Contents

1. Introduction and summary 2
2. Bound state representations 7
2.1 Centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra 8
2.2 The atypical totally symmetric representation 9
2.3 The rapidity torus 12
3. S-matrix in the superspace 13
3.1 Operator realization of $\mathfrak{s u}(2 \mid 2)_{\mathcal{C}} \quad 13$
3.2 S-matrix operator 15
3.3 Matrix form of the S-matrix 19
3.4 General properties of S-matrix 20
4. S-matrices $\quad 27$
4.1 The S-matrix $S^{A A}$
4.2 The S-matrix $\mathrm{S}^{A B}$
4.3 The S-matrix $\mathbf{S}^{B B} \quad 33$
5. Crossing symmetry 37
5.1 String S-matrix 37
5.2 Crossing symmetry equations for the S-matrices 40
6. Appendices 45
6.1 The S-matrix $\mathrm{S}^{A B} 45$
6.1.1 Invariant differential operators for $\mathrm{S}^{A B}$
6.1.2 Coefficients of $\mathrm{S}^{A B} 47$
6.1.3 Matrix form of invariant differential operators Λ_{k}
6.2 The S-matrix $\mathbf{S}^{B B} 50$
6.2.1 Invariant differential operators for $\mathbf{S}^{B B} \quad 50$
6.2.2 Coefficients of the S-matrix $\mathrm{S}^{B B} 53$
6.2.3 Matrix form of invariant differential operators $\Lambda_{k} 57$

1. Introduction and summary

It has been recognized in recent years that the S -matrix approach provides a powerful tool to study the spectra of both the $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ superstring and the dual gauge theory []]- [8]. In the physical (light-cone) gauge the Green-Schwarz string sigma-model [9] is equivalent to a non-trivial massive integrable model of eight bosons and eight fermions [10, 11. The corresponding scattering matrix, which arises in the infinitevolume limit, is determined by global symmetries almost uniquely [8, 12], up to an overall dressing phase (4] and the choice of a representation basis. A functional form of the dressing phase in terms of local conserved charges has been bootstrapped [4] from the knowledge of the classical finite-gap solutions [13. Combining this form with the crossing symmetry requirement [14], one is able to find an exact, i.e. nonperturbative in the coupling constant, solution for the dressing phase 15 which exhibits remarkable interpolation properties from strong to weak coupling [16]. The leading finite-size corrections to the infinite-volume spectrum are encoded into a set of asymptotic Bethe Ansatz equations [6] based on this S-matrix.

In more detail, a residual symmetry algebra of the light-cone Hamiltonian \mathbb{H} factorizes into two copies of the superalgebra $\mathfrak{s u}(2 \mid 2)$ centrally extended by two central charges, the latter depend on the operator \mathbb{P} of the world-sheet momentum [17]. Correspondingly, the S-matrix factorizes into a product of two S-matrices $\mathbb{S}^{A A}$, each of them scatters two fundamental supermultiplets A. Up to a phase, the S-matrix $\mathbb{S}^{A A}$ is determined from the invariance condition which schematically reads as

$$
\mathbb{S}^{A A} \cdot \mathbb{J}_{12}=\mathbb{J}_{21} \cdot \mathbb{S}^{A A}
$$

where \mathbb{J}_{12} is a symmetry generator in the two-particle representation.
As in some quantum integrable models, it turns out that, in addition to the supermultiplet of fundamental particles, the string sigma-model contains an infinite number of bound states [18]. They manifest themselves as poles of the multi-particle S-matrix built over $\mathbb{S}^{A A}$. The representation corresponding to a bound state of M fundamental particles constitutes a short 4 M - dimensional multiplet of the centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra 19,20 . It can be obtained from the \mathbf{M}-fold tensor product of the fundamental multiplets by projecting it on the totally symmetric component. A complete handle on the string asymptotic spectrum and the associated Bethe equations requires, therefore, the knowledge of the S-matrices which describe the scattering of bound states. This is also a demanding problem for understanding the finite-size string spectrum within the TBA approach [21].

A well-known way to obtain the S-matrices in higher representations from a fundamental S-matrix is to use the fusion procedure [22]. A starting point is a multi-particle S-matrix

$$
\mathbb{S}_{a 1}\left(\mathrm{p}, \mathrm{p}_{1}\right) \mathbb{S}_{a 2}\left(\mathrm{p}, \mathrm{p}_{2}\right) \ldots \mathbb{S}_{a M}\left(\mathrm{p}, \mathrm{p}_{M}\right)
$$

$\square \square$
of the associated transfer-matrices, we fist have to make sure that the corresponding scattering matrices do exist and they satisfy the expected properties.

The aim of this paper is to develop a new operator approach to deal with the bound state representations. This approach provides an efficient tool to solve both the invariance conditions and the YB equations and, therefore, to determine the S-matrices $\mathbb{S}^{M N}$, at least for sufficiently low values of M and N .

Our construction relies on the observation that the M -particle bound state representation \mathscr{V}^{M} of the centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra can be realized on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables, \mathbf{w}_{a} and θ_{α}, respectively. Thus, the representation space is identical to an irreducible short superfield $\Phi_{M}(\mathbf{w}, \theta)$. In this realization the algebra generators are represented by linear differential operators \mathbb{J} in \mathbf{W}_{a} and θ_{α} with coefficients depending on the representation parameters (the particle momenta). More generally, we will introduce a space \mathscr{D}_{M} dual to \mathscr{V}^{M}, which can be realized as the space of differential operators preserving the homogeneous gradation of $\Phi_{M}(\mathbf{w}, \theta)$. The S-matrix $\mathbb{S}^{M N}$ is then defined as an element of

$$
\operatorname{End}\left(\mathscr{V}^{M} \otimes \mathscr{V}^{N}\right) \approx \mathscr{V}^{M} \otimes \mathscr{V}^{N} \otimes \mathscr{D}_{M} \otimes \mathscr{D}_{N}
$$

On the product of two superfields $\Phi_{M}\left(\mathbf{w}^{1}, \theta^{1}\right) \Phi_{N}\left(\mathbf{w}^{2}, \theta^{2}\right)$ it acts as a differential operator of degree $\mathbf{M}+\mathbf{N}$. We require this operator to obey the following intertwining property

$$
\mathbb{S}^{M N} \cdot \mathbb{J}_{12}=\mathbb{J}_{21} \cdot \mathbb{S}^{M N}
$$

which is the same invariance condition as before but now implemented for the bound state representations. For two $\mathfrak{s u}(2)$ subgroups of $\mathfrak{s u}(2 \mid 2)$ this condition literally means the invariance of the S-matrix, while for the supersymmetry generators it involves the brading (non-local) factors to be discussed in the main body of the paper. Thus, the S-matrix is an $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$-invariant element of $\operatorname{End}\left(\mathscr{V}^{M} \otimes \mathscr{V}^{N}\right)$ and it can be expanded over a basis of invariant differential operators Λ_{k} :

$$
\mathbb{S}^{M N}=\sum_{k} \mathrm{a}_{k} \Lambda_{k}
$$

As we will show, it is fairly easy to classify the differential $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$ invariants Λ_{k}. The coefficients a_{k} are then partially determined from the remaining invariance conditions with the supersymmetry generators. It turns out, however, that if the tensor product $\mathscr{V}^{M} \otimes \mathscr{V}^{N}$ has m irreducible components then $\mathrm{m}-1$ coefficients a_{k} together with an overall scale are left undetermined from the invariance conditions and to find them one has to make use of the YB equations. This completes the discussion of our general strategy for a search of $\mathbb{S}^{M N}$. The operator formalism can be easily implemented in the Mathematica program and it reduces enormously a
computational time, therefore, we give it a preference in comparison to the matrix approach.

Having established a general framework, we will apply it to construct explicitly the operators $\mathbb{S}^{A B}$ and $\mathbb{S}^{B B}$, which are the S-matrices for scattering processes involving the fundamental multiplet A and a multiplet B corresponding to the twoparticle bound state. We will show that $\mathbb{S}^{A B}$ is expanded over a basis of 19 invariant differential operators Λ_{k} and all the corresponding coefficients a_{k} up to an overall normalization are determined from the invariance condition. Construction of $\mathbb{S}^{B B}$ involves 48 operators Λ_{k}. This time, two of a_{k} 's remain undetermined by the invariance condition, one of them corresponding to an overall scale. As to the second coefficient, we find it by solving the YB equations. It is remarkable that with one coefficient we managed to satisfy two YB equations: One involving $\mathbb{S}^{A B}$ and $\mathbb{S}^{B B}$, and the second involving $\mathbb{S}^{B B}$ only. This gives an affirmative answer to the question about the existence of the scattering matrices for bound states.

Recall that the universal cover of the parameter space describing the fundamental representation of the centrally extended $\mathfrak{s u}(2 \mid 2)$ is an elliptic curve (a generalized rapidity torus with real and imaginary periods $2 \omega_{1}$ and $2 \omega_{2}$, respectively) [14. Since the particle energy and momentum are elliptic functions with the modular parameter $-4 \mathbf{g}^{2}$, where g is the coupling constant, the fundamental S -matrix $\mathbb{S}^{A A}$ can be viewed as a function of two variables \mathbf{Z}_{1} and \mathbf{Z}_{2} with values in the elliptic curve. Analogously, the \mathbf{M}-particle bound state representation can be uniformized by an elliptic curve but with another modular parameter $-4 \mathbf{g}^{2} / \mathbf{M}^{2}$. Correspondingly, in general $\mathbb{S}^{M N}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)$ is a function on a product of two tori with different modular parameters.

In a physical theory, in addition to the YB equation, the operators \mathbb{S} must satisfy a number of important analytic properties. Regarding \mathbb{S} as a function of generalized rapidity variables, we list them below.

- Generalized Physical Unitarity

$$
\mathbb{S}\left(\mathbf{z}_{1}^{*}, \mathbf{z}_{2}^{*}\right)^{\dagger} \cdot \mathbb{S}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\mathbb{I}
$$

- CPT Invariance

$$
\mathbb{S}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)^{T}=\mathbb{S}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)
$$

- Parity Transformation Rule

$$
\mathbb{S}^{-1}\left(\mathbf{Z}_{1}, \mathbf{z}_{2}\right)=\mathbb{S}\left(-\mathbf{Z}_{1},-\mathbf{z}_{2}\right)^{\mathscr{P}}
$$

- Crossing Symmetry

$$
\mathbb{S}^{c_{1}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \mathbb{S}\left(\mathbf{z}_{1}+\mathrm{d} \text { (6)d } \mathrm{d}\right.
$$

the S-matrix $\mathbb{S}^{M N}$ without appealing to the YB equations. Concerning the universal R-matrix, would it exist, one could use it to deduce all the bound states S-matrices $\mathbb{S}^{M N}$ and the fusion procedure would not be required. Due to non-invertibility of the Cartan matrix for $\mathfrak{s u}(2 \mid 2)$, existence of the universal R-matrix remains an open problem. On the other hand, at the classical level [32] one is able to identify a universal analogue of the classical r-matrix [33, 34]. It is of interest to verify if the semi-classical limit of our S-matrices agrees with this universal classical r-matrix [35].

As was explained in [21], to develop the TBA approach for $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ superstring one has to find the scattering matrices for bound states of the accompanying mirror theory. The bound states of this theory are "mirrors" of those for the original string model. Moreover, the scattering matrix of the fundamental mirror particles is obtained from $\mathbb{S}^{A A}$ by the double Wick rotation. The same rotation must also relate the S-matrices of the string and mirror bound states, which on the rapidity tori should correspond to shifts by the imaginary quarter-periods.

The leading finite-size corrections [36]-38] to the dispersion relation for fundamental particles (giant magnons [39]) and bound states can be also derived by applying the perturbative Lüscher approach 40, which requires the knowledge of the fundamental S-matrix 41-45]. It is quite interesting to understand the meaning of the bound state S-matrices in the Lüscher approach and use them, e.g., to compute the corrections to the dispersion relations corresponding to string bound states.

Let us mention that our new S-matrices might also have an interesting physical interpretation outside the framework of string theory and the AdS/CFT correspondence [46]. Up to normalization, $\mathbb{S}^{A A}$ coincides [19, 25] with the Shastry R-matrix [17] for the one-dimensional Hubbard model. The operators $\mathbb{S}^{A B}$ and $\mathbb{S}^{B B}$ might have a similar meaning for higher Hubbard-like models describing the coupling of the Hubbard electrons to matter fields. Also, the representation of the S-matrices in the space of symmetric polynomials we found provides a convenient starting point for a search of possible q-deformations [48]. The space of symmetric polynomials admits a natural q-deformation with the corresponding symmetry algebra realized by difference operators. It would be interesting to find the q-deformed versions of $\mathbb{S}^{A B}$ and $\mathbb{S}^{B B}$ along these lines.

2. Bound state representations

In this section we discuss the atypical totally symmetric representations of the centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra which are necessary to describe bound states of the light-cone string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. These representations are $2 \mathrm{M} \mid 2 \mathrm{M}$-dimensional, and they are parameterized by four parameters a, b, c, d which are meromorphic functions on a rapidity torus.

