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DTN: An Architectural Retrospective
Kevin Fall, Senior Member, IEEE, and Stephen Farrell

Abstract—We review the rationale behind the current design
of the Delay/Disruption Tolerant Networking (DTN) Architecture
and highlight some remaining open issues. Its evolution, from a
focus on deep space to a broader class of heterogeneous networks
that may suffer disruptions, affected design decisions spanning
naming and addressing, message formats, data encoding meth-
ods, routing, congestion management and security. Having now
achieved relative stability with the design, additional experience
is required in long-running operational environments in order
to fine tune our understanding of DTN concepts and the types
of capabilities that are worth the investment in implementation
complexity. We expect key management, handling of congestion,
multicasting capability, and routing to remain active areas of
research and development, and that DTN may continue to be an
active research endeavor for at least the next few years.

Index Terms—Delay Tolerant Networking, Disruption Tolerant
Networking, network architecture, protocols

I. INTRODUCTION

IN the last few years, Delay- and Disruption-Tolerant
Networking (both known by the abbreviation DTN) have

grown from relatively obscure research activities to a healthy
research topic attracting both network designers and applica-
tion developers. DTN is now a recognized area in networking
research, due in part to practical experiences with mobile
ad-hoc networks (MANETs) that are required to operate in
situations where continuous end-to-end connectivity may not
be possible.
While the architectural principles for DTN were synthesized

and collected together about a half-decade ago, only recently
have these principles been reviewed by a larger community
and put to the test in a number of real-world pilots. With
renewed interest in network architecture research, it appears
timely to examine the DTN architecture retrospectively, high-
lighting some of its more unusual and controversial aspects,
with the goal of providing concrete suggestions for capabilities
applicable to network architectures that might be considered
in evolving the DTN architecture or other networking archi-
tectures.
In this paper we review many of the principles of the

DTN architecture [1], highlighting design decisions that have
persevered through repeated analyses, along with those that
have been updated or replaced. Some of this evolution can also
be seen with the recent publication of two Internet RFCs (RFC
4838 [2] and RFC 5050 [3]), and a book on this subject [4].
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II. DTN’S CAPABILITIES

At its inception, the concepts behind the DTN architec-
ture were primarily targeted at tolerating long delays and
predictably-interrupted communications over long distances
(i.e., in deep space). At this point in time, the work was an
architecture for the Interplanetary Internet (IPN). By March
2003, when the first draft of the eventual RFC 4838 was
published, one of the authors had coined the term Delay
Tolerant Networking suggesting the intention to extend the
IPN concept to other types of networks, specifically including
terrestrial wireless networks. Terrestrial wireless networks
also suffer disruptions and delay, and the DTN architectural
emphasis grew from scheduled connectivity in the IPN case to
include other types of networks and patterns of connectivity
(e.g., opportunistic mobile ad-hoc networks with nodes that
remain off for significant periods of time).
At roughly the same time, there was growing interest in

wireless sensor networks (WSNs), a topic which itself has
spawned numerous conferences, journals, theses, and some
commercial activities [5]. Much of the activity in WSNs has
been devoted to power management, routing, and other tasks
such as software updates and programming environments.
Common to most WSN systems is a form of gateway—a
communication node that often implements an application
layer gateway able to effectively translate Internet (TCP/IP)
protocols to the specialized protocols used within WSNs. It is
typical for such gateways to participate in routing domains
on both the Internet and within the WSN. Some of these
gateways also possess storage, used to hold data collected
from the sensor network until consumed by an application.
Such gateways were being constructed in an ad-hoc manner,
specific to each WSN, limiting interoperability between them.

The DTN architecture was designed to accommodate not
only network connection disruption, but also to provide a
framework for dealing with the sort of heterogeneity found
at sensor network gateways (and other gateways, more gen-
erally). Whereas the Internet (IP protocol) model supports
heterogeneity as well, it does so by requiring every node
to use a common network layer host identifier (IP address),
packet format with universally-obeyed semantics, and rout-
ing methodology that assumes a connected routing graph in
order to achieve interoperability. Supporting other addressing
formats or semantics in conjunction with IP has resulted in
widespread use of overlay networks, where the IP protocol is
essentially used as a link protocol. As we shall see in more
detail later, DTN uses naming, layering, encapsulation, and
persistent storage to interconnect heterogeneous portions of a
larger network, irrespective of formal layer.
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Fig. 1. An example implementation architecture shows how a bundle
forwarder interacts with storage, routing decisions, and convergence
layer adapters (forming the convergence layer) to utilize various
protocols for delivery.

