Alston et al. BMC Bioinformatics 2010, 11:73
http://www.biomedcentral.com/1471-2105/11/73

BMC
Bioinformatics

SOFTWARE Open Access

BABAR: an R package to simplify the
normalisation of common reference design
microarray-based transcriptomic datasets

Mark J Alston'*, John Seers?, Jay CD Hinton'?, Sacha Lucchini®

Abstract

showed some benefits over standard techniques.

Background: The development of DNA microarrays has facilitated the generation of hundreds of thousands of
transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to
be readily compared and re-analysed in the light of new data, and the combination of this design with large
datasets is ideal for ‘systems-level analyses. One issue is that these datasets are typically collected over many years
and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-
swaps, and showing varying scales of log,- ratios of expression between microarrays. Excellent software exists for
the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods
struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental
group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software
package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse
the function of Salmonella genes involved in the process of infection of mammalian cells.

Results: The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR
provides a combination of ‘within” and ‘between’ microarray normalisation steps and diagnostic boxplots. When
applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between
the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-
heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes

Conclusions: BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous
two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms
real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate
the identification of differentially expressed genes or network inference analysis from transcriptomic datasets.

Background

DNA microarrays enable the simultaneous measurement
of expression levels for many thousands of genes at a
given instant in any biological system, revealing the
expression state of those features as determined by sta-
tistical significance inference [1-3]. By taking many such
snapshots over a number of experimental conditions
and applying the appropriate analyses (see [4] for an
overview), groups of genes with similar expression pro-
files can be detected to suggest the function or
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regulation of uncharacterised genes. Analysis of such
transcriptomic datasets, or compendia [5,6], allows the
expression patterns for particular genes to be compared,
offering an ideal way to reveal the higher levels of orga-
nisation in an organism by a ‘systems’-level approach.
Dual experimental approaches have been used for
two-colour transcriptomic microarrays: one makes a
direct comparison between complementary DNA
(cDNA) samples (two-channel experiments), and the
other uses a common reference in one channel of every
microarray (one-channel experiments) [7]. BABAR was
developed to improve the value of data generated by the
common reference design which uses the same genomic
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DNA (gDNA), or pooled RNA, hybridized to every
microarray [8]. The power of this design is that it
enables the easy comparison between, or within, micro-
array datasets [9]. The investigator can assemble any
combination of data derived from microarrays, making
it possible to test new hypotheses. The common refer-
ence design is also ideal for ‘systems’-level analyses. For
example, the context likelihood of relatedness (CLR)
algorithm infers prokaryotic transcriptional regulatory
networks from this type of compendium of gene expres-
sion profiles, or other one-channel designs such as Affy-
metrix arrays, collected under various experimental
conditions [10].

For analytical purposes, we consider common refer-
ence experiments to be of a pseudo-direct design such
that if the intensity values for a pair of common refer-
ence microarrays are plotted on a graph of condition 1
(Red;/Green;; R;/G;) versus condition 2 (R,/G5),
where G, is the reference channel, then non-differen-
tially expressed genes should map onto a line of slope
(R1/G1)/(Ry/Gy) ~ 1. However, experimental data are
usually more complex: the data points can diverge
from the ideal line in an intensity-dependent manner
resulting in a ‘banana-shaped’ distribution with a non-
zero intercept, with non-differentially expressed genes
showing considerable scattering around this line and
the scatter patterns varying between microarray slides.
The intensity relationship between the microarrays is
best seen in an MA-plot [11], which is a scatterplot of
the intensity log-ratio M = log, {(R1/G1)/(R2/G>)} ver-
sus the mean log intensity A = log, V{(R;/G;) x (Ry/
G,)}. The focus of the MA-plot is on the symmetrical
distribution about the line where M = 0 (i.e. equal
expression), but such a plot for a pair of common
reference microarrays can show little symmetry due to
intensity and spatial variation. Such systematic bias
arises from several factors: background effects on the
microarray, experimental variation, sample preparation
and the fluorescent labelling and printing processes.
One example of experimental variation that is of parti-
cular relevance to this study involves microarrays that
utilize RNA isolated from a challenging environment,
such as from bacteria within a mammalian cell. The
amount of RNA extracted in such cases is typically
small (< 5 pg) [12,13] and the resulting labelled cDNA
can give rise to considerable variation between repli-
cate spots on different microarrays. This phenomenon
manifests itself as low intensity signals, a high back-
ground, or both, and results in a reduction of the dis-
tribution of log-ratios of expression. A likely reason for
the aberrant labelling is the presence of contaminants
associated with the RNA sample (e.g. DNA, carbohy-
drates or proteins) that can inhibit enzymatic reactions
and lead to poor Cy-dye incorporation [14].
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Normalisation is the process of removing systematic
bias from microarray data. This is achieved by trans-
forming the data values as prescribed by a given algo-
rithm applied ‘within’ microarrays (applied to each
microarray) or ‘between’ microarrays. Two-colour
microarrays are often normalised by applying Locally
Estimated Scatterplot Smoothing (loess) to the MA-plot
for an entire microarray (global loess) or to the MA-plot
for each print-tip group of DNA elements upon a given
microarray (print-tip loess). In both cases the algorithm
fits a line to the local neighbourhood of each data point
and combines these lines to generate a loess curve that
follows the central trend across the data. Given the
assumption that the majority of genes do not respond to
a given experimental condition and should therefore be
centred about M = 0, the loess curve is used to adjust
the values for each feature accordingly. However, the
loess normalisation assumes that the M-value is inde-
pendent of the A-value. This is not true for common
reference microarrays because while the signal for the
c¢DNA channel can vary greatly for each feature, the sig-
nal for the gDNA reference channel is more or less con-
stantly high. This results in small M-values
corresponding to small A-values, and large M-values
corresponding to large A-values; hence the loess cannot
be applied to individual common reference microarrays.