2.1 Centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra

The centrally extended $\mathfrak{s u}(2 \mid 2)$ algebra which we will denote $\mathfrak{s u}(2 \mid 2)_{\mathcal{C}}$ was introduced in [8]. It is generated by the bosonic rotation generators $\mathbb{L}_{a}{ }^{b}, \mathbb{R}_{\alpha}{ }^{\beta}$, the supersymmetry generators $\mathbb{Q}_{\alpha}{ }^{a}, \mathbb{Q}_{a}^{\dagger \alpha}$, and three central elements \mathbb{H}, \mathbb{C} and \mathbb{C}^{\dagger} subject to the following relations

$$
\begin{array}{ll}
{\left[\mathbb{L}_{a}{ }^{b}, \mathbb{J}_{c}\right]=\delta_{c}^{b} \mathbb{J}_{a}-\frac{1}{2} \delta_{a}^{b} \mathbb{J}_{c},} & {\left[\mathbb{R}_{\alpha}{ }^{\beta}, \mathbb{J}_{\gamma}\right]=\delta_{\gamma}^{\beta} \mathbb{J}_{\alpha}-\frac{1}{2} \delta_{\alpha}^{\beta} \mathbb{J}_{\gamma},} \\
{\left[\mathbb{L}_{a}{ }^{b}, \mathbb{J}^{c}\right]=-\delta_{a}^{c} \mathbb{J}^{b}+\frac{1}{2} \delta_{a}^{b} \mathbb{J}^{c},} & {\left[\mathbb{R}_{\alpha}{ }^{\beta}, \mathbb{J}^{\gamma}\right]=-\delta_{\alpha}^{\gamma} \mathbb{J}^{\beta}+\frac{1}{2} \delta_{\alpha}^{\beta} \mathbb{J}^{\gamma},} \\
\left\{\mathbb{Q}_{\alpha}{ }^{a}, \mathbb{Q}_{b}^{\dagger \beta}\right\}=\delta_{b}^{a} \mathbb{R}_{\alpha}{ }^{\beta}+\delta_{\alpha}^{\beta} \mathbb{L}_{b}{ }^{a}+\frac{1}{2} \delta_{b}^{a} \delta_{\alpha}^{\beta} \mathbb{H}, \\
\left\{\mathbb{Q}_{\alpha}{ }^{a}, \mathbb{Q}_{\beta}{ }^{b}\right\}=Q_{\alpha \beta} \text { Q }^{a b} \mathbb{C}, \quad\left\{\mathbb{Q}_{a}^{\dagger \alpha}, \mathbb{Q}_{b}^{\dagger \beta}\right\}=Q_{a b} Q^{\alpha \beta} \mathbb{C}^{\dagger} . \tag{2.1}
\end{array}
$$

Here the first two lines show how the indices C and Y of any Lie algebra generator transform under the action of $\mathbb{L}_{a}{ }^{b}$ and $\mathbb{R}_{\alpha}{ }^{\beta}$. For the $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string model the central element \mathbb{H} is hermitian and is identified with the world-sheet light-cone Hamiltonian, and the supersymmetry generators $\mathbb{Q}_{\alpha}{ }^{a}$ and $\mathbb{Q}_{a}^{\dagger \alpha}$. The central elements \mathbb{C} and \mathbb{C}^{\dagger} are hermitian conjugate to each other: $\left(\mathbb{Q}_{\alpha}{ }^{a}\right)^{\dagger}=\mathbb{Q}_{a}^{\dagger \alpha}$. It was shown in 17] that the central elements \mathbb{C} and \mathbb{C}^{\dagger} are expressed through the world-sheet momentum \mathbb{P} as follows

$$
\begin{equation*}
\mathbb{C}=\frac{i}{2} \mathbf{g}\left(\mathrm{e}^{i \mathbb{P}}-1\right) \mathrm{e}^{2 i \xi}, \quad \mathbb{C}^{\dagger}=-\frac{\mathrm{i}}{2} \mathbf{g}\left(\mathrm{e}^{-i \mathbb{P}}-1\right) \mathrm{e}^{-2 i \xi}, \quad \mathbf{g}=\frac{\sqrt{\lambda}}{2 \pi} \tag{2.2}
\end{equation*}
$$

If we now require that the new central charges $\widetilde{\mathbb{C}}$ and $\widetilde{\mathbb{C}}^{\dagger}$ vanish, while the transformed supercharges $\widetilde{\mathbb{Q}}$ and $\widetilde{\mathbb{Q}}^{\dagger}$ are hermitian conjugate to each other, we find

$$
\mathrm{u}_{1}=\mathrm{v}_{1}=\frac{1}{\sqrt{2}} \sqrt{1+\frac{\mathbb{H}}{\sqrt{\mathbb{H}^{2}-4 \mathbb{C}^{\dagger}}}}
$$

and similar formulas for $\mathbb{R}_{\alpha}{ }^{\beta}$

$$
\begin{aligned}
& \mathbb{R}_{\alpha}{ }^{\beta} \mathbf{j}{ }_{c_{1} c_{2}} c_{M} \mathbf{i}=0 \\
& \mathbb{R}_{\alpha}{ }^{\beta} \mathbf{j}{ }_{c_{1} c_{2}} c_{M-2} \gamma_{1} \gamma_{2} \mathbf{i}={ }_{\gamma_{1}}^{\beta} \mathbf{j} c_{c_{1}} c_{M-2} \alpha \gamma_{2} \\
& \mathbf{i} \\
& \mathbb{R}_{\alpha}{ }^{\beta}{ }^{c_{1} c_{2}}{ }_{c_{M-1} \gamma}{ }_{\gamma_{2}}^{\beta} \mathbf{j}{ }_{c_{1}}{ }_{c_{1}}{ }_{c_{M-2} \gamma_{1} \alpha} \mathbf{j}{ }_{c_{1}} c_{c_{M-1} \alpha} \mathbf{i}-\frac{1}{2}{ }_{\alpha}^{\beta}{ }_{\alpha}^{\beta} \mathbf{j}{ }_{c_{1}} c_{c_{1}} c_{M-2} c_{M-1} \gamma_{1} \gamma_{2} \\
& \mathbf{i}
\end{aligned}
$$

Then the most general action of supersymmetry generators compatible with the su(2) symmetry is of the form

$$
\left.\begin{array}{l}
\mathbb{Q}_{\alpha}{ }^{\mathbf{j}}{ }_{c_{1} c_{2}} c_{M} \mathbf{i}={ }_{1}\left(\begin{array}{l}
a \\
c_{1} \\
\mathbf{j} \\
c_{2}
\end{array} c_{M \alpha} \mathbf{i}+{ }_{c_{2}}^{a} \mathbf{j}_{c_{1}} c_{M} \alpha\right. \\
\mathbf{i}+
\end{array}\right) .
$$

where the constants $1 x_{2}$

$$
\begin{aligned}
& \text { 二 二- - } \quad \text { 二- } \quad \text { - }- \\
& \begin{array}{ccc}
& - & \\
& & \square \\
- & & \\
- & - & - \\
& \square & - \\
& & - \\
& -
\end{array}
\end{aligned}
$$

$\square \square$
$-\quad$
\square
\square

2.3 The rapidity torus

The other important property of the string choice for the phase is that it is only with this choice the parameters a b c d are meromorphic functions of the torus rapidity variable [14. Let us recall that the dispersion formula

$$
\begin{equation*}
(-)^{2}-4(-)^{2} \sin ^{2} \overline{2}=1 \tag{2.12}
\end{equation*}
$$

suggests the following natural parametrization of the energy and momentum in terms of Jacobi elliptic functions

$$
\begin{equation*}
=2 \mathrm{am} \quad \sin \overline{2}=\operatorname{sn}(\quad) \quad=\operatorname{dn}(\quad) \tag{2.13}
\end{equation*}
$$

where we introduced the elliptic modulus ${ }^{6}=-4^{2} \quad 2 \quad 0$. The corresponding torus has two periods 21_{1} and $2{ }_{2}$, the first one is real and the second one is imaginary

$$
2_{1}=4 \mathrm{~K}\left(\mathrm{)} \quad 2_{2}=4 \mathrm{~K}(1-)-4 \mathrm{~K}(\mathrm{)}\right.
$$

where $\mathrm{K}(\mathrm{)}$ stands for the complete elliptic integral of the first kind. The rapidity torus is an analog of the rapidity plane in two-dimensional relativistic models. Note, however, that the elliptic modulus and the periods of the torus depend on the dimension of the symmetric representation.

In this parametrization the real -axis is the physical one because for real values of the energy is positive and the momentum is real due to

$$
1 \leq \operatorname{dn}(\quad) \leq{ }^{\mathrm{p}-} \quad 2 \mathbb{R}
$$

where $\equiv 1-$ is the complementary modulus.
The representation parameters, which are subject to the constraint (2.9) can be also expressed in terms of Jacobi elliptic functions as

$$
\begin{equation*}
=\frac{\mathrm{cn}}{2}\left(\frac{\mathrm{cn}}{\mathrm{sn}} \pm\right)(1+\mathrm{dn}) \tag{2.14}
\end{equation*}
$$

Then, as was mentioned above, the S-matrix acts in the tensor product of two symmetric representations with parameters $={ }^{2 i \xi}$ equal to either ${ }^{i p_{2}}$ or ${ }^{i p_{1}}$, and, therefore, the factor ${ }^{i \xi}$ which appears in the expression (2.11) for is a meromorphic function of the torus rapidity variable. Thus, if the parameter is a meromorphic function of then the parameters a b c d of the symmetric representation also are meromorphic functions of . Indeed, as was shown in [21], one can resolve the branch cut ambiguities of by means of the following relation

$$
\begin{equation*}
\frac{i}{4} p \sqrt{()-\quad+()}=\stackrel{\mathrm{P}_{\overline{2}}^{2}}{\mathrm{P}_{-}} \frac{\operatorname{dn} \frac{z}{2}\left(\operatorname{cn} \frac{z}{2}+\operatorname{sn} \frac{z}{2} \operatorname{dn} \frac{z}{2}\right)}{1+\frac{4 g^{2}}{M^{2}} \operatorname{sn}^{4} \frac{z}{2}} \equiv(\quad) \tag{2.15}
\end{equation*}
$$

${ }^{6}$ Our convention for the elliptic modulus is the same as accepted in the Mathematica program, e.g., $\operatorname{sn}(z, k)=J \operatorname{acobiSN}[z, k]$.
valid in the region $-\frac{\omega_{1}}{2} \quad \operatorname{Re} \quad \frac{\omega_{1}}{2}$ and $2 \quad \operatorname{Im} \quad-\quad 2$. We conclude, therefore, that with the choice of made in 21] the parameters a b c d of the symmetric representation are meromorphic functions of the torus rapidity variable . As a consequence, the S-matrix is also a meromorphic function of 1_{2} (up to a non-meromorphic scalar factor).

3. S-matrix in the superspace

In this section we identify the totally symmetric representations with the $2 \mathrm{j} 2-$ dimensional graded vector space of monomials of degree of two bosonic and two fermionic variables. The generators of the centrally extended $\mathbf{s u}(2 j 2)$ algebra are realized as differential operators acting in this space. The S-matrix is naturally realized in this framework as a differential $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ invariant operator in the tensor product of two representations.

3.1 Operator realization of $\operatorname{su}(2 \mathrm{j} 2)_{c}$

It is well-known that the $\mathbf{s u}(2)$ algebra can be realized by differential operators acting in the vector space of analytic functions of two bosonic variables $\quad 1 \quad 2$. An irreducible representation of spin is then identified with the vector subspace of monomials of degree 2 .

A similar realization also exists for the centrally extended $\operatorname{su}(2 \mathrm{j} 2)$ algebra. To this end we introduce a vector space of analytic functions of two bosonic variables a, and two fermionic variables ${ }_{\alpha}$. Since any such a function can be expanded into a sum

$$
\Phi(\quad)=\sum_{M=0} \Phi_{M}(\quad)
$$

of homogeneous symmetric polynomials of degree

$$
\Phi_{M}(\quad)={ }^{c_{1} \ldots c_{M}} c_{1} \quad c_{M}+\begin{align*}
c_{1} \ldots c_{M-1} \gamma & c_{1} \quad c_{M-1} \gamma+ \tag{3.1}\\
& +{ }^{c_{1} \ldots c_{M-2} \gamma_{1} \gamma_{2}}{ }_{c} c_{1} \quad c_{M-2} \gamma_{1} \gamma_{2}
\end{align*}
$$

the vector space is in fact isomorphic to the direct sum of all totally symmetric representations of $\operatorname{su}(2 \mathrm{j} 2)_{\mathcal{C}}$.

Then, the bosonic and fermionic generators of $\operatorname{su}(2 \mathrm{j} 2)_{\mathcal{C}}$ can be identified with
the following differential operators acting in the space

$$
\begin{align*}
& \mathbb{L}_{a}{ }^{b}={ }_{a} \bar{b}-\frac{1}{2}{ }_{a}^{b}{ }^{c} c^{c} \quad \mathbb{R}_{\alpha}{ }^{\beta}={ }_{\alpha}-\frac{1}{2}{ }_{\alpha}^{\beta}{ }_{\alpha}{ }_{\gamma}-{ }_{\gamma} \\
& \left.\mathbb{Q}_{\alpha}{ }^{a}=\mathrm{a}_{\alpha} \prod_{a}+\mathrm{b}^{a b}{ }_{\alpha \beta}{ }_{b}\right]_{\beta} \quad \mathbb{Q}_{a}{ }^{\alpha}=\mathrm{d} \quad{ }_{a} \prod_{\alpha}+\mathrm{C}_{a b}{ }^{\alpha \beta}{ }_{\beta}-{ }_{b} \\
& \mathbb{C}=\mathrm{ab}\left({ }_{a} \Psi_{a}+{ }_{\alpha}{\underset{\alpha}{\alpha}}\right) \quad \mathbb{C}=\operatorname{cd}\left({ }_{a} \widetilde{a}_{a}+{ }_{\alpha}{ }_{\alpha}\right) \\
& \mathbb{H}=(\mathrm{ad}+\mathrm{bc})\left({ }_{a} \bar{a}+{ }_{\alpha}{ }_{\alpha}\right) \tag{3.2}
\end{align*}
$$

Here we use the conventions

$$
\bar{\alpha}_{\alpha}^{\beta}+{ }_{\beta}-{ }_{\alpha}={ }_{\beta}^{\alpha} \quad \alpha \gamma \quad{ }_{\beta}^{\beta \gamma}={ }_{\alpha}^{\beta} \quad{ }_{\alpha \beta}^{\alpha \beta}={ }_{\rho}^{\alpha}{ }_{\delta}^{\beta}-{ }_{\rho}^{\beta}{ }_{\delta}^{\alpha}
$$

and the constants a b c d satisfy the only condition

$$
a d-b c=1
$$

and are obviously identified with the parameters of the totally symmetric representation we discussed in the previous section.

The representation carried by $\Phi(\quad)$ is reducible, and to single out an irreducible component one should restrict oneself to an irreducible superfield $\Phi_{M}(\quad)$ (3.1). Then the basis vectors $\mathbf{j} c_{1} c_{2} c_{M} \mathbf{i}, \boldsymbol{j} c_{1} c_{2} \quad c_{M-1} \gamma \mathbf{i}$ and $\boldsymbol{j} c_{1} c_{2} c_{M-2} \gamma_{1} \gamma_{2} \mathbf{i}$ of a totally symmetric representation should be identified with the monomials $c_{1} c_{M}$, $c_{1} \quad c_{M-1} \quad \gamma$, and $\quad c_{1} \quad c_{M-2} \quad \gamma_{1} \quad \gamma_{2}$, respectively.