DTN can use a multitude of different delivery protocols
including TCP/IP, raw Ethernet, serial lines, or hand-carried
storage drives for delivery. As each of these protocols provide
somewhat different semantics, a collection of protocol-specific
convergence layer adapters (CLAs) provide the functions
necessary to carry DTN protocol data units (called bundles) on
each of the corresponding protocols. Figure 1 gives the relative
position of the convergence layer adapters in a conceptual
implementation architecture:
In this conceptual implementation architecture, a central

forwarder is responsible for moving bundles between applica-
tions, CLAs, and storage according to decisions made by rout-
ing algorithms. Arrows indicate interfaces, which may carry
either bundles (in the case of storage, CLAs, and applications)
or directives (routing decisions, management, applications). In
some cases, implementing these interfaces using inter-process
communication facilities rather than conventional procedure
call has been useful to promote the ability to develop system
components independently.

III. NAMING, ADDRESSING AND BINDING

Naming and addressing are some of the most fundamental
aspects of a network architecture, and one of the most tricky
aspects to get right. Generally, naming has been thought of as
something useful to people or organizations while addressing
is more useful for network operations and routing. Names
are generally expected to be variable-length strings while
addresses are expected to be fixed-length identifiers. Some
form of mapping or binding function is used to convert names
into addresses. In the case of the Internet, this is the domain
name system (DNS). In the case of various overlay network
systems (e.g., Chord), it may be a locally-executed hash
function.
In the evolution of the DTN architecture, nodes have

always had identifiers. These are used in the context of
the bundle protocol [3], which provides the basic message

delivery service for DTN. Originally, identifiers in the bundle
protocol were constructed as a 3-tuple of the form (region,
host, application), which was able to not only identify a host,
but also an application of interest on the host. A region was a
portion of the network topology, and in the original IPN design
was generally assumed to represent a well-connected area
surrounding a planet. Routing decisions were thus relatively
straightforward, based first on region, and then on host iden-
tifier, somewhat similar to the way routing is arranged in IP
networks where aggressive CIDR address prefix aggregation is
performed. After some consideration of the application portion
of the identifier, it was merged into the host identifier, forming
an aggregate demultiplexing identifier where the partitioning
between host and application was determined within a region.
After extended consideration of the tie between the region

portion of an identifier and its required association with the
network topology, the region construct was significantly mod-
ified. This decision was based primarily on the observation
that nodes may have multiple network interfaces and may
also be mobile, so additional flexibility was required in how
they are named. It became more important to support multiple
namespaces with differing naming semantics than coupling an
identifier to a location in the topology to aid routing. With
multiple namespaces, hosts may have multiple identifiers and
these may be either assigned by users, or imposed by the
networks to which nodes become connected. This began to
blur the distinction of name and address. Blurring seems to
be an attractive direction, as precisely distinguishing between
the two has become increasingly challenging (e.g., consider
vanity telephone numbers).
In recognizing that nodes may require multiple identifiers

and even multiple types of identifiers, a naming structure was
sought that is capable of encoding names or addresses from
multiple different name spaces (and thereby also requiring a
way to identify the namespaces from which the identifier had
been allocated). Fortunately, work in the IETF had already
been accomplished in the area of generalized naming systems,
in the form of Universal Resource Identifiers (URIs) [6].
Although URIs are somewhat more complicated than required
by the bundle protocol, they have a few important properties:

• Allocated Name Spaces – Each URI is fundamentally
of the form <scheme>:<scheme-specific-part>,
where the scheme is a string allocated from a set of
well-known and administered scheme names (e.g., http,
sip, file)

• Variable Length – Although bounded to a relatively large
size, URIs are essentially free-form except for a few
reserved characters that have special semantics

• Structured Semantics – URIs obey a general syntax and
semantics, but a new scheme may define its own special
additional semantics, subject to general rules that apply
to all URIs

Using URIs as identifiers brings several advantages. First,
they can encode names or addresses taken from many
namespaces. For example, we might refer to a host by its
Ethernet address as ether://00-12-33-fe-22-31 but
also refer to it using some distinguished hierarchical name
like dns://myhost.foo.com. While in the Internet, the
scheme specifier also tends to suggest the protocol stack

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 23,2010 at 08:29:08 EST from IEEE Xplore.  Restrictions apply. 



830 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008

used (e.g., http is typically http/TCP/IP) to contact remote
node(s), this need not be the case for DTN; we can use
the bundle protocol, or some other combination of protocols.
URIs as used in DTN are referred to as endpoint identifiers
or EIDs.
Next, using strings for representing EIDs opens up the

possibility of creating interesting DTN forwarding policies
using string matching. For example, a wildcarded string match
could be be used in directing a DTN forwarder to cause any
traffic destined for Columbia University to be directed to some
particular next hop:

dtn://*.columbia.edu.dtn ->
ether://00-12-33-fe-22-31

This example illustrates that the addressing format for a
DTN “next hop” (at a DTN forwarding node) need not be of
the same scheme as that of the source or destination in the
bundle. This is in contrast to Internet routing entries, where
next hops are generally expressed using the same address
format.
Using URIs can also help to support application layer

gateways by piggybacking on a number of pre-existing URI
schemes. For example, the URIs:

http://www.slashdot.org
dtn:http://www.slashdot.org

are syntactically legitimate bundle protocol EIDs. The full
extent to which this capability may be useful remains to be
seen, as few such application layer gateways using existing
schemes have been constructed, but the naming compatibility
is clear. Understanding the precise semantics of the http
scheme when carried by the bundle protocol, for example,
remains to be explored.
Finally, the generality of the URI format is also applicable

for routing systems in which the “destination” address of a
message is really a function of its contents. Proposals along
the lines of the DONA [7] could make use of this flexibility
by constructing URIs of the following form:

dona://a1 = X1&a2 = X2& . . .&ak = Xk

where each (ai, Xi) is an attribute/value pair.
For a message containing DTN URIs comprising symbolic

names, (i.e., URIs using namespaces apart from standard
address formats), some binding1 step is performed by one or
more nodes along the delivery path. Such binding may be
performed anywhere along the delivery path. In the Internet,
this happens at multiple layers and at multiple locations. When
DNS is invoked at a sending node, this is a form of early
binding, which is used immediately in mapping a DNS name
to an IP address. Subsequent mappings are performed on
the IP address in delivering its containing packet toward its
destination.
DTN supports direct forwarding based on symbolic names

(or intentional names [8]), so the early binding typical of DNS
in the Internet is not generally required. Instead, messages are

1There is another use of the term binding to mean associating a name or
address with a receiving application, a function performed by the bind()
socket API call. We instead use the term registration to refer to the state
created by that operation, which can be persistent for DTN applications.

passed along toward their destinations based on forwarding
entries present at DTN routing nodes that match against the
name. This is known in the DTN literature as late binding.
DTN supports both late and early binding, depending on
the scheme used. The extent to which late-binding scales to
networks of many routers will be interesting to see as DTN
deployments scale up.

IV. DTN PDUS: BUNDLES

Applications in the DTN architecture operate on messages
carried in variable-length protocol PDUs called bundles. The
name “bundle” derives from considering protocols that attempt
to minimize the number of round-trip exchanges required
to complete a protocol transaction, and dates back to the
original IPN work. By “bundling” together all information
required to complete a transaction (e.g., protocol options and
authentication data), the number of exchanges can be reduced,
which is of considerable interest if the round trip time is hours,
days or weeks.
Bundles comprise a collection of typed blocks. Each block

contains meta-data; some also contain application data. For
much of the evolution of the DTN architecture and bundle
protocol, meta-data blocks were simply called headers, but
after it became apparent that the bundle security protocol (see
Section VII) required the ability to append meta-data (e.g., a
MAC) to a bundle, the term block was adopted. Blocks are
chained together as extension headers are in IPv6.
The extensibility of chained blocks has been key to support-

ing experimentation with the bundle protocol. For example, a
bit indicates whether receiving a block of unknown type causes
the containing bundle to be discarded or whether the block
can instead be processed unaltered (i.e., as opaque data). This
is expected to be of use, for example, as new authorization
(e.g., capabilities) or routing functions (e.g., source routing)
are investigated.

A. Blocks

The first or primary block of each bundle, illustrated in
Figure 2, contains the DTN equivalents of the data typically
found in an IP header on the Internet: version, source and
destination EIDs, length, processing flags, and (optional) frag-
mentation information. It also contains some additional fields,
more specific to the bundle protocol: report-to EID, current
custodian EID, creation timestamp and sequence number,
lifetime and a dictionary. Strings are placed in the dictionary,
and offsets are used as pointers to the beginnings of strings in
an effort to reduce space that would otherwise be devoted to
duplicate strings. Most fields are variable in length, and use
a relatively compact notation called self-delimiting numerical
values (SDNVs) [3]. Early designs for the primary bundle
block used more fixed-length fields, but the relative merit
of choosing a fixed-length field for simplicity was ultimately
found to be less compelling than the flexibility offered by
SDNVs. SDNVs are discussed in more detail in Section IV-C.
The bundle processing control flags indicate a number of

special circumstances associated with the containing bundle:
fragmentation condition (fragmented, allowed), type (regular
or administrative), special requests (custody, acknowledgment
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Fig. 2. The structure of the primary block of a bundle contains a
fixed-length version field followed by a collection of variable-length
fields encoded as self-delimiting numeric values (SDNVs).

generation, delivery status), class of service indication, and if
the destination endpoint is known to be a singleton (that is,
a single entity as opposed to a multicast endpoint). This last
indicator is used when forwarding using custody transfer to
alert a custodian that multiple nodes may be responding with
custody transfer acknowledgments (see Section VI).
By setting various bits in the bundle processing control

flags, the sender can request a report for any of the following
events: receipt at destination node, custody acceptance at a
node, bundle forwarded/deleted/delivered en route, and receipt
by destination application. Clearly, these capabilities need to
be used with caution because of the amount of report traffic
they may generate, may be limited in live operations by policy,
and are really intended for diagnosing network problems, as
with ICMP in the Internet. While there is some hesitation
as to the value of having such a rich set of report types,
requiring support for them in protocol implementations has
already proven itself extremely useful during interoperability
test and debugging sessions held in conjunction with IETF.2

