore be interpreted as hopping amplitudes within a TB
picture of MLWFs �compare Eq. �17� with Eq. �2��. Note that
�T in Eq. �17� refers to lattice vectors whereas �R in Eq. �2�
refers to Mn sites. The subscripts n and m in Eq. �17� can
thus in general indicate both site and orbital/spin character
�for cases with more than one site per unit cell�.

For the case when MLWFs are constructed from an iso-
lated set of bands, the TB model, Eq. �17�, exactly repro-
duces the band dispersion within the corresponding energy
window. For the entangled case, the energy bands calculated
from Eq. �17� do not necessarily have to coincide with the
underlying Bloch bands.

C. Structural decomposition

To analyze the effect of the various distinct structural dis-
tortions within the experimental Pbnm structure on the elec-
tronic properties of LaMnO3 we investigate several different
atomic configurations �similar to Ref. 25�:

�i� The ideal cubic perovskite structure �Fig. 1i�.
�ii� A purely JT-distorted structure �Fig. 1ii�, which results

from alternating long and short O-O distances within the x-y
plane, i.e., a staggered JT distortion QR

x = �Q0
x and QR

z =0.
This distortion doubles the unit cell within the x-y plane,
leading to new in-plane lattice vectors aii=ac�ŷ+ x̂� and
bii=ac�ŷ− x̂� and tetragonal symmetry.

�iii� A purely GFO-distorted structure �Fig. 1iii�, resulting
from rotations of the oxygen octahedra around the z direction
and octahedral tilts away from z, alternating along all three
Cartesian directions. This distortion quadruples the unit cell
compared to the undistorted structure �i�, yielding ortho-
rhombic Pbnm symmetry. The resulting in-plane lattice vec-
tors are identical to those of structure �ii� and the new lattice
vector along z is ciii=2acẑ.

�iv� A superposition of JT and GFO distortion, which also
leads to orthorhombic Pbnm symmetry and unit-cell vectors
unchanged with respect to structure �iii�.

�v� The full experimental structure �Fig. 1v� with orthor-
hombically strained lattice vectors ��av�� �bv�� �cv�, resulting
in QR

z �0� and displaced La cations compared to structure
�iv�.

For each of these structural modifications we use the same
volume V=60.91 Å3 per formula unit as in the experimen-
tally observed Pbnm structure.32 This leads to a cubic lattice
parameter ac=3.9345 Å, which deviates only by 0.8% from
the value we obtain by volume optimization for the ideal
perovskite structure within GGA. For the positions of the O
anions in structures �ii� and �iii� we use the same decompo-
sition of structure �iv� into pure JT and GFO components as
described in Ref. 25 �see Table I�. For the cases with A-AFM
order, the unit cell is doubled in z direction for both �i� and
�ii� structures in order to accommodate the magnetic order,
thus changing the symmetry to tetragonal in case �i�.

Starting from the ideal cubic perovskite structure, we ana-
lyze the effect of a specific distortion by gradually increasing
the amount of this distortion, i.e., we perform series of cal-
culations using a linear superposition of the Wyckoff posi-
tions in the cubic perovskite structure and in structure �x�

TABLE I. Wyckoff parameters of the O�4c�, �x, y, 0.25�, O�8d�, �x ,y ,z�, and La�4c�, �x, y, 0.25�, sites for
the various structural configurations used in this work �compare with Table I in Ref. 25�.

Expt. �Ref. 32� �ii� �iii� �iv� �v�

O�4c� x −0.0733 0.0 −0.0733 −0.0733 −0.0733

y −0.0107 0.0 −0.0107 −0.0107 −0.0107

O�8d� x 0.2257 0.2636 0.2121 0.2257 0.2257

y 0.3014 0.2636 0.2879 0.3014 0.3014

z 0.0385 0.0 0.0385 0.0385 0.0385

La�4c� x 0.0063 0.0 0.0 0.0 0.0063

y 0.5436 0.5 0.5 0.5 0.5435
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R��x� = �1 − �x�R�i� + �xR
�x� �18�

and vary �x between 0 and 1. The following cases
are considered: �x=ii� �pure JT distortion�, �x=iii� �pure
GFO distortion�, and �x=iv� �combined JT and GFO distor-
tions�.

D. Computational details

We perform spin-polarized first-principles DFT calcula-
tions using the QUANTUM-ESPRESSO program package,33 the
GGA exchange-correlation functional of Perdew, Burke, and
Ernzerhof,34 and Vanderbilt ultrasoft pseudopotentials35 in
which the La�5s ,5p� and Mn�3s ,3p� semicore states are in-
cluded in the valence.

Convergence has been tested for the total energy and total
magnetization using the ideal cubic perovskite structure and
ferromagnetic �FM� order. We find the total energy con-
verged to an accuracy better than 1 mRy and the total mag-
netization converged to an accuracy of 0.05�B for a plane-
wave energy cutoff of 35 Ry and a �-centered 10�10�10
k-point grid using a Gaussian broadening of 0.01 Ry. These
values for plane-wave cutoff and Gaussian broadening
are used in all calculations presented in this work. The
10�10�10 k-point grid is used in all calculations for the
cubic structure �i� whereas appropriately reduced k-point
grids of 10�10�5, 7�7�10, and 7�7�5 are used for
the structures with unit cell doubled in the z direction,
doubled in the x-y plane, and quadrupled, respectively.

After obtaining the DFT Bloch bands within GGA, we
construct MLWFs using the WANNIER90 program integrated
into the QUANTUM-ESPRESSO package.36 Starting from an ini-
tial projection of atomic d basis functions �3z2−r2� and
�x2−y2� centered at the different Mn sites within the unit cell
onto the Bloch bands, we obtain a set of two eg-like MLWFs
per spin channel for each site. The spread functional �both
gauge-invariant and nongauge-invariant parts� is considered
to be converged if the corresponding fractional change be-
tween two successive iterations is smaller than 10−10. For
cases with entangled bands a suitable energy window is cho-
sen as described in the corresponding “Results” section.

III. RESULTS AND DISCUSSION

A. Perfect cubic perovskite—structure (i)

The projected densities of states �DOS� and band structure
calculated for LaMnO3 in the ideal cubic perovskite structure
�i� for both FM and A-AFM orders are shown in Fig. 2.37

A metallic state is obtained for both FM and A-AFM
orders, in agreement with previous band-structure
calculations.25,29,30 The projected DOS show that the �local�
majority spin bands around the Fermi energy have mainly
Mn�eg� character and are half-filled while the �local� minor-
ity spin bands with mainly Mn�eg� character are unoccupied,
as expected from the formal electron configuration. Bands
with Mn�t2g� character are lying just below the Mn�eg� bands
and slightly overlap with the latter. O�p� bands are located
below the Mn�t2g� bands �between �6–12 eV� and are fully
occupied. The strong hybridization between Mn�d� and O�p�

electrons can be seen from the substantial amount of Mn�d�
character in the energy range around 8 eV, i.e., toward the
bottom of the bands with predominant O�p� character. The
states above the Mn�eg� bands have predominantly La�d�
character.