One can define a natural scalar product on the vector space. One introduces the following basis of monomials

$$
\mathbf{j} \quad \mathbf{i}=m n \mu \nu \quad \begin{array}{ccccc}
m & n_{2}^{\prime} & \mu & \nu \tag{3.3}\\
\hline
\end{array}
$$

where $\geq 0=01++\quad+\quad$. This basis is assumed to be orthonormal

$$
\mathbf{h} \quad \mathbf{j} \quad \mathbf{i}={ }_{a m} b n \alpha \mu \beta \nu
$$

The normalization constants ${ }_{m n \mu \nu}$ can then be determined from the requirement of the unitarity of the representation, see e.g. 50] for the su(2) case. In particular the hermiticity condition for the generators $\mathbb{L}_{a}{ }^{b}:\left(\mathbb{L}_{a}{ }^{b}\right)=\mathbb{L}_{b}{ }^{a}$ leads to the relation 550

$$
m n \mu \nu=\left(\frac{1}{!!}\right)^{1 / 2} \quad(+)
$$

Further, the condition that the generators $\mathbb{Q}_{\alpha}{ }^{a}$ and $\mathbb{Q}_{a}{ }^{\alpha}$ are hermitian conjugate to each other fixes the normalization constants $(+)$ to coincide

$$
(-2)=(-1)=(\quad)
$$

The overall normalization constant can be set to any number, and we choose it so that the normalization constant $\quad M_{2,0,1,1}$ be equal to 1 . This gives

$$
m n \mu \nu=\left(\frac{(-2)!}{!!}\right)^{1 / 2}
$$

Having defined the scalar product, one can easily check that both the transposed and hermitian conjugate operators are obtained by using the following rules

$$
\begin{align*}
& \left({ }_{a}\right)=\Gamma_{a} \quad\left(\Gamma_{a}\right)={ }_{a} \quad(\alpha)=\frac{-}{\alpha} \quad\left(\frac{-}{\alpha}\right)={ }_{\alpha} \tag{3.4}\\
& (a)^{t}=\Gamma_{a} \quad(-)_{a}^{t}={ }_{a} \quad(\alpha)^{t}=\Gamma_{\alpha} \quad\left(\bar{\alpha}_{\alpha}\right)^{t}={ }_{\alpha}
\end{align*}
$$

that means that $\quad a \frac{\partial}{\partial w_{a}} \quad \alpha \frac{\partial}{\partial \theta_{\alpha}}$ are considered to be real. For the product of several operators the usual rules are applied: $(\mathbb{A} \mathbb{B})=\mathbb{B} \mathbb{A}$ and $(\mathbb{A} \mathbb{B})^{t}=\mathbb{B}^{t} \mathbb{A}^{t}$. In particular, by using these rules one can readily verify that the central element \mathbb{H} is hermitian, and the supersymmetry generators $\mathbb{Q}_{\alpha}{ }^{a}$ and $\mathbb{Q}_{a}{ }^{\alpha}$, and the central elements \mathbb{C} and \mathbb{C} are hermitian conjugate to each other, provided the parameters a b c d satisfy the following relations: $d=a \quad c=b$.

The basis of monomials (3.3) can be also used to find the matrix form of the algebra generators. Denoting the basis vectors of the -particle bound state representation as $\mathbf{j}{ }_{i} \mathbf{i}$, where $=14$, we can define the matrix elements of any differential operator \mathbb{O} acting in the vector space of monomials by the formula

$$
\begin{equation*}
\text { (1) } \mathbf{j}_{i} \mathbf{i}={ }_{i}^{k}() \mathbf{j}_{k} \mathbf{i} \tag{3.5}
\end{equation*}
$$

and use them to construct the matrix form of $(\mathbb{O}$

$$
\begin{equation*}
()=\sum_{i k}{ }_{i}^{k}() \quad k_{k}^{i} \tag{3.6}
\end{equation*}
$$

where $\quad{ }_{k}{ }^{i} \equiv \quad k i$ are the usual matrix unities.
Let us finally note that the $\mathbf{s l}(2)$ external automorphism of $\operatorname{su}(2 \mathrm{j} 2)_{\mathcal{c}}$ just redefines the constants a b c d as follows

$$
\begin{equation*}
\tilde{\mathrm{a}}=\mathrm{a}_{1}-\mathrm{c}_{2} \quad \tilde{\mathrm{~b}}=\mathrm{b}_{1}-\mathrm{d}_{2} ; \quad \tilde{\mathrm{c}}=\mathrm{c}_{1}-\mathrm{a}_{2} \quad \tilde{\mathrm{~d}}=\mathrm{d}_{1}-\mathrm{b}_{2} \tag{3.7}
\end{equation*}
$$

and can be used to set, e.g. $b=0=c$. This simplifies the derivation of the S-matrix.

3.2 S-matrix operator

It is clear that the graded tensor product $\mathscr{V}^{M_{1}}\left(\begin{array}{ll}1 & 1\end{array}\right) \otimes \mathscr{V}^{M_{2}}\left(\begin{array}{ll}2 & 2\end{array}\right)$ of two totally symmetric representations can be identified with a product of two superfields $\Phi_{M_{1}}$
and $\Phi_{M_{2}}$ depending on different sets of coordinates. An algebra generator acting in the product is given by the sum of two differential operators each acting on its own superfield and depending on its own set of parameters a b c d or, equivalently, on and . Given any two sets of parameters, one obtains a representation of $\mathrm{su}(2 \mathrm{j} 2)_{\mathcal{C}}$ (generically reducible) with central charges - equal to the sum of central charges of the symmetric representations: $=1+2$, and so on. The same tensor product representation can be obtained from two other symmetric representations $\mathscr{V}^{M_{1}}\left(\begin{array}{cc}1 & 1\end{array}\right) \mathscr{V}^{M_{2}}\left(\begin{array}{ll}2 & 2\end{array}\right)$ if the parameters \tilde{i}_{i} satisfy certain shortening conditions [19].

As was extensively discussed in [12], in string theory the Hilbert space of twoparticle in-states is identified with the tensor product $\mathscr{V}^{M_{1}}\left(1_{1}{ }^{i p_{2}}\right) \otimes \mathscr{V}^{M_{2}}\left(\begin{array}{l}2\end{array}\right)$, and the Hilbert space of two-particle out-states is identified with $\mathscr{V}^{M_{1}}\left(\begin{array}{ll}1 & 1\end{array}\right) \otimes \mathscr{V}^{M_{2}}\left(2^{i p_{1}}\right)$. The two Hilbert spaces are isomorphic to the product of two superfields $\Phi_{M_{1}}$ and $\Phi_{M_{2}}$, and the S -matrix \mathbb{S} is an intertwining operator

$$
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right): \quad \mathscr{V}^{M_{1}}\left(\begin{array}{ll}
1 & i p_{2}
\end{array}\right) \otimes \mathscr{V}^{M_{2}}\left(\begin{array}{ll}
2 & 1
\end{array}\right)!\quad \mathscr{V}^{M_{1}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \otimes \mathscr{V}^{M_{2}}\left(\begin{array}{ll}
& i p_{1} \tag{3.8}
\end{array}\right)
$$

It is realized as a differential operator acting on $\Phi_{M_{1}}\left(\begin{array}{cc}1 & 1 \\ a & \alpha\end{array}\right) \Phi_{M_{2}}\left(\begin{array}{cc}2 & 2 \\ a & \alpha\end{array}\right)$, and satisfying the following invariance condition

$$
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\mathbb{J}\left(l_{1}{ }^{i p_{2}}\right)+\mathbb{J}\left(\begin{array}{ll}
2 & 1
\end{array}\right)\right)=\left(\mathbb{J}\left(\begin{array}{ll}
1 & 1
\end{array}\right)+\mathbb{J}\left(2^{i p_{1}}\right)\right) \mathbb{S}\left(\begin{array}{ll}
1 & 2 \tag{3.9}
\end{array}\right)
$$

for any of the symmetry generators. Here $\mathbb{J}\left({ }_{i}\right)$ stands for any of the generators (3.2) realized as a differential operator acting on functions of $\begin{array}{cc}i \\ a & i \\ \alpha\end{array}$. The parameters a b c d of the operator coefficients are expressed through i and by means of formulae (2.8) with given by eq.(2.11).

Since $\Phi_{M_{1}} \Phi_{M_{2}}$ is isomorphic to the graded tensor product of two symmetric representations, the S-matrix operator (3.8) satisfying eq.(3.9) is analogous to the so-called fermionic -operator, see e.g. 51]. This analogy becomes even more manifest when one considers the action of \mathbb{S} on the tensor product of several symmetric representation. For this reason \mathbb{S} could be also called the fermionic \mathbb{S}-operator. In particular, in absence of interactions, i.e. in the limit ! 1, it must reduce to the identity operator.

It is clear that for bosonic generators $\mathbb{L}_{a}{ }^{b} \mathbb{R}_{\alpha}{ }^{\beta}$ generating the $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ subalgebra, the invariance condition (3.9) takes the standard form

$$
\left[\begin{array}{lll}
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathbb{L}_{a}^{b}
\end{array}\right]=0=\left[\begin{array}{ll}
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathbb{R}_{\alpha}^{\beta} \tag{3.10}
\end{array}\right]
$$

Therefore, the S-matrix is a $\operatorname{su}(2) \oplus \mathbf{s u}(2)$-invariant differential operator which maps $\Phi_{M_{1}}\left(\begin{array}{cc}1 & 1 \\ a & \alpha\end{array}\right) \Phi_{M_{2}}\left(\begin{array}{cc}2 & 2 \\ a & \alpha\end{array}\right)$ into a linear combination of the products of two homogeneous polynomials of degree 1 and ${ }_{2}$.

Any differential operator acting in $\mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}}$ can be viewed as an element of

$$
\operatorname{End}\left(\mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}}\right) \approx \mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}} \otimes \mathscr{D}_{M_{1}} \otimes \mathscr{D}_{M_{2}}
$$

where \mathscr{D}_{M} is the vector space dual to \mathscr{V}^{M}. The dual space is realized as the space of polynomials of degree in the derivative operators $\frac{\partial}{\partial w_{a}} \frac{\partial}{\partial \theta_{\alpha}}$. A natural pairing between \mathscr{D}_{M} and \mathscr{V}^{M} is induced by $\frac{\partial}{\partial w_{a}} b={ }_{a}^{b} \frac{\partial}{\partial \theta_{\alpha}}{ }_{\beta}={ }_{\alpha}^{\beta}$. Therefore, eq.(3.10) means that the S -matrix is a $\mathrm{su}(2) \oplus \mathrm{Su}(2)$ singlet (invariant) component in the tensor product decomposition of $\mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}} \otimes \mathscr{D}_{M_{1}} \otimes \mathscr{D}_{M_{2}}$.

Thus, the S-matrix can be naturally represented as

$$
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\sum_{i} i\left(\begin{array}{ll}
1 & 2 \tag{3.11}
\end{array}\right) \Lambda_{i}
$$

where Λ_{i} span a complete basis of differential su(2) $\oplus \mathbf{S u}(2)$-invariant operators (obviously independent of $\left.\begin{array}{lll}1 & 2\end{array}\right)$, and i are coefficients of the S-matrix which could be determined from the remaining invariance conditions (3.9), and some additional requirements such as the YB equation.

The basis of the operators Λ_{i} can be easily found by first branching the symmetric representations $\mathscr{V}^{M_{1}} \mathscr{V}^{M_{2}}$ into their $\operatorname{su}(2) \oplus \mathbf{S u}(2)$ components, see eq.(3.1)

$$
\mathscr{V}^{M_{i}}=\frac{M_{i}}{2} \times \underset{(0)}{0}+\frac{M_{i}-1}{2} \times \underset{(1)}{1 / 2}+\frac{M_{i}-2}{2} \times \underset{(2)}{0}=\sum_{k=0}^{2} \frac{M_{i}-k}{2} \times \underset{(k)}{j_{k}}
$$

Here ${ }^{j}$ denotes a spin representation of $\boldsymbol{s u}(2)$ realized in the space of homogeneous symmetric polynomials of degree 2 of two bosonic variables, while $\underset{(k)}{j_{k}}$ stands for a spin k representation of $\operatorname{su}(2)$ realized in the space of homogeneous degree polynomials of two fermionic variables, so that can take only 3 values: $=012$, and ${ }_{0}=0 \quad 1=12{ }_{2}=0$.

The tensor product $\mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}}$ is then decomposed into a sum of irreducible $\mathbf{s u}(2) \oplus \mathbf{S u}(2)$ components as follows

Here $\underset{(M, N)}{\substack{j_{B} \\(M,}}$ denotes a spin ${ }_{B}$ representation of $\operatorname{su}(2)$, which is realized in the space spanned by products of degree with degree symmetric polynomials, the first one in two bosonic variables $\underset{a}{1}$ and the second in $\underset{a}{2}$. Analogously, $\underset{\left(k_{1}, k_{2}\right)}{j_{F}}$ stands for a spin ${ }_{F}$ representation of $\operatorname{su}(2)$ realized in the space of products of degree ${ }_{1}$ polynomials in two fermionic variables ${ }_{\alpha}^{1}$ with degree ${ }_{2}$ polynomials in two other fermionic variables ${ }_{\alpha}^{2}$.

Finally, the dual space $\mathscr{D}_{M_{1}} \otimes \mathscr{D}_{M_{2}}$ has a similar decomposition (3.12) in terms
 component (the invariant), the $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$-invariant differential operators simply correspond to the singlet components of the spaces ${ }^{j} \times{ }^{k} \otimes{ }^{j} \times{ }^{k}$ in the tensor product decomposition of $\mathscr{V}^{M_{1}} \otimes \mathscr{V}^{M_{2}} \otimes \mathscr{D}_{M_{1}} \otimes \mathscr{D}_{M_{2}}$.

In principle, it is not difficult to count the number of components in eq.(3.12) as well as the number of invariant operators for arbitrary $\quad 1 \quad 2$. We consider here ${ }^{7}$ only the special case of $1=1 \quad 2=$ which corresponds to the scattering of a fundamental particle with a -particle bound state. One has to consider separately three different cases: $=1, \quad=2$ and ≥ 3.