To the best of our knowledge, the report-to EID is unique to
the bundle protocol. It allows a sender of a bundle requesting
one or more status reports to have the reports directed to
node(s) other than itself. This is in contrast to Internet ICMP
messages which are specified to be sent back to the sender of
the packets that caused the ICMP messages to be generated.
This capability is useful in the DTN context because some
senders may not be expected to exist beyond the time required
to transmit a bundle they have sent. Examples include expend-

2http://www3.ietf.org/proceedings/06nov/slides/DTNRG-1/sld1.htm

able sensor nodes that are lost or destroyed after reporting their
sensor readings to a nearby DTN relay node.
The origination time in each bundle indicates the real time

at which the bundle was sent from its origin. The lifetime
is a positive offset of real time from the origination time. If
a bundle is found to be queued at the end of its lifetime,
it can be discarded. This is one of the ways excess bundles
can be cleared from the network. It also provides a basis for
implementing policy: a network operator could arrange for
bundles beyond some age to be expired early (or late).
The use of real time in bundles imposes a requirement on

each participating DTN node: that real time be synchronized,
at least roughly. This requirement was considered repeatedly,
as it represents a significant departure from common practice
in the Internet today. To date, we have identified four reasons
for imposing it. First, most applications for which DTN
was designed are time sensitive; resources are consumed at
particular points in space and time. A DTN node not knowing
the time renders the DTN far less useful for most applications
which themselves require time. Second, in most of the cases
where DTN has been tested, and in most cases for which
it is planned, access to real-time is already provided by
some mechanism (including in deep space and underwater
environments).3 Third, routing using scheduled connectivity
is inherently tied to link availability at a certain time. Fourth,
network management tasks, including tracing and debugging
are considerably easier when a common time reference is used
throughout the network.
Other than the required primary block appearing at the

beginning of a bundle, additional blocks are optional but use a
common basic format. The common format includes an 8-bit
block type (like the extension header type in IPv6), processing
flags and block length. The processing flags indicate whether
the block is to be copied in any fragment created, whether a
status report should be issued if the block type is unknown
to the node forwarding the bundle and whether the bundle
should be dropped in this case. The indication to copy the
block to each fragment is really designed for blocks carrying
meta-data associated with delivery of the bundle contents such
as handling restrictions, retention guidelines, digital rights
management, or sensitivity labels. In the environments that
require them, such meta-data are typically mandatorily bound
close to the data they describe.

B. Fragmentation

The ability for bundles to be fragmented, either prior to
transmission, or while in transit, has been an ongoing point
of discussion since the original IPN work. At that time, frag-
mentation had been repeatedly adopted and abandoned. The
motivation for bundle fragmentation was similar to that for IP
fragmentation: to adapt relatively large bundles for transport
using message-oriented protocols with finite limitations on
message size. The argument against fragmentation was its
complexity: in particular, the interaction of fragmentation

3The common exception to this rule is when DTN has been placed in
certain embedded systems that lack a real-time clock. In such cases, the system
usually boots with a software clock set to the year 1970. This is expected to
be a relatively minor problem, as more embedded systems become equipped
with real time clocks and GPS.
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with custody transfer. A key issue in this context is whether
the granularity of a custody transfer acknowledgment could
express a partial bundle and if fragments needed to be re-
assembled while in transit.
Early in the transition from the IPN to DTN architecture,

and upon further understanding of routing requirements, the
need for fragmentation became undeniable. In particular, un-
derstanding that a routing opportunity (contact) is not mea-
sured in bandwidth but instead measured in byte (storage)
units (the product of a bandwidth and a time window of
opportunity to use it), a way was needed to divide large
bundles into appropriately-sized units to fill contacts. The term
proactive fragmentation was therefore adopted to capture this
case. Proactive fragmentation is performed ahead of time, be-
fore a contact of known duration and capacity becomes active.
Proactive fragmentation can also be used when adaptation
to lower-layer message-oriented transports is required. This
is the case for which bundle fragmentation was originally
considered.
Supporting fragmentation in the basic bundle protocol is not

unusually difficult. A special header is used (similar to IPv6)
to describe a fragment’s offset and length relative to its original
position in the bundle when it was first transmitted. As with
IP fragmentation, bundle fragments are only required to be re-
assembled at the final receiver(s). Custody acknowledgments
are expanded to be capable of describing partial bundles.
Bundle fragments are identified as belonging to the same
original bundle by a common identifier comprising a subset
of the primary block (sender, receiver, origination timestamp).
Support for fragmentation in conjunction with encryption