One can see from the band structures depicted in Fig. 2
that for the FM majority spin channel the bands with pre-
dominant eg character are nearly completely isolated from
both higher- and lower-lying bands, while for the FM minor-
ity spin channel and in the A-AFM case, the “eg bands”
overlap strongly with other bands �with mostly Mn�t2g� mi-
nority and La�d� character�. As described in Sec. II D, in
order to construct eg-like MLWFs for the various cases, we
define an energy window for the disentanglement procedure
�see Eq. �12�� and then initialize the Wannier functions from
a projection of atomic eg wave functions on the Kohn-Sham
states within that energy window �see Ref. 19�. A suitable
energy window is chosen based on the eg projected DOS and
calculated band structure �see discussion below for more de-
tails�. Two MLWFs per spin channel for the single Mn site

FIG. 2. �Color online� Projected DOS and band structure along
high symmetry lines within the BZ calculated for the cubic structure
�i� and both FM and A-AFM order. Filled �red� areas and solid
�green� lines represent the projected DOS corresponding to Mn�eg�
and Mn�t2g� states, respectively, while dashed �blue� lines represent
the site and orbitally averaged projected DOS corresponding to the
O p states. For the A-AFM case the left �right� panel corresponds to
local majority �minority� spin projection. In the band structure
plots, the dispersion calculated from the eg-like MLWFs are repre-
sented by thick �red� lines, whereas the thin �gray� lines represent
the DFT band structure. The Fermi level is indicated by the hori-
zontal dashed lines.
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within the cubic unit cell are constructed for FM order, and
two pairs of MLWFs, localized at the two Mn sites within the
magnetic unit cell, are constructed for A-AFM order �for
global spin-up projection only�.

Figure 3 shows the real-space representation of the two
eg-like MLWFs for both majority and minority spin and FM
order, calculated for an energy window of �12.0, 17.0� and
�15.9, 20.0� eV, respectively. The shape of the MLWFs re-
sembles the antibonding �� character of hybridization be-
tween Mn�eg� and O�p� states in this energy range. The hy-
bridization is notably stronger for the majority spin MLWFs
�individual spread per WF 2.90 Å2 compared to 1.65 Å2 for
the minority spin MLWFs�, which is due to the smaller en-
ergy separation between the atomic Mn�eg� and O�p� levels
for the majority spin channel. The difference between the
real-space representation of the MLWFs for FM and A-AFM
order �not shown here� is more subtle. A quantitative com-
parison of the corresponding differences in the real-space
Hamilton matrix elements between MLWFs will be pre-
sented below.

The dispersion calculated from the obtained eg MLWFs is
also shown in Fig. 2. It can be seen that even in the cases
with strongly entangled eg bands �FM minority spin and
A-AFM� the MLWF bands follow certain DFT bands almost
exactly, except around some band crossings with higher ly-
ing La d bands. This represents the fact that within cubic
symmetry the eg states cannot hybridize with the t2g bands
and hybridize only very weakly with the La d states.

In order to reproduce the two majority spin bands around
the Fermi energy for the FM case, the lower bound of the
energy window, Emin, has to be above the lower peaks in the
Mn�eg� projected DOS at around 10.5 and 8 eV, which cor-
respond to the bonding combination of hybridized atomic
O�p� and Mn�eg� states. If these bands are included in the
energy window, the bonding and antibonding combinations
of atomic orbitals become disentangled and the eg Wannier
functions become essentially “atomiclike” �compare also

with the case of SrVO3 described in Ref. 9�. On the other
hand, varying Emin within 0.4 eV below the � point energy of
the eg-like bands changes the MLWF bands by less than 1
meV for any k. Similarly, varying the upper bound of the
energy window has only minor influence on the resulting
MLWF bands due to the negligible hybridization of the eg
states with higher-lying bands. Additional test calculations
for different k-point grids showed that the MLWF band
structure is converged within 0.5 meV at any k point for the
10�10�10 grid which was used for the energy window test
calculations.

We now turn to the analysis of the hopping parameters,
i.e., the real-space matrix elements hab

�R, Eq. �16�, between
MLWFs located at different Mn sites. The magnitudes of all
calculated hopping parameters for the FM majority spin case
are shown in Fig. 4. It is noticeable that the hopping ampli-
tudes along the three Cartesian axes are most dominant and
that their decay with distance is rather slow so that the terms
corresponding to intersite distances of 2ac and 3ac are of
comparable magnitude as the hopping between next-nearest
neighbors for which ��R�=�2ac.

The exact MLWF representation in terms of H�W��k� is
well suited for further numerical calculations, e.g., within a
DFT+DMFT approach. On the other hand, for the analysis
of specific physical mechanisms within a semianalytical TB
model, one generally wants to use only a very limited
number of hopping parameters h�R between closest neigh-
bors. We therefore identify a minimal subset of hopping
parameters, corresponding to intersite distances
��R� /ac� �1,�2,2 ,3�, i.e., where only hopping between
sites, for which the leading term �i.e., the corresponding ma-
trix element with largest magnitude� is larger than 10 meV,
are considered, while the rest is set to zero. This model
yields an overall very good agreement with the full MLWF
band structure �see inset in Fig. 4�, deviating not more than
0.11 eV for any k point on the 10�10�10 k-point grid used.
On the other hand, a TB model where only the hopping
amplitudes between nearest and next-nearest neighbors are

FIG. 3. �Color online� Real-space representation of the MLWFs
for majority and minority spin projections in the cubic structure �i�
with FM order, projected on the x-z plane passing through Mn
�large/blue sphere� and O �small/red spheres� sites �in arbitrary
units�.

FIG. 4. �Color online� Magnitude of all calculated nonzero hop-
ping parameters for FM order in the ideal cubic structure as a func-
tion of the intersite distance ��R� �open circles: hopping along the
unit cell directions; open diamonds: hopping between next-nearest
neighbors; filled circles: all other hoppings�. Inset: comparison of
the full MLWF band structure �solid lines� and the one calculated
from a simplified TB model �filled circles� which includes only the
inter-site hoppings for which the largest matrix element is larger
than 10 meV �see main text�.
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taken into account leads to deviations of up to 0.29 eV for
some k points, which might still be acceptable for certain
purposes. However, the overall bandwidth for the latter
model is reduced by about 0.2 eV compared to the full
MLWF band structure.

The calculated matrix elements of the real-space matrix
elements hab

�R for nearest- and next-nearest neighbor hopping
as well as the corresponding on-site terms ��R=0� are sum-
marized in Table II. Here and in the following we use the
abbreviated notation hz, corresponding to �R= �acẑ, and
hxz, corresponding to �R=ac��x̂� ẑ� �and analogously for
all other Cartesian directions�. We note that in the A-AFM
case the translational equivalence between the two Mn sites
within the unit cell is broken and �R= �acẑ is not a lattice
vector in this case. Nevertheless, in order to simplify the
notation, we stick to the site-based index and note that for
A-AFM order a translation along ẑ is equivalent to reversing
the two spin projections. In the following we always report
hopping amplitudes corresponding to hopping from and to
the Mn site at the origin, the corresponding parameters for all
other sites within the unit cell follow from symmetry. Simi-
larly, we do not add a spin index to the MLWF matrix ele-
ments but instead discuss each case separately.