For $\quad=1$, by using (3.12), one gets

$$
\begin{align*}
\mathscr{V}^{1} \otimes \mathscr{V}^{1} & =\underset{(1,1)}{1} \times \underset{(0,0)}{0}+\underset{(0,0)}{0} \times \underset{(1,1)}{1} \tag{3.13}\\
& +\underset{(1,1)}{0} \times \underset{(0,0)}{0}+\underset{(0,0)}{0} \times \underset{(1,1)}{0}+\underset{(1,0)}{1 / 2} \times \underset{(0,1)}{1 / 2}+\underset{(0,1)}{1 / 2} \times \underset{(1,0)}{1 / 2}
\end{align*}
$$

We see that there are six components in this decomposition and they give rise to six
 the representations ${ }^{0} \times{ }^{0}$ and ${ }^{1 / 2} \times{ }^{1 / 2}$ come with multiplicity 2 , and that gives additional four \quad of the form $\underset{\left(N_{1}, N_{2}\right)}{j_{B}} \times \underset{\left(k_{1}, k_{2}\right)}{j_{F}} \underset{\left(K_{1}, K_{2}\right)}{j_{B}} \times \underset{\left(n_{1}, n_{2}\right)}{j_{F}}$ with $\mathrm{f}{ }_{i}{ }_{i} \mathrm{~g} 6 \mathrm{f}{ }_{i}{ }_{i} \mathrm{~g}$. Thus, the total number of invariant operators in the ${ }_{1}={ }_{2}=1$ case is 10.

In the case $1_{1}=1 \quad 2=2$ we get the following decomposition with the nine components

$$
\begin{align*}
& \mathscr{V}^{1} \otimes \mathscr{V}^{2}=\underset{(1,2)}{3 / 2} \times \underset{(0,0)}{0}+\underset{(0,1)}{1 / 2} \times \underset{(1,1)}{1}+\underset{(1,1)}{1} \times \underset{(0,1)}{1 / 2}+\underset{(0,2)}{1} \times \underset{(1,0)}{1 / 2} \tag{3.14}\\
& +\underset{(1,1)}{0} \times \underset{(0,1)}{1 / 2}+\underset{(0,0)}{0} \times \underset{(1,2)}{1 / 2}+\underset{(1,2)}{1 / 2} \times \underset{(0,0)}{0}+\underset{(1,0)}{1 / 2} \times \underset{(0,2)}{0}+\underset{(0,1)}{1 / 2} \times \underset{(1,1)}{0} \tag{1,1}
\end{align*}
$$

giving rise to 9 diagonal invariants. Representations ${ }^{1} \times{ }^{1 / 2}$ and ${ }^{0} \times{ }^{1 / 2}$ come with multiplicity 2 , and ${ }^{1 / 2} \times{ }^{0}$ occurs with multiplicity 3 , and that gives additional 10 off-diagonal invariants Thus, the total number of invariant operators in the ${ }_{1}=$ ${ }_{2}=1$ case is 19 .

Finally, in the case $1=1 \quad 2 \equiv 3$ we get the following decomposition over the ten components

$$
\begin{align*}
& \mathscr{V}^{1} \otimes \mathscr{V}^{M}=\underset{(1, M)}{\frac{M+1}{2}} \times \underset{(0,0)}{0}+\underset{(0, M}{ } \frac{\left.{ }_{2}\right)}{\frac{M-1}{2}} \times \underset{(1,1)}{1}+\underset{(1, M}{2)} \underset{(0,2)}{\frac{M-3}{2}} \tag{3.15}
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.+\underset{(1, M)}{\frac{M-1}{2}} \times \underset{(0,0)}{0}+\underset{(1, M}{2} 2\right) \times \underset{(0,2)}{\frac{M-1}{2}}+\underset{(0, M}{ } 1\right) \times \underset{(1,1)}{\frac{M-1}{2}}
\end{aligned}
$$

which produces 10 diagonal and 10 off-diagonal invariants. So, the total number of invariant operators in the $1_{1}=1 \quad 2 \geq 3$ case is 20 , and it is independent of ${ }_{2}$.

We will fix the normalization of diagonal invariants such that they provide the orthogonal decomposition of the identity operator

$$
\mathbb{I}=\sum \Lambda_{i}^{\text {diag }}
$$

${ }^{7}$ T he case $M_{1}=M_{2}=2$ will be discussed in detail in section 4.3.
\square
\square
\square
\square \square
also the usual matrix form of the S-matrix operator. It can be used to check such properties of the S-matrix as unitarity and crossing symmetry.

To find the matrix form of the S-matrix realized the invariant differential operator, we use the basis of monomials (3.3). Denoting the basis vectors of the 1^{-}and ${ }_{2}$-particle bound state representations as $\mathbf{j}_{i} \mathbf{i}$ and $\boldsymbol{j}_{I} \mathbf{i}$, respectively, and the basis vectors of the tensor product of these representations as $\mathbf{j}{ }_{i J} \mathbf{i}$ where $=1 \quad 4{ }_{1}$ and $=1 \quad 42_{2}$, we define the matrix elements of any operator \mathbb{O} acting in the tensor product by the formula

$$
\text { (1) } \mathbf{j}{ }_{i J} \mathbf{i}={ }_{i J}^{k L}\left(\begin{array}{ll}
1 & 2 \tag{3.19}
\end{array}\right) \mathbf{j}{ }_{k L} \mathbf{i}
$$

The elements ${ }_{i J}^{k L}$ can be now used to construct various matrix forms of \mathbb{O}. In particular, the matrix form of the S-matrix \mathbb{S} which satisfies the \quad YB equation is given by

$$
{ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\sum_{i k J L}{ }_{i J}^{k L}\left(\begin{array}{ll}
1 & 2 \tag{3.20}
\end{array}\right) k_{k}^{i} \otimes L^{J}
$$

where $\quad{ }_{k}{ }^{i} \equiv \quad k i$ are the usual matrix unities.
On the other hand, the matrix form of the S -matrix \mathbb{S} which satisfies the YB equation, see section 4.1, is obtained by multiplying ${ }_{12}^{g}$ by the graded identity ${ }_{12}^{g}=(-1)^{\epsilon_{i} \epsilon_{J}}{ }_{i}^{i} \otimes{ }_{J}^{J}$, where ${ }_{i} \quad{ }_{J}$ are equal to 0 for bosonic and to 1 for fermionic states. It is given by

$$
12\left(\begin{array}{ll}
1 & 2
\end{array}\right)= \sum_{i k J L}{ }_{i J}^{k L}\left(\begin{array}{ll}
1 & 2 \tag{3.21}
\end{array}\right)(-1)^{\epsilon_{k} \epsilon_{L}} \quad k^{i} \otimes \quad L^{J}
$$

For reader's convenience we list in appendices the matrix form of the $\mathbf{s u}(2) \oplus \mathbf{S u}(2)$ invariant differential operators expressing them as sums over symbols ${ }_{k i L J}$, the latter can be equal to either $\quad k^{i} \otimes{ }_{L}{ }^{J}$ or to $(-1)^{\epsilon_{k} \epsilon_{L}} \quad k^{i} \otimes{ }_{L}{ }^{J}$ (or anything else one wants).

3.4 General properties of S-matrix

In a physical theory the S-matrix should satisfy some general properties.
First of all, for real values of the momenta $1{ }_{2}$ or, equivalently, for the real torus rapidity variables 1_{2}, the S -matrix must be a unitary operator. Moreover, in a relativistic theory the S-matrix satisfies a more general condition $\mathbb{S}(\quad) \quad \mathbb{S}()=\mathbb{I}$ called the generalized unitarity. For a non-relativistic theory with a S-matrix depending on two parameters the condition takes the following form

$$
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad \mathbb{S}\left(\begin{array}{ll}
1 & 2 \tag{3.22}
\end{array}\right)=\mathbb{I}
$$

To analyze the generalized unitarity condition, we notice that the diagonal invariant operators can be normalized to be hermitian, and it is convenient to normalize and
order the off-diagonal invariant operators in such a way that they come in hermitianconjugate pairs

$$
\begin{equation*}
\left(\Lambda_{i}^{\text {diag }}\right)=\Lambda_{i}^{\text {diag }} \quad\left(\Lambda_{2 k}^{\text {off diag }}\right)=\Lambda_{2 k+1}^{\text {off diag }} \tag{3.23}
\end{equation*}
$$

where takes integer values if the number of diagonal operators is odd, and halfinteger values if the number of diagonal operators is even.

It is clear that the generalized unitarity condition imposes severe restrictions on the coefficients i of the S-matrix. As was shown in [21], the S-matrix of fundamental particles of the light-cone string theory satisfies the generalized unitarity only for a special choice of the parameters i of the fundamental representations. Then, the only degree of arbitrariness left is a constant unitary rotation of the basis of the fundamental representation. We will show in section 7^{7} that the bound state S matrices also satisfy the generalized unitarity condition.

In a CPT-invariant relativistic field theory the S-matrix must be a symmetric operator, and we impose the same condition on the scattering matrix for any bound states of the light-cone string theory

$$
\mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{T}=\mathbb{S}\left(\begin{array}{ll}
1 & 2 \tag{3.24}
\end{array}\right)
$$

Taking into account that, due to the definition (3.4), the transposition acts on the invariant operators in the same way as the hermitian conjugation (3.23)

$$
\left(\Lambda_{i}^{\text {diag }}\right)^{T}=\Lambda_{i}^{\text {diag }} \quad\left(\Lambda_{2 k}^{\text {off diag }}\right)^{T}=\Lambda_{2 k+1}^{\text {off diag }}
$$

we find that for a symmetric S-matrix no restriction arises on the coefficients i corresponding to the diagonal invariant operators, while the off-diagonal coefficients must satisfy the following non-trivial relations

$$
\begin{align*}
& \text { off } \tag{3.25}\\
& 2 k
\end{align*} \quad \underset{2 k+1}{\text { diag }} \underset{2 k+1}{\text { off diag }}
$$

We will see in section 4 that these relations do hold but again only with the choice of i as made in [21].

The S-matrix is an invertible operator, and one can ask whether the inverse S-matrix is related to the S-matrix itself but not through the inversion procedure. One relation has been already described above, where the inverse S-matrix is just the hermitian conjugate one. Another quite natural relation arises due to the parity transformation \mathscr{P} of the world-sheet coordinate, which changes the sign of the torus rapidity variables ${ }_{i}!-_{i}$. To describe the action of the parity transformation on the invariant operators, one notices that since they are homogeneous polynomials in fermions ${ }_{\alpha}^{i}$ and derivatives $\quad{ }_{\alpha}^{i}$, one can introduce the following natural grading on the space of invariant operators

$$
\begin{equation*}
\Lambda=\frac{1}{2}\left({ }_{\theta}-\partial / \partial \theta\right) \tag{3.26}
\end{equation*}
$$

where θ and $\partial / \partial \theta$ are the numbers of＇s and＇s occurring in an invariant operator Λ ，respectively．It is not difficult to see that the degree of any invariant operator is an integer．Furthermore，the vector space of invariant operators can be supplied with the structure of a graded algebra because

$$
\Lambda_{1} \Lambda_{2}=\Lambda_{1}+\Lambda_{2}
$$

An action of the parity transformation on any invariant operator can be defined in the following way

$$
\begin{equation*}
\Lambda^{\mathscr{D}}=(-1)^{\epsilon_{\Lambda}} \Lambda \tag{3.27}
\end{equation*}
$$

Then，the inverse operator \mathbb{S}^{1} must coincide with the parity－transformed operator

$$
\mathbb{S}^{1}\left(\begin{array}{ll}
1 & 2 \tag{3.28}
\end{array}\right)=\mathbb{S}\left(-{ }_{1}-{ }_{2}\right)^{\mathscr{P}}=\sum_{k}{ }_{k}\left(-{ }_{1}-{ }_{2}\right)(-1)^{\epsilon_{\Lambda_{k}}} \Lambda_{k}
$$

This gives a very simple way of finding the inverse S－matrix．Comparing eqs．（3．22）， （3．25）and（3．28），we obtain the following relations between the coefficients of the S－matrix

$$
k\left(\begin{array}{ll}
1 & 2 \tag{3.29}
\end{array}\right)=(-1)^{\epsilon_{\Lambda_{k}}} \quad{ }_{k}\left(-{ }_{1}-{ }_{2}\right)
$$

Coefficients of the bound state S－matrices we study in section $⿴ 囗 十$ do indeed satisfy these relations．

To discuss the next property，we need to distinguish the S－matrix $\mathbb{S}^{M N}$ which describes the scattering of a－particle bound state with a－particle one and acts as an intertwiner

$$
\mathbb{S}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\sum_{k}{ }_{k}\left(\begin{array}{ll}
1 & 2 \tag{3.30}
\end{array}\right) \Lambda_{k}: \quad \mathscr{V}^{M} \otimes \mathscr{V}^{N} \quad!\quad \mathscr{V}^{M} \otimes \mathscr{V}^{N}
$$

from the S－matrix $\mathbb{S}^{N M}$ which describes the scattering of a－particle bound state with a－particle one

$$
\mathbb{S}^{N M}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\sum_{k}{ }_{k}\left(\begin{array}{ll}
1 & 2 \tag{3.31}
\end{array}\right) \Lambda_{k}^{N M}: \quad \mathscr{V}^{N} \otimes \mathscr{V}^{M} \quad!\quad \mathscr{V}^{N} \otimes \mathscr{V}^{M}
$$

It is clear that the number of invariant operators in $\mathscr{V}^{M} \otimes \mathscr{V}^{N}$ and $\mathscr{V}^{N} \otimes \mathscr{V}^{M}$ is the same，and，moreover，if Λ_{k} acts on the products $\Phi_{M}\left(\begin{array}{ll}1 & 1 \\ a & \alpha\end{array}\right) \Phi_{N}\left(\begin{array}{cc}2 & 2 \\ a & \alpha\end{array}\right)$ then $\Lambda_{k}^{N M}$ acts on the products $\Phi_{N}\left(\begin{array}{cc}1 & 1 \\ a & \alpha\end{array}\right) \Phi_{M}\left(\begin{array}{cc}2 & 2 \\ a & \alpha\end{array}\right)$ and it is obtained from Λ_{k} by means of exchange $\quad{ }_{a}^{1} \$ \quad a_{a}^{2}{ }_{\alpha}^{1} \${ }_{\alpha}^{2}$ ．Note also that in eq．（3．30）the variable ${ }_{1}$ is the torus rapidity variable of the－particle bound state，while in eq．（3．31） 1 is the torus rapidity variable of the－particle bound state．

\square
\square

Here and in what follows for the sake of clarify we identify $\mathbb{S}^{\mathbf{1 1}} \equiv \mathbb{S}^{A A}$, etc., and we use the notation $\mathscr{V}^{1} \equiv \mathscr{V}^{A}$ for the fundamental representation, and $\mathscr{V}^{2} \equiv \mathscr{V}^{B}$ for the two-particle bound state representation.