Therefore, a useful modification of the loess is the
cyclic loess normalisation which performs the loess on
each unique pair of microarrays in a dataset in order to
form the normalising relation [15]. It has been applied
to Affymetrix datasets but in principle is equally applic-
able to pairs of spotted cDNA microarray datasets
[15,16]. Such a ‘complete data method’ [15] appears
ideal for simultaneously normalising data across large,
heterogeneous common reference datasets, where indivi-
dual microarrays can show very different spreads and
distributions of M-values.

However, consider the example of a pair of microar-
rays (one a ‘control’, the other a ‘treatment’) each with a
median M-value close to zero but with very different
spreads in their respective M-values. Is this due to tech-
nical or biological variation? If the same gene was the
most highly expressed feature on both microarrays then
without normalisation it would be incorrectly inter-
preted as being differentially expressed, but imparting
identical distributional measures to these microarrays
may remove the biological variation in which we are
interested.

The method of normalisation must be carefully chosen
and a number of ‘between arrays’ normalisation meth-
ods are available. Such methods include scale-normalisa-
tion which scales the M-values so that each microarray
has the same median absolute deviation, quantile-nor-
malisation which makes the distribution of M-values for



Alston et al. BMC Bioinformatics 2010, 11:73
http://www.biomedcentral.com/1471-2105/11/73

each microarray identical, and cyclic loess normalisation
(discussed above) which is less aggressive in its
normalisation.

Excellent free software exists for the normalisation
and analysis of microarray data; for example, Bioconduc-
tor [17] is a collection of R [18] packages and includes
the limma package (Linear Models for Microarray Ana-
lysis [19]) which implements global loess, print-tip loess,
quantile and scale normalisation. However, working
with multiple gene microarray layouts in limma is very
difficult; for example, given a number of GenePix files
described by just two gene array layout (.gal) files, each .
gal file and its associated microarray results files must
be input and normalised separately. Then prior to mer-
ging the two resulting MAList objects, the datasets must
be aligned by gene ID, must be of exactly the same
length and should contain the same gene IDs.

There is a real need for an application that can auto-
matically (i.e. easily) handle heterogeneous datasets in a
robust way. BABAR implements the cyclic loess algo-
rithm, normalising each unique pair of microarrays
across the whole dataset. We developed BABAR to sim-
plify the normalisation process for such datasets by pro-
viding a combination of ‘within’ and ‘between’
microarray normalisation steps, allowing scientists with-
out a background in statistical programming to focus on
the interpretation of results.

Implementation

Running BABAR

BABAR is a software package implemented in R and is
available as a zip file (see Additional file 1). Its only
dependency is on the limma package. As well as the
documentation provided with the package, full instruc-
tions and an example of running BABAR are given in
Additional file 2.

Input and handling of microarray data files

BABAR simply requires the unprocessed microarray data
files generated by GenePix (Molecular Devices, CA,
USA) and/or BlueFuse (BlueGnome Limited, Cambridge,
UK) microarray image analysis software as its input. For
GenePix files, only the median background and median
foreground columns are read for both channels, along
with the corresponding Block, Column and Row data.
For BlueFuse files, the AMPCH1 and AMPCH2 col-
umns are read along with the corresponding BLOCK,
SUBGRIDCOL and SUBGRIDROW data. In this way,
the use of gene array layout files is avoided and BABAR
is able to handle any combination of GenePix and Blue-
Fuse files. To ensure that mixtures of GenePix and Blue-
Fuse files were handled correctly, a test-set of
microarrays was scanned independently by both imaging
software packages. Combinations of GenePix and
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BlueFuse-derived microarray data were run through
BABAR and the results compared. No significant differ-
ences were seen between GenePix-only, Bluefuse-only,
and datasets that were mixtures of these formats; the
few small discrepancies simply reflected the different
spot-finding software algorithms used by GenePix and
BlueFuse and not the BABAR normalisation itself
(results not shown).

