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Lyon cédex 07, France

pierre.kestener@cea.fr

ABSTRACT
The multifractal nature of solar photospheric magnetic structures are studied using the 2D wavelet

transform modulus maxima (WTMM) method. This relies on computing partition functions from the
wavelet transform skeleton defined by the WTMM method. This skeleton provides an adaptive space-
scale partition of the fractal distribution under study, from which one can extract the multifractal singular-
ity spectrum. We describe the implementation of a multiscale image processing segmentation procedure
based on the partitioning of the WT skeleton which allows thedisentangling of the information concerning
the multifractal properties of active regions from the surrounding quiet-Sun field. The quiet Sun exhibits
a average Hölder exponent∼ −0.75, with observed multifractal properties due to the supergranular struc-
ture. On the other hand, active region multifractal spectraexhibit an average Hölder exponent∼ 0.38
similar to those found when studying experimental data fromturbulent flows.

Subject headings:Sun: flares, Methods: statistical, data analysis, Techniques: image processing, Magnetic fields,
Turbulence

1. Introduction

Since the late 70’s and the propagation of fractal
ideas throughout the scientific community (Mandelbrot
1982), there have been numerous applications of the
concepts of scale invariance, self-similarity, long-
range dependence in many areas of physics, chem-
istry, biology, geology, meteorology, economy, so-
cial and material sciences (Aharony & Feder 1989;
West 1990; Vicsek et al. 1994; Bunde & Havlin 1994;
Wilkinson et al. 1995; Family et al. 1995; Frisch 1995;
Arneodo et al. 1995a; Bunde et al. 2002). Various
methods were developed to quantify scale-invariance
properties through the computation of the fractal di-
mensionDF for self-similar objects or the roughness
exponentH for self-affine fractals (Mandelbrot 1982;
Peitgen & Saupe 1987; Feder 1988; Argoul et al.

1990; Lea-Cox & Wang 1993; Wilkinson et al. 1995;
Taqqu et al. 1995). UnfortunatelyDF and H are
global quantities that do not account for the pos-
sibility of point-to-point fluctuations of the scaling
properties of a fractal object. The multifractal for-
malism was introduced in the mid-eighties to provide
a statistical description of the fluctuations of regu-
larity of singular measures that are found in chaotic
dynamical systems (Halsey et al. 1986; Collet et al.
1987; Rand 1989) or in modelling of the energy
cascading process in turbulent flows (Mandelbrot
1974; Paladin & Vulpiani 1987; Mandelbrot 1989;
Meneveau & Sreenivasan 1991). Box-counting and
correlation algorithms were successfully adapted to
resolve multifractal scaling for isotropic self-similar
fractals by computation of the generalized fractal
dimensions Dq (Grassberger & Procaccia 1983a,b;
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Grassberger et al. 1988). As to self-affine fractals,
Parisi and Frisch (Parisi & Frisch 1985) proposed,
for the analysis of fully-developed turbulence ve-
locity data, an alternative multifractal description
based on the investigation of the scaling behavior
of the so-called structure functions (Frisch 1995;
Monin & Yaglom 1975): Sp(l) =< (δvl)p >∼ lζp (p
integer> 0), whereδvl(x) = v(x + l) − v(x) ∼ lh(x) is
an increment of the recorded signal over a distancel.
Then, after reinterpreting the roughness exponent as a
local quantity (Parisi & Frisch 1985; Muzy et al. 1991,
1994; Arneodo et al. 1995c):δvl(x) ∼ lh(x) (power-law
behavior), theD(h) singularity spectrumis defined as
the Hausdorff dimension of the set of pointsx where
the local roughness (or Hölder) exponenth(x) of v
is h. In principle, D(h) can be attained by Legendre
transforming the structure function scaling exponents
ζp (Parisi & Frisch 1985; Muzy et al. 1991, 1994;
Arneodo et al. 1995c). Unfortunately, as noticed by
(Muzy et al. 1991, 1993, 1994), both the box-counting
and structure function methodology have intrinsic lim-
itations and fail to fully characterize the corresponding
singularity spectrum since only the strongest singular-
ities are a priori amenable to these techniques. As
such, both methods are limited in their application
to real data sets (Muzy et al. 1994; Georgoulis 2005;
Conlon et al. 2008).

In previous work, Arneodo and collaborators (Muzy et al.
1991, 1993, 1994; Arneodo et al. 1995c) have shown
that there exists a natural way of performing a uni-
fied multifractal analysis of both singular measures
and multi-affine functions, which consists in using the
continuous wavelet transform(Goupillaud et al. 1984;
Grossmann & Morlet 1984; Meyer 1990; Daubechies
1992; Mallat 1998). By using wavelets instead of
boxes, one can take advantage of the freedom of the
choice of these “generalized oscillating boxes” to get
rid of possible smooth behavior that might either mask
singularities or perturb the estimation of their strength
h. The other fundamental advantage of using wavelets
is that the skeleton defined by thewavelet transform
modulus maxima(WTMM) (Mallat & Zhong 1992;
Mallat & Hwang 1992), provides an adaptative space-
scale partitioning from which one can extract theD(h)
singularity spectrumvia the scaling exponentτ(q) of
some partition functions defined from the WT skele-
ton. The so-called WTMM method (Muzy et al. 1991,
1993, 1994; Arneodo et al. 1995c) therefore gives ac-
cess to the entireD(h) spectrumvia the usual Legendre
transformD(h) = minq(qh− τ(q)). We refer the reader

to Bacry et al. (1993) and Jaffard (1997) for rigorous
mathematical results and to Hentschel (1994) for the
theoretical treatment of random multifractal functions.