Consistency of the truncation means that the scattering of the lower-particle bound states (one- and two- in our present context) between themselves should factorise independently of the presence/absence of the higher-particle bound states. Thus, we require $\check{\mathbb{S}}$ to satisfy the Yang-Baxter equation (3.39) which results in the following set of inequivalent equations for the individual S-matrices

$$
\begin{aligned}
& \mathbb{S}_{23}^{A A} \mathbb{S}_{13}^{A A} \mathbb{S}_{12}^{A A}=\mathbb{S}_{12}^{A A} \mathbb{S}_{13}^{A A} \mathbb{S}_{23}^{A A} \\
& \mathbb{S}_{23}^{A B} \mathbb{S}_{13}^{A B} \mathbb{S}_{12}^{A A}=\mathbb{S}_{12}^{A A} \mathbb{S}_{13}^{A B} \mathbb{S}_{23}^{A B} \\
& \mathbb{S}_{23}^{B B} \mathbb{S}_{13}^{A B} \mathbb{S}_{12}^{A B}=\mathbb{S}_{12}^{A B} \mathbb{S}_{13}^{A B} \mathbb{S}_{23}^{B B} \\
& \mathbb{S}_{23}^{B B} \mathbb{S}_{13}^{B B} \mathbb{S}_{12}^{B B}=\mathbb{S}_{12}^{B B} \mathbb{S}_{13}^{B B} \mathbb{S}_{23}^{B B}
\end{aligned}
$$

Here the first and the last equations are the standard Yang-Baxter equations for the S-matrices corresponding to scattering of the fundamental and the two-particle bound states respectively. The second and the third equations are defined in the spaces $\mathscr{V}^{A} \otimes \mathscr{V}^{A} \otimes \mathscr{V}^{B}$ and $\mathscr{V}^{A} \otimes \mathscr{V}^{B} \otimes \mathscr{V}^{B}$ correspondingly.

In the matrix language the properties of the S-matrix operator we discussed above take the following form.

$$
{ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right){ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{l}
\text {) }
\end{array}{ }_{12}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad 12\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\right.
$$

where $\quad{ }_{12}^{g}$ and $\quad 12$ are defined in (3.20) and (3.21).

$$
\left.{ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{T}={ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{l}
12
\end{array}\right) \quad{ }_{1}^{1} \begin{array}{l}
2
\end{array}\right)^{T}=\begin{aligned}
& g \\
& 12
\end{aligned} 12\left(\begin{array}{ll}
1 & 2
\end{array}\right){ }_{12}^{g}
$$

where the superscript " "denotes the usual matrix transposition. Thus, the CPT invariance just means that the graded S-matrix is symmetric.

$$
{ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{1}={ }_{12}^{g}{ }_{12}^{g}\left(-{ }_{1}-_{2}\right)_{12}^{g}() \quad{ }_{12}\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{1}={ }_{12}\left(-_{1}-{ }_{2}\right)
$$

where the parity transformation acts on the S-matrix and any invariant operator as $\binom{g}{12}^{\mathscr{P}}=\begin{array}{ccc}g & g & g \\ 12 & 12 & 12\end{array}$. This also means that in matrix language the grading of the tensor product of matrix unities $k^{i} \otimes L^{J}$ is defined to be $(-1)^{\epsilon_{k} \epsilon_{L}+\epsilon_{i} \epsilon_{J}}$.

In the general case $\quad 6$

$$
{ }_{21}^{g, N M}\left(\begin{array}{ll}
2 & 1
\end{array}\right){ }_{12}^{g, M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{l}
) \\
21
\end{array}{ }_{21}^{N M}\left(\begin{array}{ll}
2 & 1
\end{array}\right){ }_{12}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\right.
$$

where

$$
{ }_{21}^{g, N M}\left(\begin{array}{ll}
2 & 1
\end{array}\right)=\begin{array}{ll}
g \\
12 & g, N M \\
12
\end{array}\left(\begin{array}{ll}
2 & 1
\end{array}\right) \frac{g}{12}=\sum_{I K j l}{ }_{I j}^{N M K l}\left(\begin{array}{ll}
2 & 1
\end{array}\right)(-1)^{\epsilon_{K} \epsilon_{l}+\epsilon_{I} \epsilon_{j}} \quad l^{j} \otimes \quad K^{I}
$$

and $\quad \underset{12}{g}$ is the graded permutation matrix. The hermitian analyticity condition takes the form

$$
{ }_{12}^{g, M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)={ }_{21}^{g, N M}\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{l}
12
\end{array}{ }_{12}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)={ }_{21}^{N M}\left(\begin{array}{ll}
2 & 1
\end{array}\right)\right.
$$

In the case $=$, we get $\mathbb{S}^{M M}\left(\begin{array}{ll}1 & 2\end{array}\right)!\quad 12\left(\begin{array}{ll}1 & 2\end{array}\right)$, and the unitarity and hermitian analyticity conditions take the following form

$$
\left.\begin{array}{l}
{ }_{21}^{g}\left(\begin{array}{ll}
2 & 1
\end{array}\right){ }_{12}^{g}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array} { l }
{) } \\
{ g }
\end{array} \left(\begin{array}{ll}
21
\end{array} l_{2}\right.\right. \\
1
\end{array}\right) \quad{ }_{12}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=
$$

where

$$
{ }_{21}^{g}\left(\begin{array}{ll}
2 & 1
\end{array}\right)=\begin{array}{cc}
g & g \\
12 & 12
\end{array}\left(\begin{array}{ll}
2 & 1
\end{array}\right) \quad \begin{aligned}
& g \\
& 12
\end{aligned} \sum_{i k j l}{ }_{i j}^{k l}\left(\begin{array}{ll}
2 & 1
\end{array}\right)(-1)^{\epsilon_{k} \epsilon_{l}+\epsilon_{i} \epsilon_{j}} \quad l^{j} \otimes \quad k^{i}
$$

and this means that the action of the graded permutation operator P is just given by the conjugation by the graded permutation matrix.

The operator YB equation (3.39) has the same matrix form only for the S-matrix 12 defined by (3.21):

$$
23 \quad 13 \quad 12=12 \quad 13 \quad 23
$$

where to simplify the notation we omit the explicit dependence of the S-matrices on ${ }_{i}$ and ${ }_{i}$. To show this, we notice that the matrix form of the operators $\mathbb{S}_{12} \mathbb{S}_{13}$ and \mathbb{S}_{23} is

$$
\begin{array}{ll}
{ }_{12}^{\text {matr }}=
\end{array}=\begin{array}{ll}
g \\
12
\end{array} \quad{ }_{13}^{\text {matr }}=\begin{array}{cccc}
g & g & g \\
23 & 13 & 23
\end{array} \quad{ }_{23}^{\text {matr }}=\begin{array}{cccc}
g & g & g & g \\
12 & 13 & 23 & 13 \\
\hline
\end{array}
$$

where ${ }_{i j}^{g}$ denotes the usual embedding of the matrix ${ }^{g}$ into the product of three spaces. We see that the graded form of the S-matrix satisfies the following graded YB equation

$$
\begin{array}{lllllllllllllllll}
g & g & g & g & g & g & g & g & g \\
12 & 13 & 23 & 13 & 12 & 23 & 13 & 23 & 12
\end{array}=\begin{array}{llllll}
g & g & g & g & g & g \\
12 & 23 & 13 & 23 & 12 & 13 \\
23 & 13 & 12
\end{array}
$$

In terms of the S-matrix $12=\begin{array}{cc}g & G \\ 12 & 12\end{array}$ the previous equation takes the form

Taking into account the identities

$$
\quad \begin{array}{ll}
13 & g \\
12 & g \\
23
\end{array} \quad \begin{array}{ll}
12 & \\
13 & 23
\end{array}
$$

we conclude that ${ }_{12}$ satisfies the usual YB equation. This completes our discussion of the properties of the S-matrix.

4. S-matrices

In this section we discuss the explicit construction and properties of the three Smatrices describing the scattering of fundamental particles and two-particle bound states.

4.1 The S-matrix $\mathbb{S}^{A A}$

As the warm-up exercise, here we will explain how to obtain the known scattering matrix $\mathbb{S}^{A A}$ for fundamental particles $[8,12]$ in the framework of our new superspace approach.

According to our general discussion in section 3, the scattering matrix $\mathbb{S}^{A A}$ is an $\mathbf{s u}(2) \oplus \mathbf{S u}(2)$ invariant differential operator which acts on the tensor product of two fundamental multiplets

$$
\mathbb{S}^{A A}: \quad \mathscr{V}^{A} \otimes \mathscr{V}^{A} \quad!\quad \mathscr{V}^{A} \otimes \mathscr{V}^{A}
$$

Recall that

$$
\mathscr{V}^{A} \otimes \mathscr{V}^{A}=\mathscr{W}^{2}
$$

where \mathscr{W}^{2} is a long irreducible supermultiplet of dimension 16 19]. Under the action of $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ this supermultiplet branches as follows

$$
\begin{align*}
\mathscr{W}^{2}={ }^{0} \times{ }^{0}+ & { }^{0} \times{ }^{0}+{ }^{1} \times{ }^{0}+ \tag{4.1}\\
& +{ }^{0} \times{ }^{1}+{ }^{1 / 2} \times{ }^{1 / 2}+{ }^{1 / 2} \times{ }^{1 / 2}
\end{align*}
$$

The 16 -dimensional basis of the tensor product space $\mathscr{V}^{A} \otimes \mathscr{V}^{A}$

$$
\mathscr{V}^{A} \otimes \mathscr{V}^{A}=\operatorname{Span}\left\{\begin{array}{llllllll}
1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & \alpha & a & \alpha & \alpha & \beta
\end{array}\right\} \quad=12 ; \quad=34
$$

can be easily adopted to the decomposition (4.1):

$$
\begin{align*}
& \begin{array}{ll}
1 & 2 \\
a & b
\end{array}=\frac{1}{2}\left(\begin{array}{ll}
1 & 2 \\
a & b
\end{array}-\begin{array}{cc}
1 & 2 \\
b & a
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ccc}
1 & 2 \\
a & b
\end{array}+\begin{array}{ll}
1 & 2 \\
b & a
\end{array}\right) \quad!\quad\left(0^{0}+{ }^{1}\right) \times 0 \\
& \begin{array}{lllll}
1 & 2 & ! & 1 / 2 \times & 1 / 2 \\
a & \alpha & ! & 1 / 2 \times & 1 / 2 \\
2 & 1 & ! & & \\
a & \alpha & & &
\end{array} \tag{4.2}\\
& \begin{array}{ll}
1 & 2 \\
\alpha & \beta
\end{array}=\frac{1}{2}\left(\begin{array}{lll}
1 & 2 \\
\alpha & \beta
\end{array}-\begin{array}{ll}
1 & 2 \\
\alpha
\end{array}\right)+\frac{1}{2}\left(\begin{array}{llll}
1 & 2 \\
\alpha & \beta
\end{array}+\begin{array}{ll}
1 & 2 \\
\beta
\end{array}\right) \quad!\quad 0 \times\left(0^{0}+{ }^{1}\right)
\end{align*}
$$

The space \mathscr{D}_{2} of the second order differential operators dual to \mathscr{W}^{2} branches under $\mathrm{su}(2) \oplus \operatorname{su}(2)$ in the same way:

$$
\begin{align*}
\mathscr{D}_{2}={ }^{0} \times{ }^{0}+ & { }^{0} \times{ }^{0}+{ }^{1} \times{ }^{0}+ \tag{4.3}\\
& +{ }^{0} \times{ }^{1}+{ }^{1 / 2} \times{ }^{1 / 2}+{ }^{1 / 2} \times{ }^{1 / 2}
\end{align*}
$$

A basis adopted to this decomposition is formed by the following differential operators

The S-matrix we are looking for is an element of the space $\mathscr{W}^{2} \otimes \mathscr{D}_{2}$ which is invariant under the action of $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$. We obviously have

$$
\begin{aligned}
\mathscr{W}^{2} \otimes \mathscr{D}_{2} & =\left(V^{0} \times V^{0}+V^{0} \times V^{0}+V^{1} \times V^{0}+V^{0} \times V^{1}+V^{1 / 2} \times V^{1 / 2}+V^{1 / 2} \times V^{1 / 2}\right) \\
& \otimes\left(D^{0} \times D^{0}+D^{0} \times D^{0}+D^{1} \times D^{0}+D^{0} \times D^{1}+D^{\frac{1}{2}} \times D^{1 / 2}+D^{1 / 2} \times D^{1 / 2}\right)
\end{aligned}
$$

The invariants of $\mathrm{su}(2) \oplus \mathrm{su}(2)$ arising in this tensor product decomposition are easy to count. Indeed, since ${ }^{j} \otimes{ }^{j}$ contains the singlet component (invariant), the $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ invariants simply correspond to the singlet components of the spaces
${ }^{j} \otimes{ }^{j} \times{ }^{k} \otimes{ }^{k}$ in the tensor product decomposition of $\mathscr{W}^{2} \otimes \mathscr{D}_{2}$. Thus, the invariant subspace is generated by

$$
\begin{aligned}
& \operatorname{Inv}\left(\mathscr{W}^{2} \otimes \mathscr{D}_{2}\right)=4\left({ }^{0} \otimes{ }^{0}\right) \times\left({ }^{0} \otimes{ }^{0}\right)+4\left({ }^{1 / 2} \otimes{ }^{1 / 2}\right) \times\left({ }^{1 / 2} \otimes{ }^{1 / 2}\right)+ \\
& +\left({ }^{1} \otimes{ }^{1}\right) \times\left({ }^{0} \otimes{ }^{0}\right)+\left({ }^{0} \otimes{ }^{0}\right) \times\left({ }^{1} \otimes{ }^{1}\right)
\end{aligned}
$$

where integers in front of the spaces in the r.h.s of the last formulas indicate the corresponding multiplicities. Therefore, in the present case we find 10 invariant elements Λ_{k} in the space $\mathscr{W}^{2} \otimes \mathscr{D}_{2}$. Their explicit form can be easily found by using the bases (4.2) and (4.4):

$$
\begin{aligned}
& \Lambda_{1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 2 \\
a & b
\end{array}+\begin{array}{ll}
1 & 2 \\
b & a
\end{array}\right) \frac{{ }^{2}}{\underset{a}{1}} \quad \stackrel{2}{b} \\
& \Lambda_{2}=\frac{1}{2}\left(\begin{array}{llll}
1 & 2 \\
a & b
\end{array}-\quad \begin{array}{ll}
1 & 2 \\
a
\end{array}\right) \frac{{ }^{2}}{\underset{a}{1}} \stackrel{2}{b} \\
& \Lambda_{3}=\frac{1}{2}\left(\begin{array}{ll}
1 & 2 \\
\alpha & \beta
\end{array}+{ }_{\beta}^{1} \begin{array}{l}
\alpha \\
\alpha
\end{array}\right) \frac{{ }^{2}}{{ }_{\beta}^{2} \quad \underset{\alpha}{1}}
\end{aligned}
$$

$$
\begin{align*}
& \Lambda_{9}={ }_{a}^{1} \underset{\alpha}{2} \frac{2}{{ }_{a}^{2} \quad \underset{\alpha}{1}} \tag{4.5}\\
& \Lambda_{4}=\frac{1}{2}\left(\begin{array}{lll}
1 & 2 \\
\alpha & \beta
\end{array}{\underset{\beta}{1}}_{\alpha}^{2}\right) \frac{2}{2}{ }_{\beta}^{1} \\
& \Lambda_{5}={ }_{a}^{1} \underset{\alpha}{2} \frac{2}{{ }_{a}^{1} \quad{ }_{2}^{2}} \\
& \Lambda_{6}=\begin{array}{llll}
2 & 1 \\
a & \alpha \\
{ }_{a}^{2} & \\
\alpha \\
\alpha
\end{array}
\end{align*}
$$

Thus, the S-matrix is the following differential operator in the space $\mathscr{V}^{A} \otimes \mathscr{V}^{A}$:

$$
\mathbb{S}^{A A}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\sum_{k=1}^{10}{ }_{k} \Lambda_{k}
$$

The differential operators $\Lambda_{1} \quad \Lambda_{6}$ correspond to the diagonal invariants in $\mathscr{W}^{2} \otimes \mathscr{D}_{2}$. Their normalization has been chosen in such a way that for ${ }_{1}={ }_{2}=\quad={ }_{6}=1$ and ${ }_{7}={ }_{8}={ }_{9}={ }_{10}=0$ the operator $\mathbb{S}^{A A}$ coincides with an identity operator.