The BABAR algorithm

Here we describe the algorithm and the rationale for
normalisation via a number of steps carried out ‘within’
microarrays (steps 1-5) and ‘between’ microarrays (steps
6-8):

1 - Background correction

(GenePix only) Intensity values for each gene are back-
ground-corrected by subtraction of the median back-
ground from the median foreground for both channels.
In addition, any feature where the background lies
within a user-defined number of standard deviations of
the foreground is ‘flagged’ by BABAR (see below). The
BlueFuse scanning software automatically carries out
background correction via Bayesian statistical methods.
2 - Removal of ‘flagged’ features

Features are excluded from the normalisation process if:
(GenePix only) they are identified in ‘step 1’ or were
flagged by the software as either -50, -75 or -100 ('not
found’, ‘absent’ or ‘bad’, respectively); (Genepix and
BlueFuse) features have names like ‘(EMPTY’, ‘empty’,
‘ctrl-” and ‘Ctrl-’; (BlueFuse only) they are flagged as ‘E’
(the lowest spot quality measure).

3 - Automatic reference channel detection (optional)

The same reference sample is used across our datasets.
In our hands, for any given microarray, the reference
(gDNA) channel always has a higher median value com-
pared to the signal channel. This enables the log,-ratios
to be automatically calculated in a consistent fashion,
even when dye-swaps are present by accident or design.
4 - Block-by-block median centering

Log,-ratios (signal channel/gDNA channel) are calcu-
lated for each sub-array and the median value set to
zero as our assumption is that the majority of genes are
unchanging. As different gene microarray layouts may
be employed, the requisite spatial information is
retrieved from the microarray files themselves.

5 - Average any multiple features

Where there are multiple copies of an identical
sequence (feature) on a given microarray, the average of
the log,-ratios is calculated so that any given feature
appears just once in the dataset derived from that
microarray.

6 - Cyclic loess normalisation (optional)

Global loess normalisation is carried out on each pair of
microarrays using l/imma. The ‘span’ parameter (the
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amount of data included for each local estimate) may
also be user-defined; the default ‘span’ is 0.3, or 30%.

7 - Average the normalised logy-ratios

The average normalised log2-ratio expression value for
each feature across the dataset is calculated (see below).
BABAR also handles the case where, inevitably, the
fluorescent signal representing a given gene may not
appear on every microarray (see below).

8 - Correct medians to M = 0 (optional)

The averaged, normalised log,-ratios undergo a final
correction such that the median log,-ratio of expression
for each microarray is set to M = 0 (i.e. equal expres-
sion). Results may be outputted as a text file for the
convenience of the user.

To better explain the steps following pre-processing of
the data and especially the cyclic loess normalisation
step, consider steps 6-8 in more detail with an example
where BABAR is applied to a dataset comprised of three
microarrays (a, b and c). For each feature on a microar-
ray let R be the fluorescent signal channel and G the
reference channel. A pair-wise MA-plot global loess
normalisation is carried out on the first pair of microar-
rays (a vs. b) such that for each feature

Mg, =108{(R, / G,)/ (Ry / G)} and A, =log, V{(R, / G)% (R, / Gy)}-

The normalised log,-ratio (N,;) for each feature is cal-
culated as N, = M, - loess (A,,), where loess(A4,,) is
the global loess curve. The reverse comparison (b vs. a)
is simply given by N, = - N,

The global loess step is repeated for the other pair-
wise comparisons (a vs. ¢, b vs. ¢) followed by calcula-
tion of the reverse comparisons (¢ vs. a, ¢ vs. b).

The normalised log,-ratios for each feature are aver-
aged such that

-~ 1
Na:E(Nab"—NaC)'

where 7 is the number of pair-wise comparisons invol-
ving microarray a for which the feature was present. If
the feature were present on all three microarrays, then #
= 2 as two pair-wise comparisons can be made (a vs. b,
a vs. c); the reverse comparisons are not counted (b vs.
a, c vs. a). If the feature were only present on microar-
rays a and b then #n = 1, as only one pair-wise compari-
son was made, and the normalised log-ratio for this
feature on microarray ¢ would be assigned NA.

The averaging of the normalised log,-ratios step is
repeated for the other comparisons to obtain [, (i.e.
using Ny, and N,,.) and N . (i.e. using N,, and N_;).

Finally, as it is our assumption that the majority of
features are not differentially expressed, the averaged,
normalised log,-ratios from each microarray undergo a
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final correction such that the median log,-ratio of
expression for each microarray has an M- value of zero.

Results and Discussion

BABAR was developed primarily to automate the nor-
malisation of heterogeneous datasets (datasets contain-
ing different microarray file formats and gene array
layouts). It handles ‘problem’ datasets (marked differ-
ences in the scale of M-values between microarrays
perhaps due to issues with RNA quality) so they can
be directly compared to ‘good’ datasets (M-value scal-
ing is more comparable between microarrays due to
good quality RNA derived from in vitro-grown
organisms).