Applications of the WTMM method to 1D signals
have already provided insight into a wide variety of
problems (Arneodo et al. 2002), e.g. the validation
of the log-normal cascade phenomenology of fully
developed turbulence (Arneodo et al. 1998a, 1999b;
Delour et al. 2001) and of high-resolution temporal
rainfall (Venugopal et al. 2006a,b; Roux et al. 2009),
the characterization and the understanding of long-
range correlations in DNA sequences (Arneodo et al.
1995b, 1996; Audit et al. 2001, 2002), the demon-
stration of the existence of a causal cascade of in-
formation from large to small scales in financial
time series (Arneodo et al. 1998b; Muzy et al. 2000),
the use of the multifractal formalism to discrim-
inate between healthy and sick heartbeat dynam-
ics (Ivanov et al. 1996, 1999), the discovery of a
Fibonacci structural ordering in 1D cuts of diffu-
sion limited aggregates (Arneodo et al. 1992a,b,c;
Kuhn et al. 1994) and in hard X-ray emission from so-
lar flares (McAteer et al. 2007). The WTMM method
has been generalized from 1D to 2D with the spe-
cific goal to achieve multifractal analysis of rough
surfaces1 with fractal dimensionDF anywhere be-
tween 2 and 3 (Arrault et al. 1997; Arneodo et al.
2000; Decoster et al. 2000). The 2D WTMM method
has been successfully applied to characterize the inter-
mittent nature of cloud structure from satellite im-
ages (Arneodo et al. 1999a; Roux et al. 2000) and
to assist in the diagnosis of breast tissue lesions in
digitized mammograms (Kestener et al. 2001). In
astrophysics, this method was adapted and used to
characterize the anisotropic structure of atomic hy-
drogen gas (HI) in the Galatic disk (Khalil et al.
2006). From the analysis of very large mosaics taken
from the Canadian Galatic Plane Survey (Taylor et al.
2003), directional roughness exponents were intro-
duced to show that the HI in the Galactic spiral
arms has a scale-dependent anisotropic signature
while the HI in the inter-spiral arm regions exhibits
scale-independent anisotropy. Along that line, the
2D WTMM method was further applied to char-
acterize the space-scale nature of anisotropic struc-
tures (Snow et al. 2008a,b; Khalil et al. 2009) and to
perform objective segmentation of image features of

1The fractal dimension of a rough surface associated to the graph
z = S(x, y), whereS(x, y) represents the height of the surface at
location (x, y), is a quantityDF between 2 and 3.
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interest from noisy backgrounds (Khalil et al. 2007;
Caddle et al. 2007; Roland et al. 2009). We refer the
reader to Arneodo et al. (2003) for a review of the
2D WTMM methodology, from the theoretical con-
cepts to experimental applications. Recently, the
WTMM method has been further extended to 3D
scalar (Kestener & Arneodo 2003) as well as 3D vec-
tor (Kestener & Arneodo 2004, 2007) fields analysis
and applied to 3D (velocity, vorticity, dissipation, en-
strophy) numerical data issued from direct numerical
simulations (DNS) of incompressible Navier-Stokes
equations. Because it combines singular-value decom-
position and multifractal description, the so-called ten-
sorial wavelet transform modulus maxima method for
vector fields (Kestener & Arneodo 2004, 2007) looks
very promising for future simultaneous multifractal
and structural (vorticity sheets, vorticity filaments)
analysis of turbulent flows.

Our aim here is to exploit the ability of the
WTMM method to study compound systems that dis-
play some non-analyticity in their multifractal spec-
tra as the signature of some phase transition be-
tween two underlying scale invariant components with
different multifractal properties (Bohr & Tèl 1988;
Muzy et al. 1994; Arneodo et al. 1995c). These two
components can both have some physical significance
as previously experienced when using the WTMM
method to detect vorticity filaments in swirling tur-
bulent flows (Roux et al. 1999) or microcalcifications
from breast tissue background in digitized mammo-
grams (Kestener et al. 2001; Arneodo et al. 2003).
One of these components can be noise that may cause
drastic distortions in the returned multifractal spectra.
In this work we will follow a wavelet-based strategy
inspired from the one previously used in 1D to de-
tect replication origins and promoters as jumps (dis-
continuities) in 1D noisy skew profiles in mammalian
genomes (Brodie of Brodie et al. 2005; Touchon et al.
2005; Nicolay et al. 2007) and in 2D to perform an
objective and automatic segmentation of chromo-
some territories in fluorescence microscopy imaging
of mouse cell nuclei (Khalil et al. 2007; Caddle et al.
2007) and of gold formation on vapodeposited thin
gold films (Roland et al. 2009).

The purpose of the manuscript is to demonstrate
the suitability and reliability of the WTMM method
to propose a wavelet-based segmentation procedure
adapted to solar magnetogram data. In section 2, the
basics of the 2D WTMM method are presented. Its
ability to disentangle the underlying scale invariant

components of a compound system displaying a phase
transition in its singularity spectra is discussed and a
strategy of segmentation is implemented. Section 3 is
devoted to a test application of the proposed segmen-
tation procedure on a theoretical data set with known
multifractal properties. In section 4 we report the re-
sults obtained when using this wavelet-based segmen-
tation method to separate active regions from quiet-
Sun features in solar line-of-sight magnetogram data.
Our conclusion and future directions are then given in
Section 5.

2. Segmentation methodology of compound mul-
tifractal systems using the 2D WTMM method

2.1. Basics of the 2D WTMM method

The main steps of the 2D WTMM method are pre-
sented here. Details can be found in Arneodo et al.
(2000); Decoster et al. (2000); Arneodo et al. (2003);
Khalil et al. (2006).