The unknown coefficients ${ }_{k}$ can be now determined from the permutation relations of $\mathbb{S}^{A A}$ with the supersymmetry generators. We find

$$
\begin{aligned}
& { }_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& 3=\frac{\stackrel{+}{2}-1}{2-\tilde{1}_{1}^{+}} \frac{\tilde{\sim_{2}}}{12}
\end{aligned}
$$

$$
\begin{aligned}
& 5=\frac{2-\frac{1}{\tilde{2}_{2}}}{2-{ }_{1}^{+}} \\
& 6=\frac{+{ }_{1}^{+}-{ }_{2}^{+}}{{ }_{1}^{+}-{ }_{2}^{\sim}} \frac{{ }_{1}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& 8=\frac{12\left(\begin{array}{c}
+ \\
1
\end{array}+\frac{+}{2}\right)}{\left(\begin{array}{ll}
12-1
\end{array}\right)\left(2-{ }_{1}^{+}\right) 1_{2}^{+}} \tilde{1}_{2} \\
& 9=\frac{{ }_{1}^{+}-{ }_{1}}{1_{1}^{+}-{ }_{2}} \frac{\tilde{2}_{2}}{1} \\
& 10=\frac{2-\frac{+}{2}}{2-\underset{1}{+}} \frac{\sim_{1}}{2}
\end{aligned}
$$

The coefficients k are determined up to an overall scaling factor, and we normalize them in a canonical way by setting $1=1$. The parameters k are not fixed by the invariance condition. They are determined by imposing the generalized unitarity condition and the YB equation [21], and are given by the following formulas

$$
{ }_{1}={ }^{i p_{2} / 2}\left(\begin{array}{cc}
1 & 1
\end{array}\right) \quad{ }_{2}=\left(\begin{array}{ll}
2 & 1
\end{array}\right) \quad \tilde{1}_{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \quad \tilde{2}_{2}={ }^{i p_{1} / 2}\left(\begin{array}{ll}
2 & 1 \tag{4.6}
\end{array}\right)
$$

where () is defined by (2.15).
The S-matrix satisfies all the properties we discussed in the previous section. First, the physical unitarity condition $\mathbb{S} \mathbb{S}=\mathbb{I}$ can be easily checked by using the explicit form of the coefficients ${ }_{i}$, and the hermitian conjugation conditions

$$
\left(\Lambda_{i}\right)=\Lambda_{i} \quad=1 \quad 6 ; \quad\left(\Lambda_{7}\right)=\Lambda_{8} \quad\left(\Lambda_{9}\right)=\Lambda_{10}
$$

Moreover, with the choice of ${ }_{i}$ (4.6) made in [21], the S-matrix also satisfies the generalized unitarity condition $\mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right) \quad \mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{I}$

Second, the S-matrix is a symmetric operator $\mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}=\mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)$ and the coefficients ${ }_{i}$ satisfy the following relations

$$
7\left(\begin{array}{ll}
1 & 2
\end{array}\right)=8\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad 9\left(\begin{array}{ll}
1 & 2
\end{array}\right)={ }_{10}\left(\begin{array}{ll}
1 & 2 \tag{4.7}
\end{array}\right)
$$

if one uses ${ }_{i}$ given by (4.6).
Third, by using the action of the parity transformation on an invariant operator defined in (3.27), we find

$$
\Lambda_{i}^{\mathscr{P}}=\Lambda_{i} \quad=1 \quad 6 ; 910 ; \quad \Lambda_{7}^{\mathscr{P}}=-\Lambda_{7} \quad \Lambda_{8}^{\mathscr{P}}=-\Lambda_{8}
$$

and check that the inverse operator \mathbb{S}^{1} is equal to the parity-transformed S-matrix operator $\mathbb{S}^{1}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{S}\left(-{ }_{1}-_{2}\right)^{\mathscr{P}}$ and the relations (3.29) between on the coefficients of the S -matrix are satisfied.

Fourth, as was discussed in the previous section, in the operator formalism the action of the graded permutation on the invariant operators Λ_{i} can be realized by means of the exchange $\quad{ }_{a}^{1} \$ \quad{ }_{a}^{2} \quad{ }_{\alpha}^{1} \$ \quad \underset{\alpha}{2}$. By using the explicit form of Λ_{i} one finds

$$
\begin{equation*}
\Lambda_{i}^{\mathcal{P}}=\Lambda_{i} \quad=1234 ; \quad \Lambda_{5}^{\mathcal{P}}=\Lambda_{6} \quad \Lambda_{7}^{\mathcal{P}}=-\Lambda_{7} \quad \Lambda_{8}^{\mathcal{P}}=-\Lambda_{8} \quad \Lambda_{9}^{\mathcal{P}}=\Lambda_{10} \tag{4.8}
\end{equation*}
$$

and verifies the unitarity condition $\mathbb{S}\left(\begin{array}{ll}2 & 1\end{array}\right)^{\mathcal{P}} \mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{I}$ and the hermitian analyticity condition $\mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{S}\left(\begin{array}{ll}2 & 1\end{array}\right)^{\mathcal{P}}$ which implies the following relations between the coefficients i of the S -matrix

$$
\begin{align*}
& { }_{i}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{i}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=1234 ; \quad{ }_{5}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{6}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \tag{4.9}\\
& 7\left(\begin{array}{ll}
2 & 1
\end{array}\right)=-{ }_{8}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad{ }_{9}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{9}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad{ }_{10}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{10}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{align*}
$$

Comparing relations (4.9) and (4.7), we conclude that the coefficients ${ }_{i}$ also satisfy the following relations

$$
\begin{aligned}
& 7\left(\begin{array}{ll}
2 & 1
\end{array}\right)=-{ }_{7}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad{ }_{8}\left(\begin{array}{ll}
2 & 1
\end{array}\right)=-{ }_{8}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& 9\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{10}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad{ }_{10}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{9}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{aligned}
$$

Finally, given the 's, one can check the fulfilment of the Yang-Baxter equation

$$
\begin{equation*}
\mathbb{S}_{23}^{A A} \mathbb{S}_{13}^{A A} \mathbb{S}_{12}^{A A}=\mathbb{S}_{12}^{A A} \mathbb{S}_{13}^{A A} \mathbb{S}_{23}^{A A} \tag{4.10}
\end{equation*}
$$

where each side of the last equality is understood as an operator acting in $\mathscr{V}^{A}{ }^{3}$, the latter being identified with the product of three superfields $\Phi_{1}\left(\begin{array}{cc}1 & 1 \\ a & \alpha\end{array}\right), \Phi_{2}\left(\begin{array}{cc}2 & 2 \\ a & \alpha\end{array}\right)$ and $\Phi_{3}\left(\begin{array}{cc}3 & 3 \\ a & \alpha\end{array}\right)$. This completes the construction of the graded fermionic \mathbb{S}-operator which describes the scattering of two fundamental multiplets.

By using the general procedure outlined in section 3, we can also construct the matrix representation for the $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ invariant differential operators acting in the tensor product of fundamental particle representations. For reader's convenience we present them below

$$
\begin{aligned}
& \Lambda_{1}=\quad 1111+\frac{1}{2} \quad 1122+\frac{1}{2} \quad 1221+\frac{1}{2} \quad 2112+\frac{1}{2} \quad 2211+\quad 2222 \\
& \Lambda_{2}=\frac{1}{2} \quad 1122-\frac{1}{2} \quad 1221-\frac{1}{2} \quad 2112+\frac{1}{2} \quad 2211 \\
& \Lambda_{3}={ }_{3333}+\frac{1}{2} \quad 3344+\frac{1}{2} \quad 3443+\frac{1}{2} \quad 4334+\frac{1}{2} \quad 4433+{ }_{4444} \\
& \Lambda_{4}=\frac{1}{2} \quad{ }_{3344}-\frac{1}{2} \quad{ }_{3443}-\frac{1}{2} \quad 4334+\frac{1}{2} \quad{ }_{4433} \\
& \Lambda_{5}=1133+1144+2233+2244 \\
& \Lambda_{6}=3311+3322+4411+{ }_{4422} \\
& \Lambda_{7}=1324-1423-2314+2413 \\
& \Lambda_{8}={ }_{3142}-{ }_{3241}-{ }_{4132}+{ }_{4231} \\
& \Lambda_{9}=1331+1441+2332+2442 \\
& \Lambda_{10}=3113+3223+4114+{ }_{4224}
\end{aligned}
$$

Here the symbols $k_{i l j}$ can be equal to either $k^{i} \otimes{ }_{l}{ }^{j}$ or to $(-1)^{\epsilon_{k} \epsilon_{l}}{ }_{k}{ }^{i} \otimes{ }^{\boldsymbol{j}}$, where $k_{k}^{i} \equiv \quad k i$ are the standard 4×4 matrix unities. Computing the matrix representation for $\mathbb{S}^{A A}$ by using $\quad k i l j=(-1)^{\epsilon_{k} \epsilon_{l}} k^{i} \otimes l^{j}$ we find that it precisely coincides with the $\operatorname{su}(2 \mathrm{j} 2)$-invariant S -matrix found in [12, 21].

In the matrix language the above-described properties of the S-matrix operator take the form discussed in the previous section.

4.2 The S-matrix $\mathbb{S}^{A B}$

The S-matrices $\mathbb{S}^{A B}$ and $\mathbb{S}^{B A}$ for scattering of a fundamental particle with the twoparticle bound state $\operatorname{are} \mathbf{s u}(2) \oplus \mathbf{s u}(2)$ invariant third-order differential operators which act as intertwiners

$$
\begin{array}{llll}
\mathbb{S}^{A B}: & \mathscr{V}^{A} \otimes \mathscr{V}^{B}! & \mathscr{V}^{A} \otimes \mathscr{V}^{B} \\
\mathbb{S}^{B A}: & \mathscr{V}^{B} \otimes \mathscr{V}^{A}! & \mathscr{V}^{B} \otimes \mathscr{V}^{A}
\end{array}
$$

Below we discuss the S-matrix $\mathbb{S}^{A B}$ in detail and comment on its relation to $\mathbb{S}^{B A}$.
According to section 3.2, the tensor product $\mathscr{V}^{A} \otimes \mathscr{V}^{B}$ is isomorphic to a long supermultiplet \mathscr{W}^{3} of dimension 32. The total number of invariant differential operators Λ_{k} for this case is 19 and, therefore,

$$
\begin{equation*}
\mathbb{S}^{A B}=\sum_{k=1}^{19}{ }_{k} \Lambda_{k} \tag{4.11}
\end{equation*}
$$

Representations for Λ_{k} by third-order differential operators and by rank 32 matrices are listed in appendix 6.1.1. The invariants $\Lambda_{1} \quad \Lambda_{9}$ are diagonal and they are normalized to provide the orthogonal decomposition of unity.

Since the tensor product $\mathscr{V}^{A} \otimes \mathscr{V}^{B}$ is irreducible, all the coefficients ${ }_{k}$ in (4.11) can be determined, up to an overall scaling factor and parameters k, from the invariance conditions involving the generators \mathbb{Q} and \mathbb{Q}. The corresponding solution for the coefficients ${ }_{k}$ is presented in appendix 6.1.2.

Now we are ready to discuss the properties of $\mathbb{S}^{A B}$. First, under the hermitian conjugation the operators Λ_{k} transform as follows

$$
\left(\Lambda_{i}\right)=\Lambda_{i} \quad=1 \quad 9 ; \quad\left(\Lambda_{10+2 k}\right)=\Lambda_{11+2 k} \quad=0 \quad 4
$$

These transformation rules allow one to check the generalized unitarity condition. Second, with our choice of 's the operator $\mathbb{S}^{A B}$ is symmetric, i.e. $\left(\mathbb{S}^{A B}\right)^{T}=\mathbb{S}^{A B}$. Consequently, the coefficients k satisfy the following relations

$$
10+2 k\left(\begin{array}{ll}
1 & 2
\end{array}\right)=11+2 k\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

for $=0 \quad 4$.
Third, the parity transformation (3.27) acts on the invariant operators as follows

$$
\Lambda_{i}^{\mathscr{P}}=\Lambda_{i} \quad=1 \quad 9 ; 14151819 ; \quad \Lambda_{k}^{\mathscr{P}}=-\Lambda_{k} \quad=101112131617
$$

and the inverse S-matrix is equal to the parity-transformed S-matrix, and the relations (3.29) between on the coefficients of the S-matrix are satisfied.
\square

\square
where \equiv_{2} is a single parameter which cannot be determined from the invariance condition. Below we will find it by solving the YB equations involving $\mathbb{S}^{A B}$ and $\mathbb{S}^{B B}$.