Validating the BABAR algorithm

We first normalised a heterogeneous ‘problem’ dataset
and compared our BABAR- normalised log,-ratios of
gene expression to published RT-PCR experimental
data. Normalising such a dataset with existing methods,
if even possible, would have required substantial addi-
tional programming. Second, we applied BABAR to a
non-heterogeneous ‘good’ dataset and compared the
performance of the software in determining differentially
expressed genes compared to a combination of limma-
implemented ‘within’ and ‘between’ arrays normalisation.
Finally, we applied BABAR to a modest, non-heteroge-
neous simulated dataset so as to compare its perfor-
mance (power and type I error rates) with the limma-
implemented methods.

Assumptions

To achieve the simplification of the normalisation pro-
cess via BABAR three key assumptions were made: that
the majority of genes are not differentially expressed
between experimental datasets (an assumption made by
loess normalisation), that the same reference is
employed throughout such that values in the gDNA
channel always have a higher median than the signal
channel (to allow dye-swaps to be handled) and that it
is always appropriate to background-correct the micro-
array spots (i.e. genes). Regarding the latter assumption,
our approach was to statistically filter the spots, back-
ground-subtract those that pass the filter (using these
for our analyses) and discard those spots that fail. Low-
intensity spots become more prone to variability as their
measured signal values approach background. For our
analyses we only used spots with intensities that were
significantly different to the background; at 99.73% con-
fidence, spots to be included in the analyses possessed
intensities in excess of three standard deviations above
the background, exceeding the recommended two stan-
dard deviations [20].
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Handling missing normalised data

The results file outputted from BABAR is in the form of
a matrix of log, normalised gene expression values for
genes (rows) under a variety of experimental conditions
(columns). It is inevitable that there will be missing
values due to either experimental issues or the different
gene array layouts employed between conditions. Miss-
ing value reconstruction is therefore necessary as many
of the microarray analytical algorithms cannot handle
missing values; they are typically replaced with zeros or
with a row average. We used a better approach: the K-
Nearest Neighbours Impute algorithm (KNNimpute)
[21]. This considers the correlation structure of the
data, finding and using those genes with the most simi-
lar expression profiles to the gene under investigation to
impute any missing values.

Putting a ‘problem’ dataset through BABAR

BABAR was applied to a heterogeneous ‘problem’ data-
set from a study describing the transcriptomic changes
for Salmonella enterica serovar Typhimurium interna-
lised within mammalian host cells (epithelial cells or
macrophages) as they adapted to the intracellular envir-
onment for different post-infection times [13] (ArrayEx-
press accession number E-MEXP-1368). This dataset
was derived from RNA samples of varying quality, and
generated from 23 common reference design GenePix-
scanned microarrays described by a total of three gene
microarray layouts. The unprocessed microarray data
files are available as Additional file 3.

BABAR was run with the three normalisation steps
enabled: block-by-block centering of the medians
around M = 0, cyclic loess and a final correction of each
microarray’s median to M = 0. Four boxplots plotting
M-value versus microarray ID were generated to repre-
sent the data prior to processing and after each of the
three normalisation steps (Figure 1).

Prior to BABAR processing, the microarray data
exhibited considerable variation around M = 0 (Figure
1A). Clearly, without normalising these data any gene
expression comparisons made between microarrays
would be meaningless.

The first steps implemented by BABAR in normalising
the dataset were background correction and block-by-
block data centering (median M-values corrected to
zero) for all microarrays (Figure 1B). However, differ-
ences in the scale and distribution of M-values between
arrays still remained, and were particularly pronounced
between the macrophage (light grey boxplots; typical
standard deviation, s.d. = 1.71) and control experiments
(white boxplots; typical s.d. = 2.33). Another potential
problem highlighted in Figure 1B concerned microarrays
1-8 (dark grey boxplots). Even though these data are
log-transformed and pre-processed, they exhibit a
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(positively) skewed distribution nearly double that of the
other microarrays (typical skewness, S = 0.96 c.f. S =
0.53). Clearly these data must be further transformed
before robust comparisons between microarrays can be
made.

After applying cyclic loess normalisation to MA-plots
for all unique pairs of common reference microarrays,
BABAR averages the log,-ratios (Figure 1C). As a result,
the scale of the normalised M-values and the degree of
skewness were made more comparable across the whole
dataset; the macrophage (light grey boxplots) and con-
trol experiments (white boxplots) now had typical stan-
dard deviations of s.d. = 1.75 and s.d. = 2.04,
respectively, and the typical skewness values for micro-
arrays 1-8 and the remainder of the microarrays were Sy
= 0.87 and Sy = 0.68, respectively (Figure 1C).

As it is assumed that the majority of genes are not dif-
ferentially expressed (i.e. M = 0), BABAR carries out a
final data centering (Figure 1D) as it may be seen that
there has been a slight shift in the medians across the
dataset away from M = 0O (highlighted by microarrays
12-13 in Figure 1C).