It can be seen that the hopping parameter between two
�3z2−r2�-like MLWFs along the z direction, h11

z ��t in the
effective model description�, is the leading term for the
nearest-neighbor hopping and that overall the next-nearest-
neighbor hopping is about an order of magnitude smaller
than the nearest-neighbor hopping. The hopping amplitude
between two �x2−y2�-like functions along the z direction, h22

z

��t� in the model description�, is indeed very small com-
pared to h11

z . In the FM case, all nearest-neighbor hopping
amplitudes for the minority spin orbitals �except h22

z � are re-
duced �to about 75–85 %� compared to the majority spin
channel. This reflects the weaker hybridization between mi-
nority spin eg and O�2p� states, leading to more localized
minority spin MLWFs with reduced hopping amplitudes. For

A-AFM order, h11
z corresponds to the hopping between a

local majority and a local minority spin orbital, and its value,
�92% of h11

z for FM �↑ ��, is intermediate between the corre-
sponding FM majority and minority values. The A-AFM
hopping amplitudes within ferromagnetically ordered x-y
planes for local majority/minority spin directions are very
similar to the corresponding FM hoppings �differing by less
than 5 meV�, with the exception of the �local� majority spin
h11

x value, which is larger than that. Similar relations between
the FM majority and minority spin and A-AFM values are
also observed for the next-nearest-neighbor hoppings.

It can easily be verified, that the hopping parameters for
FM majority and minority spin fulfill the relations described
in Eqs. �3�–�5�, as required for cubic symmetry. However, if
the terms proportional to t��h22

z are neglected, the corre-
sponding equations are not exactly fulfilled. Thus, simply
neglecting h22

z while keeping all other nearest-neighbor hop-
ping amplitudes unchanged, leads to slight deviations from
cubic symmetry. Furthermore, Eqs. �3�–�5� are clearly not
fulfilled for the A-AFM hopping amplitudes, which reflects
the overall tetragonal symmetry resulting from the magnetic
order.

This symmetry reduction for the A-AFM case is also vis-
ible in the on-site matrix elements h11

0 and h22
0 , which differ

by about 100 meV. On the other hand, the small asymmetry
��1 meV� in these on-site terms for FM order results from
small numerical accuracies during the total spread minimiza-
tion �which uses the full k-point grid so that cubic symmetry
is not automatically enforced�.

Within the effective two-band model for manganites de-
scribed in Sec. II A, the Hund’s rule coupling leads to an
on-site spin splitting equal to 2J �treating SR as classical unit
vector�. From the calculated on-site MLWF matrix elements,
we thus obtain a value of J=1.499 eV for the Hund’s rule
coupling parameter in the FM case, and J=1.370 /1.451 eV
from the A-AFM on-site terms. The differences between
these values indicate the limits of the assumption of a fixed
t2g core spin. We note that all these values are slightly larger
than the results obtained in previous LSDA calculations
�J=1.34 eV�,25 which reflects the fact that GGA in general
leads to a stronger magnetic splitting than LSDA.38,39

Overall, the results obtained via MLWFs are in a very
good qualitative agreement with the previous study using TB
fits to DFT band structures.25 However, the direct compari-
son between the values calculated from MLWF in this work
and the values reported in Ref. 25 is slightly hampered by
the different exchange correlation functionals and pseudopo-
tentials used in the two studies. The same fitting method as
described in Ref. 25 applied to the GGA band structure cal-
culated in the present work, leads to a nearest-neighbor hop-
ping parameter t=−688 meV, i.e., slightly larger than the
−648 meV obtained from the MLWFs. This is due to the
larger majority spin eg bandwidth obtained here,
W↑=4.126 eV, compared to the value of 3.928 eV reported
in Ref. 25. Thus, the difference in bandwidth compensates
the neglect of further neighbor hopping in the simple TB fit,
leading to the apparent very good agreement between
h11

z =−648 meV listed in Table II and the corresponding
value �t=−655 meV� given in Ref. 25.

In the following sections, we will analyze the influence of
the structural distortions only for the on-site and nearest-

TABLE II. Calculated values of the on-site, nearest-, and next-
nearest-neighbor matrix elements hab

�R �in meV� for FM and A-AFM
order within structure �i� for the two different spin projections. As
described in the text, in the A-AFM case all matrix elements refer to
the Mn site closest to the origin.

FM�↑ � FM�↓ � A-AFM�↑ � A-AFM�↓ �

h11
0 14485.7 17483.9 14638.9 17379.3

h22
0 14484.3 17483.7 14541.7 17443.3

h11
z −648.2 −512.5 −595.0 −595.0

h22
z 9.1 −9.2 −8.5 −8.5

h11
x −155.2 −135.0 −172.8 −130.7

h12
x 284.5 217.9 281.4 214.5

h22
x −483.9 −386.7 −488.8 −389.8

h11
xz 37.8 32.0 34.7 34.7

h12
xz −34.1 −26.6 −29.3 −29.0

h22
xz −1.8 1.2 0.5 0.5

h11
xy −21.9 −14.3 −16.4 −14.2

h22
xy 57.9 47.4 51.4 48.3
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neighbor hopping terms. We have verified that the resulting
changes in the further neighbor hopping amplitudes do not
lead to significant differences in the dispersion characteris-
tics of the eg bands, even though the corresponding relative
changes in the next-nearest neighbor hoppings are compa-
rable with those of the nearest-neighbor hoppings.

B. Jahn-Teller distortion—structure (ii)

As described in Sec. II C, the staggered JT distortion,
QR

x = �Q0
x, leads to a unit cell doubling within the x-y plane.

In the case of FM order, we therefore construct two pairs of
eg MLWFs for each spin channel, localized at the two differ-
ent Mn sites within the unit cell, while for A-AFM order we
construct four pairs of MLWFs, localized at the four different
Mn sites within the corresponding unit cell �for global
spin-up projection only�. The same approach for choosing
the energy window for the disentanglement procedure was
used as described in the previous section.

The calculated DFT band structure and eg-like MLWF
dispersion for the JT distorted structure �ii� are shown in Fig.
5. As a result of the unit-cell doubling, there are now four
and eight bands with eg character per spin channel for the
FM and A-AFM order, respectively. As for the cubic perov-
skite structure, the calculated MLWF dispersion largely fol-
lows the DFT band structure, except where there is strong
hybridization with states of a different orbital character. It
can be seen that several degeneracies and potential band
crossings, which would result from a simple “backfolding”
of the cubic band structure onto the smaller tetragonal BZ,
are lifted due to the JT distortion. This can be seen for ex-
ample for the FM majority spin bands, where the highest-
lying band along �Z acquires some dispersion, leading to a
splitting of the higher energy eg states at Z. Similarly, the
degeneracy of the two lowest-lying eg states at � is lifted,
and a potential crossing of eg bands is prevented between �
and M. The latter splitting, together with the reduced disper-
sion along �Z for A-AFM order, appears crucial for the

opening of an energy gap in the JT-distorted A-AFM ordered
structure �Fig. 5�c��.