applied along a bundle’s delivery path is a more challenging is-
sue. Encryption can expand the size of a cleartext bundle when
transformed into a cyphertext bundle, (e.g., when using typical
cypher block chaining modes of encryption). Such encryption
could be applied to a fragmentary bundle, and if routing selects
different paths for different bundle fragments, the destination
could eventually receive an overlapping mixture of cleartext
and cyphertext fragments, making re-assembly challenging.
Custody transfer can also be difficult; when different custody
acknowledgments refer to the additional padding bytes created
by the encryption, re-assembly can once again be challenging.
Fortunately, it is relatively easy to avoid such cases (e.g.,

by encrypting at the source) and algorithmic alternatives
with equally strong security properties are available, such as
counter-mode encryption [9]. Using this form of encryption,
the cyptertext and cleartext versions of a bundle are of equal
length, meaning the relevant fragmentation-related information
(offset, length, and byte range descriptions) remain accurate
whether or not bundles are encrypted.

C. Data Encodings

The bundle protocol uses two noteworthy approaches to its
encoding of block fields. SDNVs are used to encode positive
numeric values that may span a large range. This format is
designed to be an efficient encoding scheme for relatively short
positive integers (up to 56-bits long), but to also work for
arbitrary length values (at the expense of some efficiency). The
scheme uses the high order bit of each byte as a continuation

flag, leaving seven bits remaining to carry information. This
encoding scheme is also used by a lower layer delay tolerant
link protocol called the Licklider Transmission Protocol (LTP)
[10], which has been designed to act as a transport protocol for
carrying bundles over high-delay private point-to-point paths.
Variable-length strings are grouped together in a the dic-

tionary, located near the end of the primary block. A field
referring to a string is then encoded as an offset to the
beginning of the string within the dictionary. Strings make up
the largest fraction of the byte overhead imposed by the bundle
protocol; the primary header includes 4 variable-length EIDs,
each of which are encoded using 2 variable-length strings (one
for the scheme name, the rest for the scheme-specific part or
SSP).
For the bundle protocol, the dictionary represents a con-

venient locus for reducing the otherwise large amount of
space neeed to hold URI strings. The dictionary is similar
to the string tables used by compilers when creating binaries
including string literals. Any time a string literal is used more
than once, the additional occurrences do not induce additional
overhead. This is useful in the common case for DTN where
the source and report-to EIDs of the primary bundle block
(and possibly the current custodian) may all contain the same
URI, but is also made available for any block of the bundle
to reference using offsets.

D. Error Detection

The bundle protocol provides no bit-level error detection or
correction mechanism apart from the message integrity checks
associated with the bundle security mechanisms. If bundle
security is not used, it is conceivable that bundles might have
bits unintentionally modified in transit. Such modifications can
occur either in application data or in bundle meta-data. This
was a conscious design decision made by the designers, as
the bundle protocol is intended for two primary uses. First, it
can operate as an network layer, essentially replacing IP. In
this case, error detection and correction are left to the higher
layers based on similar reasoning.4 Alternatively, the bundle
protocol can be used above existing transport (or other) layer
protocols, which commonly provide data integrity checks.
This arrangement leaves bundle data potentially vulnerable to
corruption if errors in the DTN forwarding engine or host
occur.
In addition to the two use cases mentioned above that

leave the question as to whether a bundle-layer integrity
check is necessary unclear, there are applications where data
with errors are valuable and where retransmissions are not
desirable. For example, uncompressed image data from remote
sensors, even if not error-free, may be valuable to deliver as
soon as possible, especially if contact opportunities may be
infrequent. The current design, therefore, leaves the task of
bit-level error detection and repair up to the application.

4IP version 4 has both an IP-layer header checksum as well as transport-
layer checksums covering some portions of the IP-layer header. The IP header
checksum was removed when specifying the IPv6 header, leaving only the
transport layer checksum for end-to-end error detection.
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V. ROUTING

The subject of DTN routing has almost become an inde-
pendent research area. There have been more than a dozen
different routing schemes proposed, a few PhD theses, and
a number of papers—mostly simulation studies that explore
the particular features of one or more algorithms. This is
perceived as a healthy situation, and was anticipated during
the development of the DTN architecture. A survey of such
schemes appears in a useful review by Zhang [11].
The DTN architecture claims applicability to a wide range

of operating environments, and was therefore intended to
support pluralism between the naming formats, routing algo-
rithms, and network technology. The routing problem can be
coarsely divided into whether the routing graph is assumed
to be connected or not, with DTN typically aiming at the
latter. In addition, methods for routing bundles may involve
creation and deletion of single or multiple copies of a bundle,
various degrees of knowledge about the topology and traffic
pattern (e.g., past, current, and future contact, traffic load, and
buffer occupancy), fragmentation, various levels of granularity
in decision making, resource reservations, different routing for
different class of service or custody bundles, and different op-
tions for the loci of the routing computation (e.g., at the edges
with source-route forwarding versus routing computations at
each node).
It is perhaps of little surprise that DTN concepts are begin-