1. Computation of the 2D continuous wavelet
transform of the input image functionf (x) with
analyzing wavelets defined as the partial deriva-
tives of a smoothing Gaussian kernelφ:

Tψ[ f ](b, a) =















Tψ1[ f ] = a−2
∫

d2x ψ1

(

a−1(x − b)
)

f (x)

Tψ2[ f ] = a−2
∫

d2x ψ2

(

a−1(x − b)
)

f (x)















,

= ∇{Tφ[ f ](b, a)} (1)

= ∇{φb,a ∗ f },

whereψ1 = ∂φ/∂x, ψ2 = ∂φ/∂y and φ(x) =
exp(−|x|2/2). Eq. (1) amounts to define the 2D
wavelet transform as the gradient vector off (x)
smoothed by a dilated versionφ(a−1x) of the
Gaussian filter.

2. For each scalea, extract the WTMM edges de-
fined as the locationsb where the WT modulus
Mψ[ f ](b, a) = |Tψ[ f ](b, a)| is locally maximum
in the direction of the WT vectorTψ[ f ](b, a).
These WTMM points lie on connectedmaxima
chains. Along each of these maxima chains,
locate the local maxima called WTMMM for
WTMM maxima. Note that the two ends of an
open maxima chain are not allowed to be a pos-
sible WTMMM location.

3. Extract the WT skeleton which is the set ofmax-
ima linesLx0 obtained by connecting these WT-
MMM from scale to scale, starting at location
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x0 at smallest scale. Start at the smallest scale
amin ∼ 7pixels(minimum size of the support of
the wavelet function) and link each WTMMM
to their nearest neighbor found at the scale just
above. Proceed iteratively from scale to scale
up to the largest scaleamax (limited by the im-
age size and border effects in wavelet transform
computations). It is important to recall here that
these lines contain all the information about the
local Hölder regularity properties of the function
f under consideration and that along a maxima
lineLx0 that points tox0 in the limit a→ 0+, the
wavelet transform modulus behaves as a power
law:

Mψ[ f ][Lx0(a)] ∼ ah(x0), (2)

where h(x0) is the Hölder exponent,i.e. the
strength of the singularity of the functionf at
the pointx0.

4. From the WT skeleton compute the partition
functions:

Z(q, a) =
∑

L∈L(a)

[

Mψ[ f ](x ∈ L, a)
]q
, (3)

which allows to define theτ(q) scaling expo-
nents as

Z(q, a) ∼ aτ(q), a→ 0+. (4)

One can optionnally compute the companion
partition functionsh(q, a) and D(q, a) and de-
fine the corresponding scaling exponents when
a→ 0+

h(q, a) =
∑

L∈L(a) ln
∣

∣

∣Mψ[ f ](x, a)
∣

∣

∣ Wψ[ f ](q,L, a) ∼ ah(q), (5)

D(q, a) =
∑

L∈L(a) Wψ[ f ](q,L, a) ln
(

Wψ[ f ](q,L, a)
)

∼ aD(q).(6)

where

Wψ[ f ](q,L, a) =
[

Mψ[ f ](x, a)
]q
/Z(q, a) (7)

5. Compute theτ(q) spectrum by performing lin-
ear regression fits of lnZ(q, a) vs lnaand finally
compute theD(h) singularity spectrum by Leg-
endre transformingτ(q):

D(h) = min
q

[

qh− τ(q)
]

. (8)

AlternativelyD(h) can be computed from the es-
timate of the scaling exponentsh(q) andD(q) in
Eqs. (5) and (6) respectively.

Note that alternative approaches to the WTMM
method have been developed using discrete wavelet
bases including the recent use of wavelet leaders (Jaffard et al.
2006; Wendt & Abry 2007; Wendt et al. 2007). We
think that the continuous WT better suits our goal
to provide a selective multifractal analysis of multi-
component images via some objective segmentation
of maxima lines in the WT skeleton.

2.2. Adapting the 2D WTMM method to the seg-
mentation of compound multifractal systems

For simplicity, we will assume that the compound
multifractal systems of interest here can be considered
as the sum of two scale invariant components:

f (x) = f I (x) + f II (x) (9)

characterized by the singularity spectraDI (h) and
DII (h) respectively. Ideally we will further suppose
that DI (h) and DII (h) have non-overlapping support
[hI

min, h
I
max] ∩ [hII

min, h
II
max] = ∅ and thathI

max < hII
min

meaning that f I (x) possesses stronger singularities
than f II (x). In the limit a → 0+, the partition func-
tionZ(q, a) (Eq. (3)) can be split into two parts:

Z(q, a) = ZI (q, a)+ZII (q, a) = CI (q)aτ
I (q)+CII (q)aτ

II (q),

(10)
whereCI (q) andCII (q) are prefactors that depend on
q. SincehI

max< hII
min, it follows easily that in this limit,

there exists a critical valueqcrit so that:

τ(q) =

{

τI (q) for q > qcrit

τII (q) for q < qcrit
(11)

Therefore, theτ(q) spectrum has a non-analyticity at
qcrit ; when crossing this critical value, there is a tran-
sition from one scale invariant component to the other.
As illustrated in Fig. 1, when Legendre transforming
Eq. (11), one gets the upper envelop of theDI (h) and
DII (h) spectra, a classical result for entropy in equilib-
rium statistical physics (Bohr & Tèl 1988; Muzy et al.
1994; Arneodo et al. 1995c). In that respect the classi-
cal 2D WTMM method does not provide separate ac-
cess toDI (h) andDII (h).