To further analyze the influence of the JT distortion on the
eg electronic structure, we perform a series of calculations
where we gradually change the oxygen positions from the
ideal perovskite structure �i� to the fully JT distorted struc-
ture �ii�, according to Eq. �18�, and monitor the resulting
changes in the MLWF Hamiltonian matrix elements. In all
these calculations, we use the same energy windows of
�12.0, 17.5�, �15.9, 20.0�, and �12.0, 20.0� eV for the disen-
tanglement in the case of FM majority, FM minority and
A-AFM, respectively. The resulting MLWF matrix elements
are depicted in Fig. 6. As discussed in the previous section,
we report only hopping from and to the Mn site at the origin.
The hopping amplitudes corresponding to other sites in the
unit cell follow from symmetry. We find a strong linear de-
pendence on the JT distortion for both the off-diagonal on-
site matrix elements h12

0 �Fig. 6�a�� as well as for the off-
diagonal in-plane hopping h12/21

x �Fig. 6�c� and 6�d��. All
other on-site and nearest-neighbor hopping matrix elements

FIG. 5. �Color online� DFT band structure �thin lines� for the
JT-distorted structure �ii�: �a� majority spin FM, �b� minority spin
FM, and �c� A-AFM. MLWF bands are depicted as thick/red lines.
The Fermi level is indicated by the dashed line.

FIG. 6. �Color online� MLWF Hamiltonian matrix elements hab
�R

as function of the JT distortion. Large/black and small/red symbols
correspond to FM and A-AFM order, respectively. Matrix elements
associated with pure �local� majority and minority spin character
are shown as triangles pointing up and down, respectively. Closed
circles in �b� represent the A-AFM h11

z hopping.
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show only a weak or moderate quadratic dependence on �ii.
Within the model described in Sec. II A the sole effect of

the JT distortion �QR
x ,QR

z � is a linear coupling to the on-site
terms at site R according to

t0 = �e0 − �QR
z − �QR

x

− �QR
x e0 + �QR

z 	 . �19�

In our case QR
z =0 and QR

x = ��iiQ0
x; e0 is the on-site energy

of the eg orbitals. It can be seen from Fig. 6�a� that the
off-diagonal element h12

0 indeed shows a linear dependence
on �, consistent with Eq. �19�. The corresponding slope,
−�Q0

x =482 meV, is nearly identical for the FM majority and
A-AFM local majority spin elements, whereas it is signifi-
cantly smaller for the �local� minority spin matrix elements
�−�Q0

x =246 /155 meV�. This indicates that the JT splitting
is also a ligand-field effect, i.e., it is mediated by hybridiza-
tion with the surrounding oxygen orbitals, which, as pointed
out previously, is stronger for the energetically lower major-
ity spin states. The values for the JT coupling constant �
obtained from the data shown in Fig. 6�a� are 3.19 eV /Å,
1.63 eV /Å, and 1.02 eV /Å, for majority, FM minority, and
A-AFM local minority spin states, respectively. We note that
the value of � obtained for majority spin is approximately a
factor of two larger than the value obtained from the fitting
procedure described in Ref. 25. As we will discuss in more
detail below, the source for this discrepancy is the strong
linear splitting observed for the off-diagonal in-plane
nearest-neighbor hoppings h12/21

x , which is induced by the JT
distortion �see Fig. 6�c� and 6�d��.

This splitting between h12/21
x again results from the under-

lying hopping between atomic Mn�eg� and O�p� states,
which �in leading order� depends linearly on the Mn-O dis-
tance. Since this dependence will be different for the
�3z2−r2� and �x2−y2� orbitals, it can easily be verified that
the effective hopping across a combination of one long and
one short Mn-O bond within the x-y plane between two dif-
ferent eg orbitals will also depend linearly on the JT distor-
tion whereas the effective hopping between the same type of
eg orbitals will show only a quadratic dependence. We have
verified, by constructing atomiclike Wannier functions for
both Mn�eg� and O�p� orbitals �corresponding to larger en-
ergy windows�, that indeed the dependence on the Mn-O
distance is much stronger for the hopping amplitude between
the �3z2−r2�-type orbital and a neighboring O�p� orbital than
for the corresponding �x2−y2�-type hopping, consistent with
the observed splitting in the effective hopping amplitudes
h12/21

x shown in Fig. 6�c� and 6�d�.
It can be verified within a TB model where the linear

splitting between h12
x and h21

x �and analogously for the hop-
ping along the y direction� is taken into account via one extra
parameter derived from the MLWF data, that this splitting
partially cancels the effect of the on-site JT term on the band
dispersion. In particular, the JT-induced “gap” between the
second and third eg band between � and M is reduced by
increasing the h12

x /h21
x splitting whereas it is enhanced by

increasing the JT coupling strength �. Thus, the band disper-
sion resulting from reduced � and no splitting between h12

x

and h21
x looks very similar to the one obtained from the

MLWF parameters �i.e., including the spitting between
h12/21

x �. This is the reason why the fitting of the DFT band
structure on a TB model that does not incorporate a h12

x /h21
x

splitting �see Ref. 25� leads to a smaller value of � than the
one obtained from the MLWF parameters. An interesting
question arising from this is whether, despite the very similar
band dispersion, the two different TB parameterizations
would lead to noticeable differences in calculated ordering
temperatures for the collective JT distortion. We note that
values of ��2.8 eV /Å have been obtained in Refs. 11 and
23, which are only slightly smaller than the value we obtain
from the majority spin MLWFs. This difference could be
partially due to our use of GGA instead of LSDA. However,
it is also clear from the above discussion that the effect of the
JT distortion on the Kohn-Sham band structure goes beyond
the simple local coupling described by Eq. �7�. Therefore, a
strong dependence of the local JT coupling strength from the
employed fitting procedure has to be expected.

The differences between the off-diagonal in-plane hop-
ping parameters induced by the JT distortion indicate
changes in the MLWFs themselves, i.e., the JT distortion
alters the basis set of a MLWF-based TB model. We note that
this is an unavoidable result of the effective “two-band” pic-
ture and in fact indicates the limit of how realistic such an
effective model can get. Strictly speaking, the definition of a
distortion-independent basis set is only possible within a full
d-p TB model, based on truly atomiclike functions. The JT
distortion enhances the hybridization between atomic d and
p orbitals along the short octahedral axis and reduces hybrid-
ization along the long axis, which will undoubtedly change
the orbital character of the effective d-p-hybridized Wannier
orbitals.

On the other hand, the minimization of the total quadratic
spread does not necessarily guarantee that the resulting ML-
WFs exhibit a specific orbital character, and a splitting be-
tween h12

x and h21
x could, in principle, also result simply from

a unitary mixing of purely �3z2−r2�- and �x2−y2�-type basis
functions. In order to check whether �at least part of� the
observed splitting is due to such a mixing of orbital charac-
ter, we have applied a local unitary transformation between
the two MLWFs on each site, and studied the resulting
changes in the various hopping matrices. The corresponding
analysis is presented in the appendix. In essence, we find that
it is impossible to retrieve the “cubic symmetry,” i.e., the
form described in Eqs. �3�–�5� and �19�, simultaneously for
h0, hz, and hx, and that even though a transformation of one
of these terms to the desired form is always possible, such a
transformation will in general increase the corresponding de-
viations in the other two terms. We have also verified that
even using the Wannier functions based on projecting pure
�3z2−r2� and �x2−y2� orbitals on the Bloch functions without
further minimization of the spread functional �see Eq. �14��
leads only to minor quantitative changes. In the following we
therefore always present results obtained directly from the
MLWFs, which do not depend on a particular choice of basis
and are uniquely determined from the Kohn-Sham states
within the specified energy window.