ning to find their way into the MANET literature, which has
to date focused largely on routing in relatively dense mobile
ad-hoc networks where end-to-end connectivity between any
pair of nodes is possible. Combining DTN and MANET
concepts together suggests that nodes may operate using some
combination of simple forwarding and more delay-tolerant
store-carry-forward operation. Some such networks go a step
further and couple the routing system to node control systems.
This coupling supports the ability to beneficially place nodes
to act as routers or data ferries to enable communication
even in otherwise sparse and partitioned networks. The DTN
architecture and bundle protocol are careful to not restrict the
type of routing that may be used in any particular operating
environment.
Future DTN nodes will likely have to support a number of

different routing strategies and protocols in order to operate
efficiently in the vast diversity of environments in which the
node may find itself. For example, a node may be well-
connected whilst “at home,” and can use standard Internet
routing, but may then be subject to significant disruption
(e.g., if it moves, or the environment changes) and so may
have to switch over to a more complex routing scheme. Such
transitions may even occur frequently for some nodes.
DTN routing may eventually involve not only path or next-

hop selection toward a destination using a single metric of
goodness, but possibly multiple routing solutions depending
on the types of bundles being moved. For example, a long
path including a reliable custodian may be preferable to
a shorter path lacking such a custodian. In addition, DTN
routing selects not only next hops at each forwarding node but
also next protocol. Thus, a routing solution may involve not
only a set of paths, but also a set of appropriate encapsulating

protocols used to facilitate delivery using a heterogeneous set
of transports.

VI. CUSTODY AND CONGESTION

DTN custody transfer is a service that may be optionally
provided to a bundle as it is delivered through a DTN. When
used, custody transfer keeps track of a current “responsible
entity” or “custodian” for each bundle, and the custodian
is required to keep the bundle safe in persistent memory
until another custodian has received it successfully. Bundles
may be moved from one custodian to another (nominally
toward the bundle’s destination), and an acknowledged transfer
is accomplished for each. There are circumstances where
this acknowledgment procedure can fail when the connection
breaks during a transfer operation, or the network does not
support bi-directional data transfer [12], [13]. These situations
are expected to be relatively rare, but insufficient deployment
experience leaves the question open at this time.
The custody transfer model and use of persistent storage

at intermediate nodes provides the ability to delegate the
responsibility for reliable data transfers to portions of the
network other than the original sender, without violating the
guiding end-to-end principal in IP networks [14]. This is
possible, and even necessary, in the DTN context because we
assume the original source of data may become unreachable
or inoperable (e.g., due to environmental factors) before trans-
mitted data reaches its ultimate destination(s). By migrating
all the state regarding the correctness of the data transfer to
an intermediate node (“custodian”), the “end point” (in the
sense of [14]) has merely been moved to another location; it
is still ultimately responsible for the correct conclusion of a
data transfer operation.
Note that the DTN approach does alter the context for

interpreting Clark’s “fate sharing” concept [15]. His argument
suggests that placing critical connection state within inter-
mediate nodes is unwise, as the ability to withstand partial
network failures decreases. In the DTN setting, however,
there is no connection state. There can be critical copies of
network message fragments resident in the persistent storage
at custodians, but DTN allows the set of potential custodians
to be configured. Therefore, the amount and location of critical
state can be carefully controlled, and limited to those nodes
known to be highly reliable. This is especially important
in the cases where DTN intermediate nodes (e.g., potential
custodians) can be more reliable and have better connectivity
than end nodes, such as sensors or robots.
Not every node in a DTN needs to offer custody transfer. A

node may refuse to accept custody for messages for implemen-
tation or policy reasons, because not enough free storage space
is currently available, or for other reasons. The importance of
having custody transfer be truly optional seems, at present,
to be unclear. Many users of DTN networks wish to lose no
data, so every node and every bundle operates using custody
transfer or some equivalent capability. This may be adequate
for a stable network with sufficient storage resources, but is
not when the source rate exceeds the network delivery rate
beyond the network’s buffering capability. This is, in essence,
the main problem of DTN congestion.
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Of course, congestion control is a major area of study
in computer networking. It has been explored much less
extensively in DTNs, with only a few papers having been
published (see [16] and [17]). The DTN architecture spec-
ification [2] indicates congestion is still a topic “on which
considerable debate ensues.” DTN congestion occurs when
storage resources become scarce due to the presence of too
much bundle data or too many bundle fragments. A node
experiencing these situations has several options to mitigate
the situation, in the following order of preference: drop ex-
pired bundles, move bundles somewhere else, cease accepting
bundles with custody transfer, cease accepting regular bundles,
drop unexpired bundles, and drop unexpired bundles for which
the node has custody.
Given that expired bundles are subject to being discarded