Loess normalisation is a ‘within’ microarrays normali-
sation method that is used to normalise two channels
on the same microarray (i.e. a direct comparison
design). As described previously, we have conceptualised
the comparison of a pair of common reference microar-
rays to be pseudo-direct; the loess algorithm is used
here to normalise each unique pair of common refer-
ence microarrays. The MA-plots of Figure 2 are typical
of those obtained from pairs of common reference two-
colour microarrays. Figure 2A shows just one of the 253
(i.e. 23(23-1)/2) unique comparisons that BABAR made
for this dataset, and Figure 2B shows that the overall
effect of the BABAR algorithm on the same pair of
microarrays is to improve the symmetry of the data
around M = 0.

The requirement for the microarrays in a dataset to
have a similar spread and distribution prior to analysis
is often seen as a ‘must’. However, this is an assump-
tion and the question of how best to normalise hetero-
geneous datasets without removing biological variation
is an important one. It has been shown above that
BABAR, by implementing the cyclic loess algorithm (a
‘complete data method’), improves the symmetry of the
MA-plot for microarray pairs and makes the distribu-
tional measures such as standard deviation and skew-
ness closer over the dataset as a whole. Therefore
validation was required to demonstrate that BABAR’s
transformation of these data allowed for their correct
interpretation. The BABAR-normalised results were
outputted as a .txt file and the expression levels for 13
key genes were compared with the corresponding RT-
PCR data from Salmonella cells internalized in
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Figure 1 BABAR-generated boxplots showing Salmonella gene expression for the dataset of Hautefort et al. [13]. The figures plot M-
value versus microarray identity. Gene expression values were obtained for Salmonella internalised in epithelial cells (dark grey boxplots), grown
in Luria-Bertani broth (LB) control samples (white boxplots) or internalised in macrophages (light grey boxplots) prior to BABAR processing (A),
and after background correction with ‘within arrays’ block-by-block data centering (B), cyclic loess with averaging of the log,-ratios (C), and final
centering of the data representing the processed output of BABAR (D). Each box highlights the median and characterises the range of 50% of
the data for each microarray; circles show individual genes that are outliers. Gene expression levels in epithelial cells were determined at 2 h
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epithelial cells at 2 h and 6 h post infection [13]. These
genes, possessing a wide range of expression levels, are
representative of those involved in iron uptake (entB),
invasion (invF, prgH, sifA, ssaG), metabolism (gapA,
pgi, zwf), the flagellar system (flgL, fliC, fliF, fljB), and
included a control (nusG). It may be seen from Figure
3 that the microarray and RT-PCR data are in good
agreement (Pearson correlation coefficient = 0.83, p <
0.001).

Additional validation was obtained at the level of
protein expression. The results of immunogold and
immuno-fluorescent labelling showed that the flagellin
proteins FliC and FljB were indeed present in infected
epithelial cells at detectable levels [13], and a two-fold

increase in FliC protein was observed inside epithelial
cells (6 h c.f. 2 h) which compared to ~three-fold
increase for the microarray (3.3-fold) and RT-PCR data
(3.6-fold). These findings validated the BABAR-normal-
isation of the original dataset because the protein data
supported the transcriptomic findings.

Though modest in scale, this dataset presented a real
challenge to other existing software because the consti-
tuent microarrays were described by three gene array
layouts and showed considerable M-value variation. We
are unaware of any software that automatically handles
such data. Our findings validate the BABAR algorithm
for the normalisation of heterogeneous datasets prior to
further analyses.
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A. prior to analysis

B. after BABAR
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Figure 2 MA-plots for a pair of microarrays before (A) and
after (B) BABAR. For a pair of microarrays (array 1 vs. array 11 - see

Figure 1) from [13], the intensity log-ratio M = 10g2{(Ri/G)/(R;1/G11)}
was plotted against the mean log intensity A = log, V{(Ri/Gy) X
(Ry1/Gyy)} for each gene.

BABAR vs. standard techniques

We next compared the performance of BABAR in deter-
mining differentially expressed genes with standard
methods as implemented by another R package, limma
(version 2.16.4). We applied both packages to a dataset
describing the transcriptomic changes for virulence-
related genes at different phases of growth for the wild-
type (WT) S. Typhimurium compared to mutants defi-
cient in one or both subunits of the DNA- binding pro-
tein Integration Host Factor (IHF), IHFo and IHFp [22]
(ArrayExpress accession number E-MEXP-2416). As the
bacteria were grown in vitro, RNA quality for this data-
set was good. This dataset was generated from 27 com-
mon reference design GenePix-scanned microarrays
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described by a single gene array layout (see Additional
file 4 for the unprocessed microarray data files and the
associated .gal file). BABAR was run with the main nor-
malising steps enabled and generated the boxplots seen
in Figure 4.