The leading hopping term in z direction, h11
z �Fig. 6�b��,

exhibits only a weak quadratic change as a function of �ii.
We also find a similar weak quadratic dependence on the JT
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distortion in the hopping parameters h11/22
x �not shown�, and a

moderately strong quadratic change in the on-site diagonal
matrix elements �Fig. 6�e� and 6�f��, which introduces a split-
ting of about 150 meV between h11

0 and h22
0 for the fully JT

distorted structure.
Finally, we note that the Hund’s rule coupling parameters

derived from the local spin splitting between MLWFs ob-
tained for the fully JT-distorted structure �J
=1.499 /1.484 eV for FM order and J=1.345 /1.465 eV for
A-AFM order� are not significantly changed compared with
the ones obtained for structure �i�.

C. GdFeO3-type distortion—structure (iii)

The band dispersion calculated for the purely GFO-
distorted structure �iii� is presented in Fig. 7. The rotation
and tilting of oxygen octahedra in structure �iii� distorts the
ideal 180° Mn-O-Mn bond angle, which is expected to re-
duce the hopping amplitudes. Indeed, it can be seen in Fig. 7
that the GFO distortion leads to significantly smaller band-
width �2.951 eV and 2.139 eV for FM majority and minority
spin, respectively, compared to 4.126 eV and 3.156 eV in the
undistorted structure �i��. As a result, the FM majority spin eg
bands become completely separated from the lower-lying t2g
bands and the La�d� bands at higher energy. Unlike in the JT
distorted structure �ii�, the system stays metallic for both FM
and A-AFM order.

Since the unit cell for structure �iii� is quadrupled with
respect to the cubic perovskite structure, there are now eight
bands with dominant eg character for each spin direction.
However, due to the tilt/rotation of the oxygen octahedra,
“eg-like” orbitals at a certain site can hybridize with
“t2g-like” orbitals at a neighboring site, leading to bands with
mixed eg / t2g character.40 In the FM case this does not repre-
sent a problem for the disentanglement procedure since the
bands with predominant eg character are separated from the
predominantly t2g bands for both spin direction. For FM or-
der, we can therefore construct four pairs of MLWFs, local-
ized at the four different sites within the unit cell, by defining

appropriate energy windows separately for each spin direc-
tion. This is not possible in the A-AFM case, where the local
minority t2g bands overlap strongly with the local majority eg
bands in the energy region between 14 and 16 eV. In this
case, the standard disentanglement procedure employed for
structures �i� and �ii�, i.e., defining an energy window
�12.0, 21.0� eV and initializing eight Wannier functions from
projections on atomic eg orbitals at the various sites, results
in MLWFs with mixed t2g /eg orbital character. In particular,
the resulting local minority spin MLWFs exhibit a rather
strong t2g character.

A possible way to overcome this problem would be to
construct all 20 d-like MLWFs �5 per Mn site�, i.e., both eg
and t2g orbitals. However, the resulting MLWFs still contain
some amount of eg / t2g mixing, and the corresponding
MLWF matrix elements exhibit systematic deviations from
the results obtained in the previous sections, which are de-
rived from a smaller set of MLWFs. In the following, we
therefore adopt a different strategy to obtain model param-
eters for the A-AFM case, and construct the four local ma-
jority and four local minority spin eg-like MLWFs separately,
using two different energy windows. From this, we obtain
the on-site matrix elements h0 as well as the hopping param-
eters hx within the x-y plane �and of course all further neigh-
bor hopping amplitudes within this plane�. On the other hand
we do not obtain the hopping amplitudes hz between adja-
cent planes in the z direction, which would connect the two
separate sets of MLWFs. Similar to the purely JT distorted
case, we analyze the effect of the GFO distortion on the eg
bands by performing calculations with varying degree of dis-
tortion, i.e., by changing the oxygen positions according to
Eq. �18�. In this case we always adjust the energy window
for the construction of the MLWFs to the actual eg band-
width corresponding to a particular �iii. We note that the use
of projector-based Wannier functions according to Eq. �14�,
i.e., without quadratic spread minimization, would face simi-
lar technical problems, depending on whether the projected
orbitals are oriented relative to the global crystal axes or
according to the orientation of the local oxygen octahedron.

We find that the main effect of the GFO distortion is in-
deed a systematic reduction of all hopping amplitudes by
�20–30%, consistent with what was reported in Ref. 25.
However the construction of MLWFs allows to analyze this
result in more detail. Figure 8�a� shows the overall reduction
for all obtained nearest-neighbor hopping amplitudes for
both FM and A-AFM order while Fig. 8�b� resolves the re-
duction factors of the various hopping amplitudes for full
GFO distortion ��iii=1�. It can be seen, that even though
there is a significant spread in the reduction factors for the
various hopping parameters, the overall reduction can ap-
proximately be described as hx/z��iii�=hx/z�0��1−��iii

2 �, with
an average value of �=0.26.

In addition to the changes in the nearest-neighbor hopping
amplitudes, we also observe a quadratic decrease in the on-
site diagonal matrix elements as a function of the GFO dis-
tortion �Fig. 8�c� and 8�d�� with a similar magnitude for both
orbitals and different magnetic order. This can be understood
again from the underlying hopping between atomic p and d
orbitals. Since the effective eg bands correspond to the anti-
bonding combination of these atomic orbitals, a reduction in

FIG. 7. �Color online� DFT band structure �thin lines� for the
purely GFO-distorted structure �iii�: �a� FM majority spin, �b� FM
minority spin, and �c� A-AFM. MLWF bands are depicted as thick/
red lines. The Fermi level is indicated by dashed lines.
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the underlying p-d hopping amplitudes results in a decrease
in the �-point energy of the eg states. The Hund’s rule cou-
pling parameter J=1.502 eV obtained from the on-site split-
ting for FM order and �iii=1 is very similar to the corre-
sponding value for the cubic perovskite structure.

D. Combined Jahn-Teller and GdFeO3-type distortion—
structure (iv)

So far we have analyzed the individual effects of the JT
and GFO distortion. We now discuss whether the superposi-
tion of both distortions gives rise to any changes in the
MLWF matrix elements that go beyond a simple superposi-
tion of the individual effects. The corresponding band struc-
ture and MLWF dispersion for structure �iv�, i.e., the com-
bined JT and GFO distortion, is presented in Fig. 9. It can be
seen that the band structure in this case closely resembles the
one of the purely GFO distorted structure �iii�, Fig. 7, but
with the additional JT-induced effects �avoided band cross-
ings and lifted degeneracies� as described in Sec. III B. Note
that, as in the purely JT-distorted structure, the FM case is
metallic, whereas a band gap opens only for A-AFM order.