Our segmentation strategy consists in using the WT
skeleton to discriminate the maxima linesLI (a) as-
sociated with singularities off I (x) and maxima lines
LII (a) associated with singularities off II (x), over the
range [amin, amax] of accessible scales. This can be
done theoretically by comparing the power-law be-
havior ofMψ[ f ](x ∈ L) along each maxima line of
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the WT skeleton (Eq. (2)). From the local estimate
of h(x), one can expect to partition the WT skeleton
into two sub-skeletons, one made of the maxima lines
LI (a) and the other one made of maxima linesLII (a).
In practice, this partitioning will suffer from the finite
range of scales available to the analysis and the de-
sired segmentation will require special care as far as
finite-size effects and statistical convergence issues are
concerned.

3. Application of the wavelet-based segmentation
method to synthetic data

We consider an academic example image with two
fractal components: the fractal Dragon (Duda 2007)
embedded into a noisy background generated from
fractional Brownian noise with Hölder exponentH =
−0.7. The fractal Dragon is a self-similar fractal
defined as the limit set of an iterated function sys-
tem (the Lindenmayer system) of the same type as
the one used to generate the Sierpinski gasket or the
Von Koch curve (Mandelbrot 1982), but the fractal
Dragon has less obvious geometrical symmetries. Let
us note that the fractal Dragon is space-filling, mean-
ing its fractal dimension is 2, whereas its boundary
has a fractal dimension known analyticallyDDragon =

log2( 1+
3√

73−6
√

87+
3√

73+6
√

87
3 ) ≃ 1.5236. A sample frac-

tal Dragon is shown in Figure 2(a) whereas the corre-
sponding noisy two-component image is shown in Fig-
ure 2(d). As previously discussed, the wavelet analy-
sis proposed in this work is sensitive to singularities,
i.e. to points in the images where the signal is sin-
gular. We expect the WTMM analysis of the image
shown in Fig. 2(d) to simultaneously reveal multifrac-
tal information about both the boundary of the frac-
tal Dragon and of the rough background texture. Let
us recall that the two components have known mono-
fractal type self-similar properties,i.e. a singularity
spectrum degenerated to a single point: (h = −0.7,
D = 2) for the fractional Brownian noise and (h = 0,
D = DDragon ≃ 1.5236) for the boundary of the frac-
tal Dragon. The roughnessH = −0.7 of the fractional
Brownian noise was chosen to mimic the texture of the
quiet-Sun images (see Section 4.1). Figures 2(b) and
2(e) illustrate the results of the computation of the WT
maxima chains at the smallest scale; the arrows corre-
spond to the WT vectors (Eq. (2)) at the WTMMM lo-
cations. Figures 2(c) and 2(f) show the maxima chains
at a scale twice as large as in Figures 2(b) and 2(e).
When going from large to small scales, whereas the

Fig. 1.— Illustration of a phase transition in the
multifractal spectra of a compound system (Eq. (9)).
(τI (q),DI (h)) and (τII (q),DII (h)) are the multifractal
spectra for f I (x) and f II (x) respectively. The 2D
WTMM method and more generally the multifrac-
tal formalism, give access to the dashedτ(q) curve
(Eq. (11)) in (a) and via the Legendre transform
(Eq. (8)) to the dashedD(h) sprectrum in (b) which
is the supremum of theDI (h) andDII (h) spectra.

Fig. 2.— (a) The fractal Dragon (1024× 1024). (b)
WTMM chains at the smallest scalea = σW = 7 pix-
els in a small 100× 100 region of the fractal Dragon.
(c) Same as in (b) for scalea = 2σW. (d) The frac-
tal Dragon embedded in a fractionnal Brownian noise
(H = −0.7) background of twice as large amplitude.
(e) and (f) are the same as (b) and (c) but for the noisy
fractal Dragon. In (b,c,e,f), the black arrows represent
the WT vectors originating at the WTMMM. In (b) and
(e) the background image is the smooth-convoluted
imageφb,a ∗ f at scalea = σW.
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boundary of the fractal Dragon is better and better ap-
proximated by some WTMM chains (edge detection
in the smoothed image), an increasing number of addi-
tional maxima chains start emerging as the signature of
the presence of a colored noise (Fig. 2(e) as compared
to Fig. 2(b)).

As previously emphasized (Muzy et al. 1994; Arneodo et al.
1995c, 2003), the set of maxima lines that defines
the WT skeleton contains the space-scale information
necessary to recover the underlying multifractal prop-
erties. In Figures 3(a) and 3(b) are shown in a logarith-
mic representation, the behavior of the WT modulus
along the maxima lines computed for a noisy frac-
tal Dragon with a noise amplitude respectively twice
and five times as large as the fractal Dragon. Since
the fractional Brownian noise is everywhere singular
with Hölder exponentH = −0.7 (Mandelbrot 1982),
maxima lines pointing to noise features at small scale
are characterized by a WTMMM power law behavior
Mψ[ f ](a) ∼ a−0.7, while lines associated to the frac-
tal Dragon boundary can be distinguished by the fact
thatMψ[ f ](a) ∼ a0 ∼ Const(no scale dependence).
This leads us to implement the following segmenta-
tion procedure: the space (log2 a, log2Mψ[ f ](a)) is
divided in two regions separated by a straight line of
slope−0.7 < hs < 0 and intercept log2 Ms. As shown
in Figure 3(a), for low noise amplitude, all the max-
ima lines along which log2Mψ[ f ](a) decays slower
than hs log2 a when increasinga, are colored in red
and associated with the Dragon boundary. On the con-
trary, all the maxima lines along which log2Mψ[ f ](a)
decays faster thanhs log2 a when increasinga, are
colored in blue and associated with the noise com-
ponent. But as shown in Figure 3(b), for large noise
amplitude the distinction of the two sub-skeletons is
much more tricky at small scales where some entan-
gling is observed. We thus adapt the segmentation
criteria towards the largest scales in fully analogy
with a different but conceptually similar adaptation
of the 2D WTMM segmentation method (Khalil et al.
2007). Each maxima line is characterized by a length,
i.e. its maximun scaleamax and the WT modulus
Mψ[ f ](amax) at that scale. A given maxima line is said
to belong to the Dragon sub-skeleton, if it satisfies the
following condition :

log2Mψ[ f ](amax) ≥ hs log2 amax+ log2 Ms. (12)