First we consider the YB equation involving one fundamental particle and two bound states

$$
\begin{equation*}
\mathbb{S}_{23}^{B B} \mathbb{S}_{13}^{A B} \mathbb{S}_{12}^{A B}=\mathbb{S}_{12}^{A B} \mathbb{S}_{13}^{A B} \mathbb{S}_{23}^{B B} \tag{4.14}
\end{equation*}
$$

where $\mathbb{S}^{A B}$ is given by eq.(4.13). Evaluated on basis elements of the tensor product $\mathscr{V}^{A} \otimes \mathscr{V}^{B} \otimes{ }^{B}$ this operator equation is equivalent to 256 relations between the coefficients of the S-matrices involved. Analysis of these relations allows one to extract the following form of the unknown coefficient

$$
\begin{equation*}
=-\frac{3{ }_{11}^{A B}\left({ }_{1}^{f}+{ }_{3}^{f}-2{ }_{13}^{f}\right)-8\left(2{ }_{1}^{A B}+{ }_{2}^{A B}-3{ }_{6}^{A B}\right){ }_{24}^{f}}{3{ }_{11}^{A B}\left({ }_{1}^{s}+{ }_{3}^{s}-2{ }_{13}^{s}\right)-8\left(2{ }_{1}^{A B}+{ }_{2}^{A B}-3{ }_{6}^{A B}\right){ }_{24}^{s}} \tag{4.15}
\end{equation*}
$$

where by ${ }_{k}^{A B}$ we denoted the coefficients of $\mathbb{S}^{A B}$ to distinguish them from k of $\mathbb{S}^{B B}$.
This result for might seem rather odd. Indeed, the coefficient must also guarantee the fulfilment of another YB equation, which involves the bound states only

$$
\begin{equation*}
\mathbb{S}_{23}^{B B} \mathbb{S}_{13}^{B B} \mathbb{S}_{12}^{B B}=\mathbb{S}_{12}^{B B} \mathbb{S}_{13}^{B B} \mathbb{S}_{23}^{B B} \tag{4.16}
\end{equation*}
$$

This relation implies that should be a function of the variables $1{ }_{2}$ 2 living on the rapidity tori associated to two bound states, while solution (4.15) involves the rapidity torus of a fundamental particles. This issue can be resolved by noting that the following important identity takes place

$$
\begin{equation*}
2{ }_{1}^{A B}+{ }_{2}^{A B}-3{ }_{6}^{A B}=3 \frac{\left(1-{ }_{2}^{+} 2\right.}{\sqrt{+}{ }_{2}^{+}} \frac{\left(++_{2}^{+}+{ }_{2}\right)}{\binom{+}{2}}{ }_{11}^{A B} \tag{4.17}
\end{equation*}
$$

Due to this identity the coefficients ${ }_{k}^{A B}$ drop out from the formula for and we find

$$
=-\frac{{\underset{1}{f}+{ }_{3}^{f}-2{ }_{13}^{f}-8\left(p \frac{y_{2}^{+} y_{2}^{-}}{y_{2}^{+} y_{2}^{-}} \frac{\left(y_{2}^{+}+y_{2}^{-}\right)}{\left(y_{2}^{+} y_{2}^{-}\right)}{ }_{24}^{f}\right.}_{{ }_{1}^{s}+{ }_{3}^{s}-2_{13}^{s}-8\left(p \frac{\left(y_{2}^{+} y_{2}^{-}\right)}{\frac{\left(y_{2}^{+}+y_{2}^{-}\right)}{y_{2}^{+} y_{2}^{-}}}\left(y_{2}^{s} y_{2}^{-}\right)\right.}^{24}}{}
$$

Thus, depends on the coefficients of the operator $\mathbb{S}^{B B}$ only.
Having found the coefficients $\underset{k}{f}, \stackrel{s}{k}$ and , we can now reconstruct all the coefficients ${ }_{k}={ }_{k}^{f}+{ }_{k}^{s}$. The coefficients a b c d of the bound state representations are parametrized in terms of the variables 1_{1} and 2_{2} satisfying the constraints

$$
\begin{equation*}
{ }_{1}^{+}+\frac{1}{1_{1}}-{ }_{1}-\frac{1}{1}=\frac{4}{2} \quad{ }_{2}^{+} \frac{1}{2}-{ }_{2}-\frac{1}{2}=\frac{4}{-} \tag{4.18}
\end{equation*}
$$

In practice, the formulae arising for k as the functions of 1_{2} are very involved, but they can be drastically simplified by using constraints (4.18). Most efficiently, this can be done by using the external $\mathbf{s l}(2)$ automorphism of the centrally extended algebra $\operatorname{su}(2 \mathbf{j} 2)$ discussed in section 2.1. Indeed, in the invariance condition (3.9) the supersymmetry generators \mathbb{Q} and \mathbb{Q} can be replaced by $\widetilde{\mathbb{Q}}$ and $\widetilde{\mathbb{Q}}$ given by (2.3). As the result, we will find

$$
\begin{array}{llll}
{ }_{1}^{f}=1 & { }_{2}^{f}=0 & { }_{k}^{f} \equiv{ }_{k}(10 ; \text { a } \tilde{\mathrm{b}} \text { ~ } \tilde{\mathrm{c}}) & 2 \\
{ }_{1}^{s}=0 & { }_{2}^{s}=1 & { }_{k}^{s} \equiv{ }_{s}(0 \quad 1 ; \text { ã } \tilde{\mathrm{b}} \text { c } \tilde{\mathrm{c}}) & 2
\end{array}
$$

where the $\mathbf{s l}(2)$-transformed representation coefficients are given by eqs.(3.7) and they depend on arbitrary parameters $\quad 1 \quad 2$ and $1 \quad 2$ modulo the constraint $1_{1}-2_{2}=$ 1. On the other hand, the coefficients ${ }_{k}^{s}$ and ${ }_{k}^{f}$ are $\boldsymbol{s l}(2)$ invariant and they must be independent of and . By picking up various values of these parameters one can achieve enormous simplification of ${ }_{k}$. In this way we find

The final form of the coefficients ${ }_{k}$ is given in appendix 6.2.2. Quite remarkably, we find that ${ }_{45}={ }_{46}={ }_{47}={ }_{48}=0$. Finally, one can check that with these coefficients ${ }_{k}$ the YB equations (4.14) and (4.16) are satisfied. Thus, solving the invariance condition together with the YB equations we found the unique, up to an overall scale, S-matrix describing the scattering of two-particle bound states.

The found S-matrix $\mathbb{S}^{B B}$ enjoys all the properties discussed in section 3.4. Below we outline the transformation rules for invariants Λ_{k} under the hermitian conjugation, graded permutation and parity.

First, by using the hermitian conjugation rules (3.4) we find the following relations

$$
\left(\Lambda_{i}\right)=\Lambda_{i} \quad=1 \quad 16 ; \quad\left(\Lambda_{17+2 k}\right)=\Lambda_{18+2 k} \quad=0 \quad 15
$$

Second, the S-matrix is a symmetric operator, c.f. (3.24), and, as a consequence, the coefficients i_{i} satisfy the following relations

$$
17+2 k\left(\begin{array}{cc}
1 & 2
\end{array}\right)=18+2 k\left(\begin{array}{ll}
1 & 2 \tag{4.19}
\end{array}\right) \quad=0 \quad 15
$$

It is worth emphasizing that these relations hold only for the choice of ${ }_{i}$ as in eq. (6.3).

Third, the parity transformation \mathscr{P} acts on the invariants Λ_{k} as follows

$$
\begin{array}{llllll}
\Lambda_{k}^{\mathscr{P}}=\Lambda_{k} & \text { for } & =1 & 18 & \text { and } & =25 \\
\Lambda_{k}^{\mathscr{P}}=-\Lambda_{k} & \text { for } & =19 & 24 & \text { and } & =37 \\
48
\end{array}
$$

Finally, the graded permutation acts on Λ_{i} in the following way

$$
\begin{aligned}
& \Lambda_{i} \$ \Lambda_{i}=1 \quad 8 ; \quad \Lambda_{9+2 k} \$ \Lambda_{10+2 k}=0123 ; \quad \Lambda_{i} \$ \Lambda_{i}=1718 ; \\
& \Lambda_{i} \$-\Lambda_{i}=19 \begin{array}{l}
24 ; \quad \Lambda_{25+2 k} \$ \Lambda_{26+2 k}=0123 ;
\end{array} \\
& \Lambda_{33+k} \$ \Lambda_{35+k}=01 ; \Lambda_{37+k+4 m} \$-\Lambda_{39+k+4 m}=01
\end{aligned}
$$

leading to the unitarity condition $\mathbb{S}\left(\begin{array}{ll}2 & 1\end{array}\right)^{\mathcal{P}} \mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{I}$, and to the hermitian analyticity condition $\mathbb{S}\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbb{S}\left(\begin{array}{ll}2 & 1\end{array}\right)^{\mathcal{P}}$ which together with (4.19) implies the following relations between the coefficients i of the S-matrix

$$
\begin{aligned}
& { }_{i}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{i}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=1 \quad 8 ; \quad 9+2 k\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{10+2 k}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=0123 ; \\
& { }_{17}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{18}\left(\begin{array}{ll}
1 & 2
\end{array}\right) ; \quad{ }_{19+k}\left(\begin{array}{ll}
2 & 1
\end{array}\right)=-{ }_{19+k}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad=0 \quad 5 ; \\
& { }_{25+k}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{25+k}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad=0 \quad 7 ; \quad{ }_{33+k}\left(\begin{array}{ll}
2 & 1
\end{array}\right)={ }_{35+k}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=01 \text {; } \\
& { }_{37+k+4 m}\left(\begin{array}{ll}
2 & 1
\end{array}\right)=-{ }_{39+k+4 m}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=01=012
\end{aligned}
$$

One can check that the relations do hold.
Further, one can see that on solutions of the equation

$$
\begin{equation*}
{ }_{1}={ }_{2}^{+} \tag{4.20}
\end{equation*}
$$

the coefficients $2 \begin{gathered}2\end{gathered} 4^{6}$ a result, the S-matrix $\mathbb{S}^{B B}$ degenerates and has rank 16 . This precisely corresponds to forming a $16-\mathrm{dim}$ four-particle bound state multiplet. Under the condition (4.20) the 48-dim component \mathscr{W}^{4} of \mathscr{V}^{B} becomes reducible but indecomposable. The invariant subspace is a 32 -dim short multiplet, while the four-particle bound state representation is the factor representation.

5. Crossing symmetry

In this section we introduce the S -matrices which describe the bound state scattering in the light-cone string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$, and discuss the conditions imposed on them by crossing symmetry.

5.1 String S-matrix

The canonical $\mathbf{s u}(2 \mathrm{j} 2)$ invariant S -matrices can be used to find the corresponding $\mathrm{su}(2 \mathrm{j} 2) \oplus \mathrm{su}(2 \mathrm{j} 2)$ invariant string S-matrices which describe the scattering of bound states in the light-cone string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. To this end, one should multiply the tensor product of two copies of the canonical $\operatorname{su}(2 j 2)$ S-matrix by a scalar factor so that the resulting matrix would satisfy the crossing symmetry relations. Thus, the string S-matrix describing the scattering of -particle with -particle bound states is

$$
\mathbb{S}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)={ }_{0}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathbb{S}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \otimes \mathbb{S}^{M N}\left(\begin{array}{ll}
1 & 2 \tag{5.1}
\end{array}\right)
$$

The scalar factor ${ }_{0}^{M N}$ can be easily identified by noting that, since Λ_{1} is the diagonal invariant operator corresponding to the component $\underset{(M, N)}{\frac{M+N}{2}} \times \underset{(0,0)}{0}$ with the maximum spin ${ }_{B}=(+\quad) 2$, the term

$$
{ }_{0}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right){ }_{1}\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{2} \Lambda_{1} \otimes \Lambda_{1}
$$

describes the bound state scattering in the $\operatorname{su}(2)$ sector of the theory, the latter contains bound states with the single charge non-vanishing ${ }^{10}$. The S-matrix $\begin{gathered}M N \\ \mathfrak{s u}(2)\end{gathered}$ corresponding to this sector is just a scalar function equal to the coefficient in front of $\Lambda_{1} \otimes \Lambda_{1}$. Since we have set the coefficient $\quad 1$ equal to unity, we see that the scalar factor ${ }_{0}$ in eq.(5.1) must be equal to the S -matrix of the $\mathrm{su}(2)$ sector

$$
{ }_{0}^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\underset{\mathfrak{s u}(2)}{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

In its turn, the S -matrix in the $\mathrm{su}(2)$ sector can be determined either by using the fusion procedure [52, 53] or simply by evoking the su(2) sector of the asymptotic Bethe equations [4] for fundamental particles. ${ }^{11}$ The only subtlety which escaped from considerations in [52, 53] is that the su(2)-sector S-matrix depends on extra phases which come from the parameters k (12]. Taking these phases into account and using the results by [52, 53], we get the following su(2)-sector S-matrix

$$
\begin{align*}
& \underset{\mathfrak{s u}(2)}{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=i a\left(p_{1} \epsilon_{2} p_{2} \epsilon_{1}\right)\left(\frac{1}{+}\right)^{N}\left(\frac{+}{2}{ }_{2}^{2}\right)^{M} \quad\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{2} \times \\
& \times(-)(+) \prod_{k=1}^{M 1}(-\quad+2)^{2} \tag{5.2}
\end{align*}
$$

where we assumed \leq and introduced the function

$$
()=\frac{1-2+\frac{i \ell}{g}}{1-{ }_{2}-\frac{i \ell}{g}}
$$

In eq.(5.2) the parameters ${ }_{k}$ satisfy the following relations

$$
\stackrel{+}{k}+\frac{1}{\stackrel{+}{k}}-{ }_{k}-\frac{1}{k}={ }_{k} \frac{2}{1} \quad=\quad{ }_{2}=
$$

and the spectral parameters ${ }_{k}$ are expressed in terms of ${ }_{k}$ as follows

$$
{ }_{k}=\frac{1}{2}\left({ }_{k}^{+}+\frac{1}{k}{ }_{k}^{+}{ }_{k}+\frac{1}{k}\right)
$$

[^0]The first factor in eq.(5.2) depends on the parameter which is the parameter of the generalized light-cone gauge [36], and ${ }_{i}=\left({ }_{i}\right)$ is the energy of a bound state. The gauge-dependent factor solves the homogeneous crossing equation [58]. In what follows we set $=0$.