prior to the onset of congestion, there may be no such bundles
to discard. Moving bundles somewhere else may involve
interaction with routing computations; this is a reasonable
approach if storage exists near the congestion point, and is the
subject of [16]. It is also straightforward to cease accepting
bundles with custody. This amounts to a form of flow control
operating at the (DTN) hop-by-hop layer, and can result in
backlogs of custody transfers as they accumulate upstream
of congested nodes. To cease accepting regular bundles, the
node essentially disconnects from its neighbors for some
period of time. DTN tolerates such disconnections, but doing
so can once again result in upstream congestion. The last
two options are the least attractive, with the very last being
all but prohibited. Dropping unexpired bundles results in a
less predictable network from an end-user perspective, as the
bundle lifetime capability is essentially disabled. While some
protocol could be developed to propagate the policy-based
early expiration times implemented by certain nodes, this has
received no attention to date. Discarding bundles for which a
node has taken custody defeats much of the delay tolerant
aspects of DTN (but not the heterogeneity support). DTN
attempts to provide a delivery abstraction similar to a trusted
mail delivery service; discarding custody bundles is clearly
antithetic to this goal.
Even after several years of design, the value of custody

transfer and behavior of DTN congestion remains to be fully
understood. It is likely these will remain poorly understood
until the DTN architecture is more widely deployed and carries
significant traffic loads. This is not entirely surprising, as a
similar story arose in the early history of the Internet. The
original TCP protocol specification included no management
of congestion, and the problem remained poorly understood
(and largely unrecognized) until the late 1980’s, more than 10
years after the first experiments with Internet technology were
performed.

VII. SECURITY

DTN security has evolved over the years. Initially, when
designing for the IPN, most of the focus was on so-called
“security policy gateways,” that would roughly control access
to the space-segment of the network. Controlling access to
that part of the network was the most important security
control point, but once traffic entered, it was presumed to be

authorized and so there was little or no need for cryptographic
mechanisms to be defined as part of the bundle protocol [1].
At around that time, the idea of cryptographic authentication

protecting only the headers was proposed. The logic was
that protection of the entire payload might be expensive (in
CPU terms) and that once the header was protected then the
bundle as a whole could be authenticated as being “wanted
traffic” as opposed to unwanted traffic. However, while this
would be reasonable for the space segment of an IPN, it
ignored the existence of intermediate hosts that are not part
of the DTN (e.g., IP routers) that, if subverted, could then
modify the bundle payload. This demonstrated the need for
additional work to define a more fully-featured set of security
mechanisms.
Today, the DTN bundle security protocol specification [18]

defines basic data integrity and confidentiality mechanisms
for bundles. The approach defines two different data integrity
blocks: one for end-to-end integrity, and a separate one for
hop-by-hop integrity (between adjacent DTN nodes). The
rationale for the separation is to provide for different types
of canonicalization and key management that are likely to be
used for hop-by-hop vs. end-to-end cryptographic services.
Some DTNs (e.g., wireless sensor networks) may involve

nodes that are extremely challenged in CPU terms, or more
likely, in key management terms, and so cannot themselves
encrypt, decrypt, sign or verify bundles. In addition, there
may be some DTNs in which portions of the physical net-
work topology are contained in physically secured facilities.
Cryptographic protection at the bundle layer may not be
necessary in these network segments. For these reasons, DTN
security allows for intermediate DTN nodes (between the
source and destination) to apply or check the validity of the
cryptographic credentials. The relevant nodes in these cases
are referred to as the security source and security destination,
respectively, which can differ from the bundle source and
destination. Whether or not these features prove useful in
future DTN pilots remains to be seen, but they do represent
subtle differences from how cryptographic services are used
in most networks today.
There are a number of open issues in DTN security [4],

some of which may be more tractable than others. First, the in-
teraction of fragmentation and the application of cryptographic
mechanisms can be challenging, as mentioned in Section IV-B.
Given that support for cryptographic services is optional, then
it is possible that a set of fragments could be reassembled
where one of the fragments contains ciphertext. Clearly such
combinations are a concern, and additional deployment experi-
ence will be required before we can confidently select between
the various restrictions that might ameliorate these problematic
situations. As discussed earlier, the current approach uses
counter-mode ciphersuites only.
While the bundle security protocol defines cryptographic

services, it does not (yet) provide any way to manage the
required keys. Work on this is only really now beginning and
various fairly standard approaches will have to be considered
before some solutions are chosen. Of course, any solutions
need to be appropriate for operation in DTN environments,
where regular low-latency communication may be infrequent.
The last area of security that warrants further study is a
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model for the authorization of traffic in DTNs that would be
analogous to how the problem of authentication, authorization
and accounting (AAA) is handled in the Internet today. Again,
work here is just beginning, but in a sense this represents a
full-circle: we now (almost) have sufficient basic mechanisms
in place to finally tackle what was always going to be a major
security problem in DTNs, as it is in Internet: the problem of
unwanted traffic [19].