In Figures 4(a) and 4(b) are reported the results of
the computation of the partition functions for the frac-
tal Dragon alone and its noisy version after applying

Fig. 3.— Log-log plot of WT modulus along the
skeleton maxima lines versus scale. Lines are colored
according to the segmentation procedure (Eq. (12)) :
fractal Dragon boundary (red) and fractionnal Brown-
ian noise (blue). (a) Noisy fractal Dragon with a noise
amplitude twice as large as the fractal Dragon (see
Fig. 2(d)). (b) Noisy fractal Dragon with a noise am-
plitude five times as large as the fractal Dragon. The
dashed black line represents the segmentation condi-
tion (Eq. 12).

Fig. 4.— Multifractal analysis of the fractal Dragon
(◦) and of the noisy (H = −0.7) fractal Dragon (•)
after applying the segmentation procedure (Eq. (12)).
(a) h(q, a) vs log2 a for different values ofq; the solid
lines correspond to linear regression fits over the range
of scalesa ∈ [20, 24] σW (resp. [20.5, 23.5] σW) for
the fractal Dragon (resp. the noisy fractal Dragon af-
ter segmentation). The symbols (�) correspond to the
h(q = 0, a) partition function obtained for the noisy
fractal Dragon without any segmentation. (b)D(q, a)
vs log2 a. (c) τ(q) vs q; the dashed horizontal line is
the theoretical spectrumτ(q) = −1.5236 (∀q) of the
boundary of the fractal Dragon. (d)D(h) vsh; the sym-
bols (•) correspond to the segmentedD(h) spectrum
for the fractal Dragon component; the (×) correspond
to the extractedD(h) spectrum of the colored noisy
background. The zoom-in window enlargesD(h) data
corresponding to the noisy fractal Dragon (•) after ap-
plying the segmentation procedure.
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the segmentation condition (Eq. (12)) withhs = −0.5
and log2 Ms = −3.2. In Figure 4(a), the partition func-
tions h(q, a) (Eq. (5)) of the noisy Dragon display a
well defined scaling behavior over 3 octaves (com-
pared to 4 octaves for the original fractal Dragon), for a
wide range of values ofq ∈ [−2, 3]. For negativeq val-
ues, at very small scales, the segmentation procedure
fails to disentangle the two components due to the con-
tribution from the noisy component withh(q) ≃ −0.7.
Nevertheless the gain in scaling is unquestionable as
compared to the behavior of theh(q, a) partition func-
tions without segmentation (the� in Fig. 4(a)). With-
out any segmentation the partition functions are a mix-
ture of different scaling behaviors from which reliable
quantitative information cannot be extracted. In Fig-
ures 4(c) and 4(d) are shown the correspondingτ(q)
andD(h) spectra. Despite some slight departure from
monofractality for the segmented noisy fractal Dragon
(that is also observed but to a lesser extent in the orig-
inal fractal Dragon as the result of finite-size effects),
one recovers a rather good estimate of the fractal di-
mensionDF = 1.57±0.03 of the fractal Dragon bound-
ary. Furthermore, as reported in Figure 4(d), our seg-
mentation procedure has proved to be very efficient
to estimate separately theD(h) singularity spectra of
both the fractal Dragon and the noisy background.
This efficiency is illustrated in Figure 5 where a 3D
(x, y, scale) space-scale visualization of the maxima
chains of the noisy Dragon prior (Fig. 5(a)) and after
(Fig. 5(b)) segmentation clearly confirms the elimina-
tion of noise-induced small scale features that would
otherwise severely affect the multifractal analysis.

Fig. 5.— 3D visualization in the space-scale
(x, y, scale) representation of the WTMM chains com-
puted from the image shown in Fig. 2(d) before (a)
and after (b) the segmentation procedure (Eq. (12)).
At each scalea, only the maxima chains containing
at least one WTMMM belonging to the resulting WT
skeleton are displayed.

4. Application of the wavelet-based segmentation
method to Solar magnetogram data

Magnetic field measurements were obtained by the
Michelson Doppler Imager (MDI) on theSolar and
Heliospheric Observatory(SOHO), which images the
Sun on a 1024×1024 pixel CCD camera through a
series of increasingly narrow filters (Scherrer et al.
1995). The final elements, a pair of tunable Michel-
son interferometers, enable MDI to record filtergrams
with an FWHM bandwidth of 94 mÅ. In this paper,
96-minute magnetograms of the full disc were used,
which had a pixel size of∼2”. For the purposes of
this work, a series of magnetograms have been ana-
lyzed to examine the difference in fractal properties
between quiet and active solar regions. A total of 29
magnetograms representative of the quiet Sun were
taken from December 21 to December 22, 2006 and
a similar series of 28 images representative of the ac-
tive Sun were taken from October 27 to October 29,
2003. In the solar photosphere, the large magnetic
Reynolds number (∼ 107 − 109) means that magnetic
field lines will be advected with the flow of plasma
(McAteer et al. 2009). This system naturally leads
to self-similarity, suggesting a multifractal study is
appropriate (Lawrence et al. 1993; Abramenko et al.
2002; McAteer et al. 2005). As already mentioned,
previous method of calculating the multifractal proper-
ties of solar magnetic features are dependent on image
resolution, thresholding, and instrument sensitivity.
The WTMM method calculates the multifractal spec-
trum of solar magnetic features based on the distribu-
tion of gradients within the image at various scales. As
such, the WTMM multifractal parameters are less sen-
sitive to changes in image resolution and instruments
than traditional methods.