Although still requiring normalising, the IHF dataset is
an example of a ‘good’ non-heterogeneous dataset that
was derived from RNA that was of a consistently good
quality. Compared to Fig 1A, there is a reduction in the
variation about M = 0, skewness (typical Si = 0.32) and
variance of the microarrays M-values (Figure 4A). Fol-
lowing BABAR’s three normalisation steps (Figures 4B,
4C and 4D) these data were ready for analysis. For
limma normalisation we applied background correction
(normexp) and a ‘within arrays’ method for data center-
ing (printtiploess) followed by a ‘between arrays’
method, either quantile or scale normalisation. The
slight median shift away from M = 0 that was apparent
after BABAR’s cyclic normalisation step (Figures 4C and
5A) was also seen following quantile (Figure 5B) or
scale normalisation (Figure 5C). This was not ‘corrected’
for in the latter two methods as an equivalent step is
not implemented by the /imma package.

The published IHF study focused primarily on the
comparison between the WT and the i#ifAB double
mutant, with one of the key findings being that the loss
of IHF had strong negative effects on virulence genes
[22]. Our focus here will therefore be on down-regula-
tion of gene expression. To determine the differentially
expressed down- regulated genes for BABAR- and
limma-normalised log,-ratios, the outputs from these
methods were analysed via the Qlucore Gene Expression
Explorer (QGEE) software (version 1.1; [3]). The QGEE
software was used to impute any missing values via its
implementation of the KNNimpute algorithm (default
number of neighbours used in the imputation = 10) [21]
and to identify those down-regulated genes that could
separate the WT and double mutant samples with a
high degree of confidence (p < 0.01) for each method.

Interestingly, despite the suggestion from the boxplots
(Figures 5B and 5C), the results from the QGEE soft-
ware analyses after scale or quantile normalisation were
very similar. From Figure 6 it may be seen that at p <
0.01 both methods detected 175 down-regulated genes
with 151 genes (~86 %) common to both. Comparably,
BABAR detected 214 down-regulated genes with 136
and 135 genes in common with scale and quantile nor-
malisation, respectively. For the genes that were the
focus for the original IHF study (see below), the quantile
normalisation method detected two genes that were
absent from the scale normalisation results (results not
shown). Therefore, for simplicity only the quantile data
was considered further and will be referred to as the
limma data.
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Relative expression level (RT-PCR)

Figure 3 Comparison of BABAR-normalised microarray data with RT-PCR analyses. The relative expression levels for 13 Salmonella genes
from inside epithelial cells (2 h p.i. or 6 h p.. vs. mid-exponential LB control cultures) as determined by microarray analysis (BABAR normalisation)
and RT-PCR are shown (Pearson correlation coefficient = 0.83, p < 0.001; r’ = 069 via linear regression). For the RT-PCR analyses, RNA was
independently extracted from LB cultures of Salmonella or from Salmonella cells internalised in epithelial cells, and used in RT-PCR amplification

3 4 5

Our comparison of normalisation methods focused on
differences in expression between the WT and double
ihfAB mutant for genes encoded by the four Salmonella
Pathogenicity Islands (SPI1, 2, 4 & 5), chemotaxis and
flagellae genes. A summary of the results for the differ-
ential gene expression analysis of virulence-associated
genes shows excellent agreement between BABAR and
limma (Table 1). For example, for the 40 genes encoded
by the SPI1 pathogenicity island, both BABAR and
limma determined 29 genes to be down-regulated, with
28 of those genes common to both. Closer inspection
showed the QGEE software analysis detected slightly
more down-regulated genes for the BABAR-normalised
data (64 genes) compared to the limma-normalised data
(59 genes).

These results show that the BABAR algorithm can be
successfully used to normalise datasets prior to further
analyses.

Comparison of methods using simulated data

To further validate BABAR we compared its perfor-
mance against the limma-implemented methods for
normalisation using a simulated dataset. With such
datasets, the number of differentially expressed genes is
known making it possible to calculate the power of
detection and type I errors. SIMAGE was used to simu-
late two-colour DNA microarray data [23], generating 6
simulated microarrays each with 5000 genes arranged in

4 x 4 blocks; SIMAGE default settings were otherwise
used. Due to the difficulty described previously in ana-
lysing heterogeneous datasets these simulated data were
treated as consisting of single format result files
described by a single array layout. The output files were
converted to a .gpr format and normalised via BABAR,
print-tip loess, quantile and scale normalisation. Signifi-
cance analysis of microarrays (SAM [24]) was carried
out using the freely accessible samr R package (version
1.26) [25] to calculate power (1 - false discovery rate)
and type I error (false negative) rates for each normali-
sation method.