VIII. FUTURE WORK

We have already discussed a number of areas where more
work is required before we can consider the DTN architecture
to be well-tested. These include routing, security, and conges-
tion management. An additional area of concern is the API
by which applications make use of the DTN architecture and
its capabilities.
For routing, although a significant number of approaches

have been discussed in the literature, relatively few have been
demonstrated in live implementations (see [20] and [21]
for notable exceptions), and none have been demonstrated at
large scale in realistic environments. Combining traditional
store and forward routing with store-carry-forward routing has
also received relatively little attention beyond the academic
literature.
In security, while we expect to see good progress on basic

key management, we have yet to really see DTN security be
shown to be robust, especially when faced with the types of
attacks that are daily occurrences on the Internet. It will be
interesting to see how well the DTN architecture, which sup-
ports a hop-by-hop security mechanism, holds up against such
attacks, and in particular how robust DTN nodes will prove
against denial-of-service attacks. When network capacity is
scarce or connectivity is infrequent, the impact of denial-of-
service attacks will likely be more devastating as compared
with a well-connected Internet host.
Congestion management is an issue that has been raised

since the earliest days of the IPN and DTN designs, yet has
received relatively little attention. Perhaps this situation is the
result of insufficient use (there is no significant congestion
on links with low duty cycle), or perhaps this problem
is so formidable that solutions remain elusive. Without the
conventional type of low-latency feedback available in ordi-
nary networks, congestion management and control can be
exceedingly difficult. The approaches suggested to date tend
to involve either allocated credits that are carried in packets
in exchange for storage over time or mechanisms designed
to offload congested nodes using storage available in local
neighborhoods. The former approach requires some form of
storage economy that seems independently challenging to
construct, while the latter approach is useful only in cases
where a sufficiently dense neighborhood to a congested node
is available.
More work on the integration of DTN protocols with real

world applications is needed to evaluate the success of the
DTN approach. This need has motivated an investigation
into asynchronous APIs that support not only DTN but also
other recent network architecture proposals [22]. With a move
toward time-decoupled interaction between clients and server,

storage within the network becomes a central focus, and the
behavior of custodians requires further investigation. Espe-
cially interesting may be how to manage the storage utilization
at intermediate nodes or custodians among competing entities.
Once again, economics may play a significant role here.
Methods for interfacing the bundle protocol with appli-

cations that assume current Internet naming and addressing
schemes are also required. This suggests the need to construct
a set of proxies, acting as both Internet and DTN applications,
capable of translating the semantics of various existing pro-
tocols to and from DTN delay-tolerant environments. While
constructing such proxies can range from the simple (email)
to the nearly impossible (VoIP), a reasonable set of about half
a dozen such proxies seems appropriate to begin vetting the
basic ideas.
Finally, it remains to be determined whether some approach

other than DTN is sufficient to handle the types of hetero-
geneity and disruption DTN is attempting to mitigate. For
example, much work had gone into specific protocols for
sensor networks that suffer from various problems (high loss,
low power, low node capability, etc), yet a significant portion
of that community is now changing its focus to supporting
the IP/IPv6 protocols, but with accompanying routing changes
to handle the high degree of loss and low power operation
expected from networks of low-capability devices.
Beyond the areas known to require additional study and

experience, there are mechanisms within the DTN architecture
that could be causes for future problems. For example, while
the DTN reporting mechanism has been found to be very
useful in interoperability testing, lax use of this feature might
overwhelm some disrupted links with excessive reports when
deployed in real networks. In addition, the ability for DTN to
store data for significant periods of time until network con-
nectivity is re-established can lead to high-rate transmissions
at the time of re-attachment. For sufficiently robust receivers,
this is not a significant problem, but for others such bursty
data transmissions can pose scheduling and resource allocation
issues.

IX. CONCLUSION

Designing the DTN architecture was, in part, an exercise in
recognizing one’s personal assumptions about how networks
operate in light of a broad set of operating environments to
which most network designers are not accustomed. Given
vast experience with the TCP/IP protocol architecture accu-
mulated to date, it is easy to take many of its features as
requirements for any network architecture, yet this is not
always the appropriate course of action. For example, core
IP assumptions about network connectivity and routing, use
of relatively small packets, lack of persistent node storage,
universal global addressing and end-to-end reliability have all
been modified in designing the DTN architecture that must
operate in a wider range of environments and with a potentially
wide range of otherwise incompatible equipment.
The DTN architecture and its supporting bundle protocol,

while having been developed over a number of years, are
still relatively young. A few real-world deployments of the
architecture have been tested successfully, but these have all
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been temporary activities and have not been incorporated into
mission-critical long-running applications. Perhaps surpris-
ingly, after establishing most of DTN’s core concepts (bundles,
fragmentation, custody transfer, naming, etc), the architecture
has undergone few radical changes, although modest changes
have been made when authentication and confidentiality capa-
bilities were brought into the model. It may yet be that further
modest, or even major, ideological change will be required in
fully implementing a delay tolerant multicasting capability,
but whether this will have any profound effect on the bundle
protocol remains to be seen and seems unlikely.
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