4.1. Quiet-Sun multifractal properties

Examples of quiet and active MDI magnetograms
analyzed are shown in Figure 6 (top left and top right
respectively), with a histogram of the wavelet trans-
form modulusMψ[ f ](b, a) at the smallest scale (bot-
tom). Active regions result from an increased propor-
tion of large magnetic elements of opposite polarity
in close proximity to each other. The resulting neu-
tral or magnetic inversion lines can be detected us-
ing standard wavelet-based techniques (Ireland et al.
2008). As such active regions should contain a greater
number of higher magnitude WT gradients. This is
shown in Figure 6 (bottom), which suggests that mod-
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uli with values larger than 40 are unlikely in quiet-Sun
magnetograms. Due to the different scaling properties
of active regions and their surrounding quiet Sun, our
goal is to segment the WT skeletons using the condi-
tion defined in Eq. (12). As outlined in Section 2 and
illustrated on synthetic data in Section 3, this should
allow us to study the multifractal properties of active
regions in a quantitative manner.

The results of the computation of the multifractal
spectra when averaging the partition functions over a
set of 30 (505× 505) quiet-Sun images without ap-
plying the segmentation are reported in Figure 7. As
shown in Figure 7(a) and 7(b),h(q, a) (Eq. (5)) and
D(q, a) (Eq. (6)) display convincing scaling behavior
over almost four octaves forq ∈ [−2, 3] (symbol (◦)).
Linear regression fits of the data yield the non-linear
τ(q) spectrum shown in Figure 7(c). This multifractal
diagnosis can also be observed in Figure 7(a) where
the slopeh(q) of the partition functionh(q, a) versus
log2 a definitely depends onq. The corresponding
multifractal spectrumD(h) is shown in Figure 7(d).
From the top of theD(h) curve, we can see that quiet-
Sun images are everywhere singular (D(q = 0) = 2)
with a corresponding Hölder exponenth(q = 0) ≃
−0.75. The multifractality can be quantified by the
so-called intermittency coefficientc2 that characterizes
the width of theD(h) curve. As shown in Figures 7(c)
and 7(d), theτ(q) andD(h) data of the quiet-Sun im-
ages are well fitted by a parabola

τ(q) = −c0 + c1q− c2

2
q2, D(h) = c0 −

(h− c1)2

2c2
,

(13)
wherec0 ≃ 2, c1 ≃ −0.75 andc2 ≃ 0.22. Let us
point out that quadratic multifractal spectra are pre-
dicted by the so-called log-normal model that has been
popularized by the fully-developed turbulence com-
munity (Frisch 1995; Arneodo et al. 1998a, 1999b;
Delour et al. 2001). In the present case, there is no
particular evidence of the relevance of this model ex-
cept that the observedτ(q) andD(h) multifractal spec-
tra are well characterized by their log-normal quadratic
approximations.

In order to understand the source of this intermit-
tency, a upper threshold was imposed on each MDI
magnetogram of the quiet Sun (Figure 8). The thresh-
old operation has the effect of removing large magnetic
features resting on the boundary of the super-granular
structures of the Sun. In Figure 7(d), we can see that
the multifractality of the thresholded quiet-Sun image
(symbol�) set is strongly reduced but not totally can-

Fig. 6.— (Top, Left) MDI magnetogram taken on
December 20, 2006; (Top, Right) MDI magnetogram
taken on October 28, 2003. (Bottom) Histogram val-
ues of the wavelet transform modulusMψ[ f ](a) at the
smallest scale (σW = 7 pixels) for MDI magnetogram
images of a quiet Sun (solid) and active Sun (dashed).

Fig. 7.— Multifractal analysis of a set of 30 quiet-Sun
images (505×505) prior (◦) and after (�) thresholding
(a sample thresholded magnetogram is shown in Fig-
ure 8). (a) log2 h(q, a) vs log2 a for different values
of q; the solid lines are linear regression fits over the
range of scalesa ∈ [20, 23.7] σW. (b) log2 D(q, a) vs
log2 a. (c) τ(q) vs q; the dashed straight line is the
theoretical linear spectrumτ(q) = −0.75q − 2 of the
2D fractional Brownian noise with Hölder exponent
H = −0.75. (d)D(h) vsh; the dashed lines delimit the
position of the top of theD(h) curves. Error bars cor-
respond to standard deviation in the linear regression
procedure.
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celled. We can also note that the average Hölder ex-
ponent is slightly shifted from< h >= c1 = −0.75 to
−0.82, and the intermittency coefficient is reduced to
c2 ∼ 0.06 (Let us recall that a valuec2 = 0 means
that the underlying process is monofractal). With-
out the super-granular magnetic structure, the quiet-
Sun multifractal spectrum looks much more monofrac-
tal. This suggests that the magnetic features rest-
ing on the boundaries of the super-granular structure
are a major actor in the observed intermittent struc-
tural properties of the Sun (Georgoulis et al. 2002).
Since current models for the solar dynamo use in-
formation on the fractal dimension of solar disk as a
whole (Pontieri et al. 2003), these new informations on
the photosphere and the characteristic make-up of the
quiet Sun should be incorporated in further theoretical
works.