It may be seen from Table 2, that for 118 differentially
expressed genes the performance of BABAR (power =
0.62) was comparable to scale normalisation (power =
0.66), and was considerably better than quantile (power
= 0.51) or print-tip loess (power = 0.48) normalisation.
At higher numbers of differentially expressed genes,
scale normalisation appeared to perform best but
BABAR continued to outperform both quantile and
print-tip loess normalisation. It was also seen that the
three ‘between arrays’ methods outperformed the print-
tip loess ‘within arrays’ method. One issue with simu-
lated datasets is that they can’t inform upon what level
of power is required to still obtain the correct biological
interpretation for a given dataset; perhaps detecting only
the 10% most regulated genes, a power as low as 0.1,
may be sufficient for some datasets [26]. When
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Figure 4 BABAR-generated boxplots showing Salmonella gene expression for the IHF dataset [22]. The figures plot M-value versus
microarray identity. Gene expression values were obtained for wild-type Salmonella (white boxplots), IHFo. mutant (light grey boxplots), IHFf
mutant (grey boxplots) and the double IHF mutant (dark grey boxplots) prior to BABAR processing (A), after background correction with ‘within
arrays’ block-by-block data centering (B), cyclic loess with averaging of the log,-ratios (C), and final centering of the data representing the
processed output of BABAR (D). Each box highlights the median and characterises the range of 50% of the data for each microarray; circles show
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comparing normalisation methods it is important to
analyse real and simulated data, and our findings have
shown BABAR’s effectiveness in highlighting differen-
tially expressed genes from real datasets. The perfor-
mance of BABAR is impressive given that it was
designed with large, heterogeneous datasets in mind
(not the modest and uniformly designed simulated data-
set described above) and makes limited use of any spa-
tial information.

Normalisation comparison summary

We have demonstrated BABAR’s ability to transform
microarray data compares well with the standard meth-
ods investigated so as to allow for their correct interpre-
tation. As BABAR implements an algorithm which

normalises each unique pair of microarrays, the impact
on the running time of the analysis was investigated.
For a PC running Windows XP with a 2.66 GHz Intel*-
Core™ 2 Duo CPU with 2 GB RAM, BABAR analysis of
the IHF dataset (27 microarrays) took 40s compared to
15s via the limma-implemented methods. Cyclic loess is
still preferred to quantile normalisation, for example, as
it is not as aggressive in its normalisation, but if run
time issues are a concern then a faster cyclic loess tech-
nique has been developed [16].

In using real and simulated datasets for a direct com-
parison of BABAR with limma-implemented methods of
normalisation, it has been necessary to use non-hetero-
geneous datasets. This is due to the fact that the latter
methods are unable to handle the heterogeneous
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Figure 5 Comparing the spread of expression values across the IHF dataset [22]after BABAR and limma-normalisation. The figures plot
M-values versus microarray identity (see Figure 4 legend for details). Gene expression values were obtained after processing with BABAR (with no
final centering; A), limma quantile normalisation (B) and /limma scale normalisation (C). Each box highlights the median and characterises the
range of 50% of the data for each microarray; circles show individual genes that are outliers.
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BABAR limma quantile

limma scale

Figure 6 A comparison of down-regulated genes detected
after BABAR, scale and quantile normalisation. A Venn diagram
showing the relations between down-regulated genes detected by
the QGEE software (p < 0.01) for the IHF dataset [22] (WT versus
ihfAB double mutant) following either BABAR, limma scale or limma
quantile normalisation. For the BABAR processing, the QGEE
software analyses were run after background correction with ‘within
arrays’ block-by-block centering of the medians, ‘between arrays’
cyclic loess with averaging of the log,-ratios, and final centering of
the data. For the two limma-implemented normalisation methods
the QGEE software analyses were run after the data were
background corrected (normexp) with a ‘within arrays’ method for
data centering (printtiploess), followed by a ‘between arrays’
method, either quantile or scale normalisation.

datasets for which BABAR was developed. To handle
such datasets BABAR makes some assumptions about
the data it will receive, but BABAR’s real value comes
from handling those datasets that other applications
cannot.

Present and future applications of BABAR

Following BABAR-normalisation, it is possible to com-
pare the data derived from any microarray with any
other for a given dataset with confidence. Other studies
have employed very different approaches to the chal-
lenge of combining different microarray data into a sin-
gle dataset which may then be subjected to further
analysis. One study used multivariate linear regression
to create a fused and cleaned dataset from data for 9
experiments (178 microarrays), downweighting microar-
rays of poor experimental quality [27]. Another study
used statistical discrimination to merge two datasets
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Table 1 Validation of BABAR by comparison with limma
normalisation for the detection of differentially-
expressed genes

Number of down-regulated genes detected
BABAR unique Both methods

Virulence genes limma unique

SPI1 (40) 1 28 1
SPI2 (31) 4 10 2
SPI4 (6) 1 4 1
SPI5 (171) 1 3 0
Other genes
Chemotaxis (9) 1 5 0
Flagellae (23) 2 4 1

The number of down-regulated genes detected by the QGEE software (p <
0.01) for the IHF dataset [22] (WT versus ihfAB double mutant) following either
BABAR or limma quantile normalisation. The number of genes in each group is
given in brackets (120 in total). Chemotaxis genes include che and mot genes;
flagellae genes include flg, fli and flj genes.

from different microarray platforms (cDNA and Agilent
oligo microarrays) [28]. However, both of these methods
require the microarrays to have been normalised prior
to merging. In contrast, a further study [29] employed a
novel three-step strategy to normalise and integrate data
arising from five Affymetrix microarray generations.
Using a different strategy BABAR also normalises and
merges microarray data but is applied to common refer-
ence two-colour microarrays with different file formats
or array layouts.