As described in the previous section we construct eight
MLWFs per spin direction for the FM case and two separate
sets of four local majority and four local minority eg-like
MLWFs for the A-AFM case. Figure 10 shows the evolution
of selected MLWF matrix elements as a function of distor-
tion. The atomic positions are changed according to Eq. �18�
with x=iv. By comparing Fig. 10�a� with Fig. 6�a�, it can be
seen that the GFO distortion does also significantly reduce

the on-site matrix elements h12
0 �to �75–80%�, which are

otherwise proportional to the JT distortion. This is further
evidence for the ligand-field nature of the JT coupling, i.e.,
that it is mediated by the Mn-O hybridization �which is re-
duced by the GFO distortion�. Furthermore, it can be seen
that the leading hopping along z, h11

z , follows very closely
the trend observed for the purely GFO distorted structures. In
the case of the off-diagonal hopping amplitudes within the
x-y plane, the superposition of GFO-distortion-induced re-
duction and JT-induced splitting leads to an initial increase in

FIG. 8. �Color online� Hamiltonian matrix elements in the basis
of MLWFs as a function of the GFO distortion. Large/black and
small/red symbols correspond to FM and A-AFM order, respec-
tively. Elements associated with purely �local� majority and minor-
ity spin characters are represented by triangles pointing up and
down, respectively.

FIG. 9. �Color online� DFT band structure �thin lines� for struc-
ture �iv�: �a� majority spin FM, �b� minority spin FM, and �c�
A-AFM. MLWF are depicted as thick/red lines. Fermi level is in-
dicated by dashed line.

FIG. 10. �Color online� MLWF Hamiltonian matrix elements as
function of combined JT and GFO distortion. Large/black and
small/red symbols correspond to the FM and A-AFM order, respec-
tively. Elements associated with purely �local� majority and minor-
ity spin characters are represented by triangles pointing up and
down, respectively.
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h12
x for small distortion, followed by a decrease for larger �iv.

Overall, the observed trends can indeed be well understood
as independent superposition of the individual effects of JT
and GFO distortions. We note that the kinks observed in
some of the minority spin hopping terms around �iv�0.4
result from the opening of the gap between eg-like and
t2g-like minority spin bands for this amount of distortion,
which represents a certain “discontinuity” for the disen-
tanglement procedure. Nevertheless, it can be seen that the
resulting MLWFs allow to observe a clear trend even for
cases with very strongly entangled bands and a symmetry
that allows mixing between many different orbital characters.

E. Simplified TB models for LaMnO3 in the full experimental
Pbnm—structure (v)

The analysis presented so far showed that the effect of
different structural distortions on the eg bands can, to a good
extent, be treated independently of each other. In this section,
we attempt to incorporate the most significant effects de-
scribed in the previous sections into a refined effective TB
model. Then, in order to test the accuracy of the resulting
parameterization, we compare the resulting band dispersion
with the full GGA and MLWF band structure, calculated for
the full experimental Pbnm structure of LaMnO3 and
A-AFM order, as well as with the A-AFM MLWF band
structure for all other structural configurations discussed pre-
viously. This allows us to clearly identify which simplifica-
tions have the largest overall effect on the band dispersion
and how they can be remedied, if desirable.

For the refined TB model we introduce different hopping
amplitudes for local majority/minority spin projections to de-
scribe the hopping between ferromagnetically aligned near-
est neighbors within the x-y planes �t↑↑ / t↓↓�, and an interme-
diate value for the nearest neighbor hopping between
antiferromagnetically aligned nearest neighbors along the z
direction �t↑↓�, i.e., hopping between two different local spin
projections. This is in accordance with our results presented
in Sec. III A. For the corresponding hopping amplitudes we
use the values of h11

z calculated for the ideal cubic perovskite
structure �see Table II� for FM and A-AFM order, which are
then reduced by the same factor �1−��iii

2 �, where �iii de-
scribes the amount of pure GFO distortion. Apart from these
modifications we assume the usual cubic symmetry of the
nearest-neighbor hopping matrices, i.e.,

tss���acẑ� = �1 − ��iii
2 �tss��1 0

0 0
	 , �20�

tss���acx̂� = �1 − ��iii
2 �tss�


1

4
−

�3

4

−
�3

4

3

4
� �21�

�and analogously for tss���acŷ��. Note that s and s� in these
equations should be read as a local spin index, i.e., it desig-
nates the spin projection relative to the orientation of the
local core spin. We use the average value �=0.26 determined
in Sec. III C.

The JT-induced splitting of the nondiagonal elements of
the hopping matrix within the x-y plane discussed in Sec.
III B is incorporated in the TB model as an additional con-
tribution to the in-plane hopping

�t��acx̂� = �̃Q0
x�ii�1 − ��iii�� 0 1

− 1 0
	 �22�

�and analogously for �t��acŷ��. Here, �ii describes the am-
plitude of the staggered JT distortion, i.e., QR

x = �Q0
x�ii, and

the parameter �̃ is determined from the average splitting over
all hopping amplitudes in the purely JT-distorted structure
�shown in Fig. 6�c� and 6�d��. In addition, we include the
usual on-site JT effect in essentially the same form as de-
scribed in Eq. �7� but with a spin-dependent JT coupling
constant that is also reduced by the GFO distortion �with the
same factor as the hopping amplitudes�

� → �s�1 − ��iii
2 � . �23�

We note that the orthorhombic strain in the experimental
structure of LaMnO3 gives rise to a homogeneous Qz com-
ponent to the JT distortion, i.e., the same QR

z �0 on all sites,
which we take into account within the model by using the
same coupling constant �s as for the Qx component.

We also include hopping between next-nearest neighbors
and between second nearest neighbors along the Cartesian
coordinate axes in the refined TB model but we do not con-
sider any spin dependence of the corresponding hopping am-
plitudes. We describe the hopping between next-nearest
neighbors by spin-independent parameters txy corresponding
to the hopping between two �3z2−r2�-type orbitals along the
�acx̂�acŷ directions. The parameter txy is taken as spin
average over the corresponding MLWF matrix elements h11

xy

calculated for the cubic structure. All other hopping matrix
elements between next-nearest neighbors are determined
from this via the following relations, which are derived as-
suming cubic symmetry and indirect hopping only �see Ref.
25�:

txz = txy�1 − ��iii
2 ��− 2 �3

�3 0
	 , �24�

txy = txy�1 − ��iii
2 ��1 0

0 − 3
	 . �25�

The same GFO-distortion-induced reduction as for the
nearest-neighbor hopping matrices is applied. The hopping
between second nearest neighbors along the coordinate
axes �t��2acx̂� , t��2acŷ� , t��2acẑ�� is included according
to the ideal cubic symmetry relations described by Eqs.
�3�–�5�, with ac replaced by 2ac, t�=0, and t= t2z, where
t2z is estimated from the MLWF matrix elements for the
purely GFO distorted structure. We note that the reduction
of this parameter compared to the undistorted case is sig-
nificantly stronger than for the nearest �and next-nearest�
neighbor hopping amplitudes. Furthermore, the hopping be-
tween third nearest neighbors along the coordinate axes
�t��3acx̂� , t��3acŷ� , t��3acẑ��, that was considered in Sec.
III A, becomes negligible as result of the GFO distortion.
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Finally, we include the Hund’s rule coupling in the refined
TB model using the standard form �Eq. �6�� with an average
value of J obtained from the MLWF on-site splitting. In or-
der to relate the obtained TB bands to the full GGA and
MLWF band structures, we determine the on-site energy e0
as the spin and orbital average of the corresponding haa

0 ma-
trix elements for the A-AFM experimental structure.

The values of all parameters used in the refined TB model
are summarized in Table III. The JT distortion in the experi-
mental Pbnm structure corresponds to �ii=1,
Q0

x =−0.161 Å, and Qz=−0.048 Å, and the corresponding
amplitude of the GFO distortion is �iii=1.