4.2. Solar magnetogram active region segmenta-
tion

In this section, we highlight the use of the WTMM
segmentation method on Solar magnetogram data with
active regions, to demonstrate its ability to analyze the
underlying multifractal properties of the active regions
that are embedded in the surrounding quiet-Sun tex-
ture.

A sample 505×505 magnetogram MDI image con-
taining an active region is shown in Figure 9. Fig-
ures 9(b) and 9(c) show respectively the results of the
computation of the WTMM chains before and after the
segmentation at scalea = σW ∼ 7 pixels of a small
150× 150 excerpt focused on the active location. As
explained in Section 4.1, WT skeleton maxima lines

Fig. 8.— 256×256 quiet-Sun images. Image on the
right is a threshholded version of the left one. Pixels
with large absolute magnetic flux are shrinked down.
Multifractal properties of quiet-Sun images and the
corresponding thresholded versions are shown in Fig-
ure 7.

associated with quiet-Sun structures have a character-
istic scaling behavior described byMψ[ f ](a) ∼ a−0.7.
This behavior is used to derive the parameters char-
acterizing the linel2 in Figure 10 that will allow us
to discriminate in the WT skeleton, the maxima lines
(blue) that correspond to quiet-Sun structures:

log2Mψ[ f ](amax) ≤ hQ log2 amax+ log2 MQ, (14)

where−0.7 < hQ < 0, so that for the selected maxima
lines log2Mψ[ f ](a) will decrease fast enough when
increasing the scalea to correspond to the quiet phase.
To select the maxima lines (red) associated with the
active region, we use another separating linel1 in Fig-
ure 10:

log2Mψ[ f ](amax) ≥ hA log2 amax+ log2 MA, (15)

where this time 0≤ hA < 0.38, to limit the de-
crease (if any) of log2Mψ[ f ] when increasinga. Note
that the linesl1 and l2 have different slopes because
some maxima lines cannot be clearly associated with
either the quiet Sun or the active region state. In-
deed those maxima lines are associated to features lo-
cated near the boundary between quiet-Sun and ac-
tive regions. When going from small scales to large
scales the support of the analyzing wavelet starts cov-
ering partly both regions preventing accurate classifi-
cation. As illustrated in Figure 11, when fixing the
segmentation parameters tohQ = −0.40, hA = 0.25
and log2 MQ = log2 MA = 5.2, the space-scale na-
ture of the methodology allows us to disentangle max-
ima chains associated with the active region from those
corresponding to the quiet Sun. Let us note that in a fu-
ture work on large data sets, an automated parameters
adjustment will be implemented using a clustering al-
gorithm. In addition, a wrong choice of segmentation
parameters can be observed in the partition function

Fig. 9.— (a) 505×505 Active Region example image
(October 28, 2003). (b) WTMM chains at the smallest
scale (a = σW pixels) in a small 150× 150 region sur-
rounding an active spot. (c) WTMM chains left after
the segmentation step.
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Fig. 10.— Log-log plot of the WT modulus along
the skeleton maxima lines versus scale. The dashed
line denotedl1 with slopehA = 0.25 and intercept
log2 MA = 5.2 is used to identify WT skeleton max-
ima lines associated to the active region (red). Ac-
cording to Eq. (15), these lines have an ending point
at highest scale (log2 amax, log2Mψ[ f ](r, amax)) above
l1. The dashed line denotedl2 with slopehQ = −0.40
and intercept log2 MQ = 5.2 is used to identify maxima
lines associated to the quiet Sun (blue). According to
Eq. (14), these lines have an ending point belowl2. All
other lines (grey) are not clearly identified to belong
either to the active site or the quiet surrounding. The
values of the segmentation parametershA, log2 MA, hQ

and log2 MQ were chosen by examining the WTMM
histogram at the smallest scale to extract at best a sub-
skeleton specific to the active region.

plots (not shown here) which display a phase transition
phenomenon, i.e. a scaling behavior that changes from
one state to the other when going from small scales to
large scale due to to non-homogenous phases and mis-
classified maxima lines.

In Figure 12 are shown the results of the partition
function computation for a set of 5 active region mag-
netogram images taken on October 28th, 2003 (one
image out of this set is shown in Figure 9(a)). Parti-
tion functions are computed separately for each sub-
skeleton corresponding to the extracted action region
maxima lines and quiet-Sun maxima lines shown in
Figure 10. From these plots, one can see that the
log2 h(q, a) versus log2 a data are nicely modeled with
linear regression fits with slopeh(q) that depends onq
as the signature of multifractal scaling. This demon-
strates that the segmentation procedure successfully
extracts from the magnetogram images two scale in-
variant components with different multifractal proper-
ties. Theτ(q) (Fig. 12(c)) andD(h) (Fig. 12(d)) spectra
computed from the set of quiet-Sun maxima lines (blue
lines in Fig. 10) are in good agreement with the ones
previously computed in Section 4.1 from pure quiet-
Sun images (Figs. 7(c) and 7(d) respectively). Us-
ing the log-normal approximation (Eq. (13)), we get
c0 = 2, c1 = −0.65 andc2 = 0.10. This means that the
extracted quiet Sun appears (like the thresholded MDI
magnetograms of quiet Sun in Figs 7(c) and 7(d)) a
little less intermittent as compared to the previous es-
timatec2 = 0.22. As for the active region, the corre-
sponding partition functions computed from the set of
active phase maxima lines (red lines in Fig. 10) dis-
play very convincing multifractal scaling behavior as
quantified by theτ(q) andD(h) spectra shown in Fig-
ures 12(c) and 12(d) respectively. Again these spectra
are well approximated by the quadratic log-normal for-
mula (Eq. (13)) with parametersc0 = 2, c1 = 0.38 and
c2 = 0.12. This indicates that the singularities associ-
ated with the active region are space-filling (they are
distributed on a set of fractal dimensionDF = c0 = 2),
with a mean strengthh(q = 0) = c1 = 0.38 meaning
that magnetogram images can be considered as contin-
uous on active regions (over the range of scales of our
analysis) but noisy on quiet regions.