Our focus in this paper has been on differential gene
expression, which is important for many experimental-
ists. We believe that great benefit will be also be
obtained when applying BABAR to datasets prior to ‘sys-
tems’-level analyses which, for instance, utilise large

Table 2 Comparison of the power and type | errors for a
simulated microarray dataset

Normalisation method

Scale BABAR Quantile print-tip
loess
No. of Power Error Power Error Power Error Power Error
genes
118 066 0022 062 0030 051 0032 048 0033
220 073 0034 058 0053 057 0051 051 0056
407 077 0055 062 0088 061 0089 056 0091
756 082 0088 067 0150 065 0.158 063 0163
1402 087 0144 076 0260 074 0300 071 0314

The power and proportion of type | errors for a dataset consisting of 6
simulated microarrays [23] were calculated via the samr R package [25].
Analysis followed one of four methods of microarray data normalisation for
different numbers of differentially expressed genes. For BABAR, analyses were
run after background correction (subtraction) with ‘within arrays’ block-by-
block centering of the medians, ‘between arrays’ cyclic loess with averaging of
the log,-ratios, and final median centering of the data. For the other methods,
analyses were run after the data were background corrected (normexp) with a
‘within arrays’ method for data centering (printtiploess), followed by the
appropriate ‘between arrays’ method (none, quantile or scale normalisation).
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transcriptomic datasets to infer regulatory or metabolic
networks. Like many research groups we have amassed
a vast collection of transcriptomic data into a gene
expression compendium and network inference techni-
ques are now being used to extract high-level informa-
tion from these data [10,30]. However, the initial
normalisation of these data is critical if meaningful
interpretations are to be made.

We are not aware of any software that would handle
the heterogeneous datasets that can comprise such
gene expression compendia without considerable addi-
tional programming. Our recent network analysis of a
compendium of heterogeneous two-colour transcrip-
tomic data demonstrated the value of the BABAR algo-
rithm. At present BABAR accepts only (unprocessed)
GenePix and BlueFuse microarray data files; a useful
adaptation would allow other data file formats to be
processed. In addition, enabling BABAR to handle
tables of (un-normalised) data, as might be retrieved
from repositories such as ArrayExpress or the Gene
Expression Omnibus, would greatly extend the reser-
voir of data for analysis.

Conclusions

The development of DNA microarrays for transcrip-
tomic analysis has revolutionised many areas of biology
and has facilitated the generation of a mass of transcrip-
tomic datasets. The normalisation of such datasets
remains a challenge as many factors can contribute to
the variability that occurs between microarrays, con-
founding the biologically-correct interpretation of these
data. The challenge is compounded by the heteroge-
neous datasets that may be compiled for ‘systems’-level
analyses. The surge in interest in deep-sequencing tech-
niques (e.g. [31] for a recent review of the area applied
to microbial genetics) may seem to have heralded the
‘death of microarrays’ [32]. However, given the amount
of transcriptomic data that await analysis, microarrays
will remain to be a powerful analytical technique for
some time. As this is an ideal tool for facilitating robust
gene expression and network inference analyses, to
obtain maximum insight from valuable transcriptomic
data use BABAR.

Availability and requirements
Project name: BABAR

Project home page: http://www.ifr.ac.uk/info/science/
FoodbornePathogens/index.htm

Operating System(s): Windows XP and Red Hat
Enterprise Linux 5.

Programming language: R

Other requirements: R-2.9.2 or newer, and limma
2.16.4 or newer.

License: GNU General Public License
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BABAR is available as a zip file (see Additional file 1)
with detailed installation and running instructions (see
Additional file 2).

Additional file 1: BABAR software. The BABAR R package.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
73-S1.ZIP]

Additional file 2: BABAR documentation. Vignette detailing the
installation and running of BABAR.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
73-S2.PDF]

Additional file 3: Dataset 1. The unprocessed microarray data files from
a heterogeneous ‘problem’ dataset describing the transcriptomic
changes for Salmonella internalised within mammalian cells.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
73-S3.ZIP]

Additional file 4: Dataset 2. The unprocessed microarray data files and
the associated .gal file for a non-heterogeneous ‘good’ dataset describing
the transcriptomic changes of virulence genes for wild-type Salmonella
and IHF mutants.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
73-54.ZIP]
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