We also compare with a very simple TB model that in-
cludes only nearest-neighbor hopping according to Eqs.
�3�–�5� with t�=0, and the standard JT and Hund’s rule cou-
pling as described by Eqs. �7� and �6�. The parameters for
this model are chosen via typical simplified fitting proce-
dures: the nearest-neighbor hopping parameter −t is obtained
as one sixth of the majority spin bandwidth W for the fully
GFO distorted structure �iii� and FM order; the JT coupling
constant � is taken from Ref. 25, where it was obtained by
fitting a similar TB model �including also next-nearest-
neighbor hopping� to a DFT band structure; J is calculated
from the spin splitting between FM majority and minority
bands at the � point for the cubic structure �i�; and e0 is fitted
such that the Fermi energy is aligned with the DFT calcula-
tion value.

Figure 11�a� shows the band dispersion obtained from the
GGA calculation for the full experimental structure �v� and
A-AFM order as well as the corresponding MLWF bands.
Figures 11�b� and 11�c� show the comparison between the
MLWF bands and the two different simplified TB models. It
can be seen that the orthorhombic lattice strain and La dis-
placements do not lead to significant qualitative changes in
the band structure as compared to structure �iv� �see Fig.
9�c��. The comparison between the MLWF dispersion and
the refined TB model �Fig. 11�b�� shows that, despite the
many simplifications made, this model reproduces the
MLWF bands to a remarkable accuracy. The only major dis-
crepancy can be seen for the lowest-lying local minority
band along �-Z at E�16 eV, which is slightly lower than
the corresponding MLWF band. This can be traced back to

an overestimation of the minority spin h22
x hopping, which

results from the fact that we use the same reduction factor
� for all hoppings. As can be seen in Fig. 8�b�, the corre-
sponding hopping amplitude is affected more strongly by the
GFO distortion than any other nearest neighbor hopping �for
A-AFM order�. The very simple nearest-neighbor TB model
depicted in Fig. 11�c� deviates much stronger from the
MLWF band structure than the refined model but still cap-
tures the overall dispersion surprisingly well. Consistent with
our analysis from the previous sections, the deviations are
more pronounced for the energetically higher local minority
spin bands, which is clearly due to the neglected spin depen-
dence of the hopping. As discussed in Sec. III B, the smaller
JT coupling constant used in the simple model partially can-
cels the missing effect of the JT distortion on the interorbital
in-plane hopping parameters, leading to the relative good
agreement of the simpler model with the MLWF bands
around the Fermi level.

In Figs. 11�i�–�iv�, we also verify the validity of the re-
fined TB model for all previously discussed structures �i�–
�iv� and A-AFM order. It can be seen that the overall agree-
ment between MLWFs and the refined model is very good.
The most pronounced deviations are due to the already
mentioned features: underestimated t2z hopping used for

TABLE III. Parameters used in the TB models.

Refined Simple

t↑↑ �eV� −0.648 −0.492

t↓↓ �eV� −0.512 −0.492

t↑↓ �eV� −0.569 −0.492

� 0.26

�̃ �eV Å−1� 0.53 0

�↑ �eV Å−1� 3.19 1.64

�↓ �eV Å−1� 1.33 1.64

txy �eV� −0.018 0

t2z �eV� −0.020 0

e0 �eV� 15.356 15.505

J �eV� 1.5 1.805

FIG. 11. �Color online� Top: �a� DFT bands �thin/gray lines� and
MLWF bands �thick/red lines� for the A-AFM experimental Pbnm
structure �v�. �b� Comparison of the MLWF bands with the refined
TB model and �c� with the simple nearest-neighbor TB model. Bot-
tom: comparison between MLWF bands �thick/red lines� and re-
fined TB model �thin lines with diamonds� for structures �i�–�iv�
and A-AFM order. The Fermi level is indicated by dashed lines.
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structures �i� and �ii�, and overestimated minority spin h22
x

used for structures �iii� and �iv�. The same trends are also
observed for the FM majority and minority bands �not
shown�. In summary, the maximum deviation between ML-
WFs and refined TB bands in all cases is in the range
�250�150� meV, while the k-point averaged deviation is in
the range of only �70�50� meV.

IV. SUMMARY AND CONCLUSIONS

We have shown that the construction of maximally local-
ized Wannier functions together with the disentanglement
procedure described in Ref. 19 can be used to extract effec-
tive eg bands in LaMnO3 even for cases where these bands
are strongly entangled with other states. This procedure thus
provides a very robust way for extracting the “correlated
subspace” used for example in DFT+DMFT calculations.

We have used this procedure to obtain a TB parameteriza-
tion of the eg bands for different structural modifications of
LaMnO3 with both FM and A-AFM order. By monitoring the
effect of the individual distortions on the MLWF matrix el-
ements, we can assess the quality of the various approxima-
tions and simplifications that are commonly used in model
Hamiltonians for manganite systems �using the GGA Kohn-
Sham band structure as reference for the noninteracting part
of the Hamiltonian�. In particular, we find the following:

�a� while the nearest-neighbor hopping is clearly domi-
nant, the further neighbor hopping along the Cartesian axes
decays rather slowly. Taking into account nearest, next-
nearest, as well as second and third nearest hopping along
the Cartesian axes leads to deviations of less than 0.11 eV
from the �cubic FM� DFT band structure.

�b� In addition to the linear on-site coupling to the JT
distortion, we observe a strong effect on the in-plane hopping
amplitudes between different orbitals. The corresponding
splitting, which is due to the underlying Mn-O hopping, par-
tially cancels the effect of the on-site term on the band dis-
persion, which has a strong influence on the determination of
the local JT coupling strength.

�c� The GFO distortion leads to an overall reduction in all
hopping amplitudes by about 25–30 % and also reduces the
local JT splitting. This reduction is due to the weaker hybrid-
ization between Mn�eg� and O�p� states for non-180° bond
angle.

�d� The higher energy of the �local� minority spin states
reduces the hybridization between the corresponding atomic
eg and O�p� states, leading to reduced hopping amplitudes
and JT coupling compared to the majority spin states.

�e� The splitting between �local� majority and minority
spin states is generally well described by the local Hund’s
rule coupling, even though small variations in the corre-
sponding J values indicate the limits of the core spin ap-
proximation.

It is apparent that the most crucial deviations from the
simple two band description are a result of the underlying
Mn-O hybridization. Nevertheless, we have shown that a re-
fined TB model that incorporates the effects described above
using the parameters listed in Table III reproduces the DFT

band structure calculated for the full experimental crystal
structure of LaMnO3 with remarkable accuracy. Whether this
accuracy, at the prize of more parameters in the model, is
desirable depends of course on the specific application of the
model description.

Furthermore, our analysis shows that the effects of the
various distinct structural distortions present in LaMnO3 are
�to a good approximation� independent from each other and
can therefore be assessed individually. However, the GFO
distortion has to be taken into account to obtain the correct
magnitude of the Jahn-Teller coupling.