5. Conclusions

Many complex physical systems analyzed using
fractal and multifractal techniques are surrounded or
embedded in a noisy background sometimes originat-
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Fig. 11.— 3D visualization in the space-scale
(x, y, scale) representation of the WTMM chains com-
puted from the image shown in Fig. 9(a) before (left)
and after (right) the segmentation procedure. The seg-
mentation conditions are defined in Figure 10. The
maxima chains displayed contain at least one WT-
MMM belonging to the resulting skeleton.

ing from instrumental noise. As such these systems
are a statistical combination of two distinct self-similar
structures. This work addressed the need for an ac-
curate calculation of the multifractal parameters of
such complex systems. The presence of compound
scale-invariant structures can result in an inaccurate or
skewed calculation of the fractal and multifractal pa-
rameters when studied as a whole. Using a wavelet-
based multi-scale segmentation method, we show that
it is possible to disentangle to some extent these two
processes and accurately (up to finite-size effects) re-
cover the multifractal characteristics of the system of
interest. A theoretical test example for this method
was provided in section 2. The removal of informa-
tion relating to the background noise was highlighted
in Figure 5. The quantitative results reported in Fig-
ure 4 attest of the ability of this segmentation method
to recover the multifractal parameters in question.

Let us emphasize here that the application of this
method to experimental data for which we do not have
a priori knowledge of the possible underlying multi-
fractal processes is a difficult task that requires much
attention to perform the most objective segmentation
which can not be infered or guided by some physi-
cal rule or information. The multifractal analysis is
a statistical tool that has direct connections with sig-
nal and image processing, but not necessarily with the
physics of the system per se. As noticed in section 4.2,
the use of a clustering algorithm should greatly help
in adjusting the multifractal parameters of the differ-
ents components as well as in providing an automated
procedure for processing large data sets. This will be
reported in a future publication.

The application of this wavelet-based methodology
to quiet-Sun data has revealed the multifractal nature
of this intermittent noisy component (< h >= −0.75)
as mainly resulting from the super-granular magnetic
structures. The quiet-Sun study was also necessary
to get expertise for further analyzing more complex
images that involve a segmentation before being able
to clearly identify the underlying multifractal proper-
ties. We have checked that the partition functions com-
putations for the segmented quiet-Sun phase provide
(i) convincing scaling properties and (ii) multifrac-
tal spectraτ(q) andD(h) estimates in good numerical
agreement with the one measured in the previous cal-
ibration step. The assumption of two non-overlapping
D(h) is not inconsistent with the data. Let us notice
that a phase transition can be observed in the partition
function log-log plots when inappropriate segmenta-
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tion parameters are chosen. In the case of overlapping
D(h), there would be a large set of maxima lines in
the WT skeleton that could not be genuinely sorted,
which would prevent from building accurate multifrac-
tal D(h) measurement. From the analyzed data, we
were not able to distinguish more than two phases.
Finally, this gives us good confidence in the segmen-
tation proposed for solar magnetogram containing an
active region. However, further study is needed to
precisely quantify scaling properties associated to spe-
cific active region features (e.g. emerging magnetic
flux along the main polarity inversion line, sunspots
build-up, delta-configuration...) and how the WTMM
method can be sensitive to these elements. More pre-
cisely, when analyzing higher resolution images than
MDI, we expect that this segmentation tool will be all
the more necessary as quiet-Sun and active region fea-
tures are more entangled.

The main outcome of the present study is the
demonstration that the proposed multi-scale segmenta-
tion procedure provides an objective way of studying
the complexity in active regions separately from the
surrounding quiet Sun. As such our results are signif-
icantly more stable and robust when compared to pre-
vious fractal and multifractal analysis (Pontieri et al.
2003; McAteer et al. 2005). In a forthcoming pa-
per, we will report on the application of this seg-
mentation method to characterize the evolution of
active regions keeping track of the multifractal pa-
rameters for possible correlations with extreme so-
lar events (Gallagher et al. 2007). Other applications
of this method are in progress as the analysis of the
intrinsic multifractal properties of entangled hot and
cold interstellar atomic gas from 3D numerical simu-
lations (Kestener & Audit 2009).

The authors thank the SOHO/MDI consortia for
their data. SOHO is a joint project by ESA and
NASA. This research was supported by a grant from
the “Ulysses - Ireland-France Exchange Scheme” op-
erated by the Royal Irish Academy and the Ministère
des Affaires Etrangères. PAC is an IRCSET Govern-
ment of Ireland Scholar. RTJ is funded by a Marie
Curie International European Fellowship under FP6.

Fig. 12.— Multifractal analysis of a set of 5 active
region magnetogram images (505×505) correspond-
ing to the two sub-skeletons identified in Figures 10
and 11. The symbols (•) correspond to the segmented
quiet Sun and (◦) to the segmented active region. (a)
h(q, a) vs log2 a for different values ofq; the solid
lines are linear regression fits over the range of scales
a ∈ [20, 23.0] σW. (b) D(q, a) vs log2 a. (c) τ(q) vs
q. (d) D(h) vs h. Error bars correspond to standard
deviations in the linear regression procedure.
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