In comparison with the manual TB fits presented in Ref.
25, the direct construction of Wannier functions is less biased
and more universally applicable. It allows to calculate pa-
rameters of the model instead of fitting them to either experi-
mental or computational data. In particular, it is possible to
obtain very accurate TB representations even for rather com-
plex band structures. While in this study we have used ML-
WFs, we note that other choices of the unitary transforma-
tion matrices in Eqs. �10� and �12� have also been
used.6,8,11,12 Whether MLWFs, projector-based Wannier func-
tions, or other schemes are preferable might depend on the
specific case. To the best of our knowledge no systematic
comparison for a number of “difficult” cases �i.e., with
strongly entangled band structures and low symmetry� has
been performed so far. For the specific case described in the
appendix only small differences between MLWFs and
projector-based Wannier functions have been observed.

The TB representation obtained from MLWFs �or other
schemes� includes hopping to all further neighbors and by
construction gives an exact representation of the underlying
band structure �at least for the case of an isolated set of
bands�. On the other hand for certain purposes it might be
desirable to use a much more simplified model, for example
with hopping only between nearest neighbors. Using the cor-
responding hopping parameters obtained from MLWFs for
such a model �and essentially neglecting all the correspond-
ing further neighbor hoppings�, would lead to a significant
underestimation of the total eg bandwidth. In such a case it
might be desirable to use nearest-neighbor hopping ampli-
tudes that lead to a realistic bandwidth instead of the ones
obtained from the MLWFs. In essence, care has to be applied
when parameters corresponding to a more complex param-
eterization are used for simpler models. The analysis pre-
sented in this work demonstrates that, depending on the spe-
cific application at hand, MLWFs can in principle be used to
construct more and more refined TB parameterizations which
lead to realistic, materials-specific band structures with very
high accuracy.
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APPENDIX A: LOCAL UNITARY TRANSFORMATION OF
MLWFS FOR PURELY JT-DISTORTED STRUCTURE

(II)

As pointed out in Sec. III B, the observed JT-induced
splitting in the off-diagonal in-plane hopping amplitudes
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h12/21
x can, in principle, also result from a simple mixing be-

tween the �3z2−r2� and �x2−y2� orbital character in the ML-
WFs. Even though the initial Wannier functions used as start-
ing point for the localization procedure are obtained by
projecting the corresponding atomic eg orbitals onto the
Kohn-Sham states, it is not guaranteed that the final MLWFs
still exhibit the same orbital character. In order to investigate
whether at least some of this orbital character can be retained
by a simple local mixing between the two MLWFs corre-
sponding to a particular Mn site R, we apply the following
unitary transformation:

U��R� = � cos �R sin �R

− sin �R cos �R
	 . �A1�

A unitary transformation can always be found such that ei-
ther h0, hz, or hx have the form corresponding to an ideal
�3z2−r2� / �x2−y2� basis �see Eqs. �3�, �4�, and �19��. The cor-
responding conditions for these three cases are: �a�
h11

0 ��0�=h22
0 ��0�, �b� h12

z ��z�=0, and �c� h12
x ��x�=h21

x ��x�.
Note that due to the staggered JT distortion with

QR
x = �Q0

x the corresponding local transformation angles will
exhibit the same pattern as the local JT distortion, i.e.,
�R= ��. This leads to the following transformations for the
above mentioned MLWF matrices:

h0/z��� = U†���h0/zU��� , �A2�

hx��� = U†�− ��hxU��� �A3�

and the following special transformation angles:

�0 =
1

2
arctan��h11

0 − h22
0 �/�2h12

0 �� , �A4�

�z =
1

2
arctan��2h12

z �/�h22
z − h11

z �� , �A5�

�x =
1

2
arctan��h21

x − h12
x �/�h11

x + h22
x �� , �A6�

which yield the specific “cubic” forms of the h0, hz and hx

matrices, respectively. It is clear from the results presented
in Sec. III B that for nonzero JT distortion one finds
�0��x��z.

The deviation of h�R from their cubic forms �for �R cor-
responding to “0,” “z,” and “x”� can be expressed as

�h11/22
0 = � hA

0 sin�2�� − �0�� , �A7�

�h12
z = − hA

z sin�2�� − �z�� , �A8�

�h12/21
x = � hA

x sin�2�� − �x�� , �A9�

where the amplitudes hA
�R are defined as

hA
0/z =

1

2
��h11

0/z − h22
0/z�2 + �2h12

0/z�2, �A10�

hA
x =

1

2
��h12

x − h21
x �2 + �h11

x + h22
x �2. �A11�

Figure 12 shows the quantities �h11/22
0 , �h12

z , and �h12/21
x

defined in Eqs. �A7�–�A9� as functions of the transformation
angle �. Note that �=0 corresponds to the matrix elements as
obtained directly from the maximum localization procedure,
i.e., with h11/22

0 and h12/21
x split and an essentially negligible

deviation of h12
z from 0. It is apparent that transforming the

MLWFs by either �0, �z, or �x �indicated by vertical dashed
line�, will always enhance the deviation from cubic symme-
try for one �or both� of the three considered matrices. There
is no “optimal” transformation which would retain the cubic
�3z2−r2� / �x2−y2� symmetry of the basis set, which shows
that the JT distortion inevitably leads to changes in hybrid-
ization between atomic Mn�eg� and O�p� states.

Table IV compares the transformation angles �0, �z, and
�x obtained from the MLWFs with the corresponding angles
obtained for projector-type Wannier functions according to
Eq. �14�. As discussed in Sec. II B these Wannier functions
are taken as initial guess for the unitary matrices U�k� and
Udis�k�, and have previously been used �without subsequent
spread minimization� within DFT+DMFT calculations and
to obtain model Hamiltonian parameters.6,8,11,12 It can be
seen that the deviations from the cubic orbital character rep-

FIG. 12. �Color online� Deviations �hab
�R of the selected matrix

elements from the cubiclike form as a function of the transforma-
tion angle �. Vanishing deviations �and the corresponding angles �0,
�z, and �x� are marked by vertical dashed lines.

TABLE IV. Comparison between the transformation angles �0,
�z, and �x obtained for MLWFs and for projector-type Wannier
functions according to Eq. �14�.

�0 �deg� �z �deg� �x �deg�

MLWFs 4.1 −1.7 −5.8

Projected 0.7 −4.9 −2.5
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resented by these angles are slightly different for the two
types of Wannier functions but that they are of rather similar
magnitude. On average, the deviations are slightly smaller
for the projected Wannier functions compared to the ML-
WFs, i.e., the �3z2−r2� / �x2−y2� orbital symmetry is probably
slightly better retained for the projected Wannier functions
than for the MLWFs. However, it is also clear that the abso-
lute differences between the two types of Wannier functions
are small and that the projected Wannier functions also de-
viate form the ideal orbital symmetry �which, as discussed in
Sec. III B, is an unavoidable result of the change in the un-
derlying O�p�−Mn�eg� hybridization�. We note that the exact
results for the projected Wannier functions will in general

depend on the specific choice of the atomic orbital �gm� �i.e.,
its radial part� whereas the MLWFs are completely basis-set
independent. In view of this, and the fact that the maximal
localization procedure �with �=0� seems to retain the cubic
orbital character in the MLWFs to a quite reasonable degree,
we believe that MLWFs are indeed a suitable tool for the
analysis presented in this work. As can be seen in Fig. 6, the
resulting changes in the effective model parameters are
gradual and systematic, leading to well-reproducible trends.
Nevertheless, other construction methods, such as the
projector-based method, can be used as well, and might be
equally well-suited.
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