The gauge-independent dressing factor is $\left(\begin{array}{ll}1 & 2\end{array}\right)={ }^{i \theta\left(y_{1}^{ \pm}, y_{2}^{ \pm}\right)}$. Here the dressing phase [4]

$$
\left(\begin{array}{cccc}
+ & 1 & 2 & 2
\end{array}\right)=\sum_{r=2} \sum_{n=0} r, r+1+2 n()\left[r\left(\begin{array}{c}
1
\end{array}\right) r+1+2 n\left(C_{2}\right)-{ }_{r}\left(\begin{array}{l}
2
\end{array}\right) r+1+2 n\left(\begin{array}{l}
1
\end{array}\right)\right]
$$

is a two-form on the vector space of conserved charges ${ }_{r}(\quad)$

$$
\left.{ }_{r}\left(\begin{array}{ll}
k & + \\
k
\end{array}\right)=\frac{}{-1}\left[\left(\frac{1}{+}\right)^{r}\right)^{1}-\left(\frac{1}{k}\right)^{r} 1\right]
$$

An important observation made in [52, 53] is that as a function of parameters ${ }_{1}^{+} \quad 1 \quad{ }_{2}^{+} \quad 2$ the dressing factor is universal for scattering of any bound states. We point out, however, that as a function of the torus rapidity variables 1_{2}, the dressing factor depends on and , and this results in different crossing symmetry equations satisfied by each of the dressing factors.

The general crossing equations can be derived by combining the fusion procedure with the known crossing equations for the dressing factor of the fundamental S-matrix [14]. In fact, the simplest form of these equations is obtained for a variable Σ which differs from by inclusion of the extra phases in eq.(5.2)

$$
\Sigma^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\frac{1}{+}\right)^{\frac{N}{2}}\left(\frac{{ }_{2}^{+}}{2}\right)^{\frac{M}{2}} \quad\left(\begin{array}{ll}
1 & 2 \tag{5.3}
\end{array}\right)
$$

where on the r.h.s. the variables ${ }_{i}$ should be expressed through ${ }_{i}$ by using eq. (2.14).
Then, it is not difficult to show that $\Sigma^{M N}$ should satisfy the following crossing symmetry equations ${ }^{12}$

$$
\begin{align*}
& \Sigma^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{M N}\left(\begin{array}{l}
1 \\
1
\end{array}{ }_{2}^{(M)}{ }_{2}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \prod_{k=0}^{M 1}(-2) \tag{5.4}\\
& \Sigma^{M N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{M N}\left(\begin{array}{ll}
1 & \left.2-{ }_{2}^{(N)}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(-) \prod_{k=0}^{N}(-+2)
\end{array}, l\right.
\end{align*}
$$

where the function $\left(\begin{array}{ll}1 & 2\end{array}\right)$ is given by

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\frac{\left(\begin{array}{cc}
1 & - \\
1
\end{array}\right)\left(1-\frac{1}{y_{1}^{-} y_{2}^{-}}\right)}{\left(\begin{array}{c}
+ \\
1
\end{array}+\left(1-\frac{1}{y_{1}^{+} y_{2}^{-}}\right)\right.}
$$

[^1]Quite interesting, for $=1$ the right hand sides of two crossing relations in eq.(5.4) are the same

$$
\left.\begin{array}{rl}
\Sigma^{1 N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{1 N}\left(1+{ }_{2}^{(1)} 2\right.
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(1-), \begin{array}{ll}
1 & \left(\begin{array}{ll}
1 & 2
\end{array}\right)(1-) \\
\Sigma^{1 N}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{1 N}\left(\begin{array}{ll}
1 & 2-{ }_{2}^{(N)}
\end{array}\right) & =\left(\begin{array}{ll}
1 &
\end{array}\right) \tag{5.5}
\end{array}
$$

Although the function $\left(\begin{array}{cccc}+ & & + \\ 1 & 1 & 2 & 2\end{array}\right)$ does not have an explicit dependence on and , it satisfies the crossing equations which do depend on these numbers, the reason for this lies in the fact that the crossing equations hold on the constraint surfaces of ${ }_{i}$ only and the latter depend on and .

5.2 Crossing symmetry equations for the S-matrices

In this section we show that the canonical $\operatorname{su}(2 \mathrm{j} 2)$ invariant S -matrices we discussed in the previous section are compatible with the crossing equations (5.4). To simplify the notation, we consider only one copy of $\mathrm{su}(2 \mathrm{j} 2)$.

We start with the canonical S-matrix $\mathbb{S}^{A A} \equiv \mathbb{S}$ and multiply it with the square root of the $\mathbf{s u}(2)$-sector S-matrix (5.2)

$$
\mathbf{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\Sigma\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad(2)^{1 / 2} \mathbb{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

where $\Sigma\left(\begin{array}{ll}1 & 2\end{array}\right) \equiv \Sigma^{11}\left(\begin{array}{ll}1 & 2\end{array}\right)$ is the dressing phase (5.3).
The simplest way to formulate the crossing symmetry equations for S is to use its matrix form (3.21). Then, as was shown in [12, 21], requiring the dressing factor Σ to satisfy eqs.(5.4)

$$
\Sigma\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma\left(\begin{array}{ll}
1+ & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad \Sigma\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

one finds that the string S-matrix exhibits the following crossing symmetry relations

$$
\mathscr{C}_{1}{ }^{1} \mathrm{~S}_{12}^{t_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathscr{C}_{1} \mathrm{~S}_{12}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\quad \mathscr{C}_{1}{ }^{1} \mathrm{~S}_{12}^{t_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathscr{C}_{1} \mathrm{~S}_{12}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=
$$

Here ${ }_{1}$ denotes transposition in the first matrix space and \mathscr{C} is a constant charge conjugation matrix

$$
\mathscr{C}=\left(\begin{array}{cc}
2 & 0 \tag{5.6}\\
0 & 2
\end{array}\right)
$$

where z_{2} is the Pauli matrix.
It is of interest to understand how the crossing relations are formulated in the operator language. To this end, we need to find out how the operator corresponding to the charge-conjugated and transposed in the first space S-matrix $\mathscr{C}_{1}{ }^{1} \mathrm{~S}_{12}^{t_{1}} \mathscr{C}_{1}$ can be
obtained from the invariant operators Λ_{k}. The corresponding transformation rule for Λ_{k} appears to be simple and natural. Denoting the transformed operator as $\Lambda_{k}^{c_{1}}$, we find that the latter can be obtained from Λ_{k} by means of the following substitution

and in the product of several variables entering Λ_{k} we should also change their order according to the rule $(\mathbb{A} \mathbb{B})^{c_{1}}=(-1)^{\epsilon_{A} \epsilon_{\mathbb{B}}} \mathbb{B} \mathbb{A}$. With these rules we find that the invariant operators transform under the crossing transformation as follows

$$
\begin{aligned}
& \Lambda_{1}^{c_{1}}=\frac{1}{2} \Lambda_{1}+\frac{3}{2} \Lambda_{2} \quad \Lambda_{2}^{c_{1}}=\frac{1}{2} \Lambda_{1}-\frac{1}{2} \Lambda_{2} \quad \Lambda_{3}^{c_{1}}=\frac{1}{2} \Lambda_{3}+\frac{3}{2} \Lambda_{4} \quad \Lambda_{4}^{c_{1}}=\frac{1}{2} \Lambda_{3}-\frac{1}{2} \Lambda_{4} \\
& \Lambda_{5}^{c_{1}}=\Lambda_{5} \quad \Lambda_{6}^{c_{1}}=\Lambda_{6} \quad \Lambda_{7}^{c_{1}}=-\Lambda_{10} \quad \Lambda_{8}^{c_{1}}=-\Lambda_{9} \quad \Lambda_{9}^{c_{1}}=-\Lambda_{8} \quad \Lambda_{10}^{c_{1}}=-\Lambda_{7}
\end{aligned}
$$

Notice that the crossing transformation does not square to the identity because the off-diagonal operators change their sign.

Then the crossing symmetry relations take the following operator form

$$
\mathbf{S}^{c_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathbf{S}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\mathbb{I}
$$

or, by using the unitarity condition (3.33), we can write them as

$$
\mathbf{S}^{c_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\mathbf{S}^{\mathcal{P}}\left(\begin{array}{ll}
1+ & 2
\end{array}\right)
$$

The last equation implies a number of non-trivial relations between the S-matrix coefficients which can be shown to hold.

The fact that the operators $\Lambda_{1} \quad \Lambda_{4}$ transform non-trivially under crossing indicates that the basis of invariant operators we use is not particularly suitable for exhibiting the crossing symmetry. It is not difficult to see that a better basis can be obtained by regarding a differential operator acting in the space $\mathscr{V}^{M} \otimes \mathscr{V}^{N}$ not as an element of $\left(\mathscr{V}^{M} \otimes \mathscr{V}^{N}\right) \otimes\left(\mathscr{D}_{M} \otimes \mathscr{D}_{N}\right)$, but as an element of $\left(\mathscr{V}^{M} \otimes \mathscr{D}_{M}\right) \otimes\left(\mathscr{V}^{N} \otimes \mathscr{D}_{N}\right)$. The relation between two bases is a linear transformation arising due to the reordering of the factors in the tensor product. The brackets in the tensor products above indicate the order of the tensor product decomposition. In the new basis the crossing transformation would act in the first factor $\mathscr{V}^{M} \otimes \mathscr{D}_{M}$ only leading to a simpler transformation of the invariant operators. A disadvantage of this crossing-adjusted basis is that the corresponding coefficients of the S-matrix will be given by some linear combinations of our simple coefficients ${ }_{k}$, and, for this reason, they will not be simple anymore. Moreover, it would be difficult to find a common normalization for all S-matrices similar to the condition $\quad 1=1$ we imposed.

```
S AB
```

Multiplying the canonical S-matrix $\mathbb{S}^{A B}$ with the square root of the $\operatorname{su}(2)$-sector S-matrix (5.2) taken for $=1=2$, we get

$$
\left.\mathrm{S}^{A B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\Sigma^{A B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & (1)
\end{array}\right)\right)^{1 / 2} \mathbb{S}^{A B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

where $\Sigma^{A B} \equiv \Sigma^{12}$ is the dressing phase (5.3).
We use again the matrix form (3.21) of $\mathbf{S}^{A B}$ to formulate the crossing symmetry equations. One can show that if the dressing factor $\Sigma^{A B}$ satisfies eq. (5.4)

$$
\Sigma^{A B}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{A B}\left(\begin{array}{ll}
1 & +
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(-1)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \frac{1-2-\frac{i}{g}}{1-2+\frac{i}{g}}
$$

then the crossing equation corresponding to the shift of the torus rapidity variable 1 of the fundamental particle takes the same form as eq(5.6)

$$
\mathscr{C}_{1}{ }^{1} \mathrm{~S}_{12}^{A B, t_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathscr{C}_{1} \mathrm{~S}_{12}^{A B}\left(\begin{array}{ll}
1+ & 2
\end{array}\right)=
$$

where ${ }_{2} \equiv{ }_{2}^{(1)}$ is the imaginary half-period of the fundamental particle rapidity torus, and \mathscr{C} is defined in eq.(5.6).

A matrix equation corresponding to the shift of the second rapidity ${ }_{2}$ of the two-particle bound state takes its simplest form not for the S-matrix $S_{12}^{A B}\left(\begin{array}{ll}1 & 2\end{array}\right)$ acting in the space $\mathscr{V}^{A} \otimes \mathscr{V}^{B}$ but for the S-matrix $\mathrm{S}_{12}^{B A}\left(\begin{array}{ll}2 & 1\end{array}\right)$ acting in $\mathscr{V}^{B} \otimes \mathscr{V}^{A}$. The dressing factor $\Sigma^{B A}$ of $\mathbf{S}^{B A}$ is related to $\Sigma^{A B}$ through the unitarity condition $\Sigma^{A B}\left(\begin{array}{ll}1 & 2\end{array}\right) \Sigma^{B A}\left(\begin{array}{ll}2 & 1\end{array}\right)=1$ and it satisfies the crossing equation

$$
\Sigma^{B A}\left(\begin{array}{ll}
2 & 1
\end{array}\right) \Sigma^{B A}\left(\begin{array}{l}
2 \tag{5.8}\\
2
\end{array}{ }_{2}^{(2)} 1\right)=\left(\begin{array}{ll}
2 & 1
\end{array}\right)
$$

With this equation for the dressing factor, the crossing symmetry relation corresponding to the shift of the two-particle bound state rapidity ${ }_{2}$ acquires the form similar to eq.(5.8)

$$
\mathscr{C}_{B, 1}^{1} \mathbf{S}_{12}^{B A, t_{1}}\left(\begin{array}{ll}
2 & 1 \tag{5.9}
\end{array}\right) \mathscr{C}_{B, 1} S_{12}^{B A}\left({ }_{2}+{ }_{2}^{(2)}{ }_{1}\right)=
$$

where \mathscr{C}_{B} is an 8×8 charge conjugation matrix acting in the two-particle bound state representation

$$
\mathscr{C}_{B}=\left(\begin{array}{cccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \tag{5.10}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\
0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & -i & 0 & 0 & 0
\end{array}\right)
$$

We can formulate the crossing transformations in the operator language too. By using (5.7), we find that the invariant operators transform under the crossing transformation of the fundamental particle space as follows

$$
\begin{aligned}
& \Lambda_{1}^{c_{1}}=\frac{1}{3} \Lambda_{1}+\frac{4}{3} \Lambda_{2} \quad \Lambda_{2}^{c_{1}}=\frac{2}{3} \Lambda_{1}-\frac{1}{3} \Lambda_{2} \quad \Lambda_{3}^{c_{1}}=\frac{1}{2} \Lambda_{3}+\frac{3}{2} \Lambda_{4} \quad \Lambda_{4}^{c_{1}}=\frac{1}{2} \Lambda_{3}-\frac{1}{2} \Lambda_{4} \\
& \Lambda_{5}^{c_{1}}=\Lambda_{5} \quad \Lambda_{6}^{c_{1}}=\Lambda_{6} \quad \Lambda_{7}^{c_{1}}=\frac{1}{2} \Lambda_{7}+\frac{3}{2} \Lambda_{8} \quad \Lambda_{8}^{c_{1}}=\frac{1}{2} \Lambda_{7}-\frac{1}{2} \Lambda_{8} \quad \Lambda_{9}^{c_{1}}=\Lambda_{9} \\
& \Lambda_{10}^{c_{1}}=-\Lambda_{10} \quad \Lambda_{11}^{c_{1}}=-\Lambda_{11} \quad \Lambda_{12}^{c_{1}}=-\Lambda_{19} \quad \Lambda_{13}^{c_{1}}=-\Lambda_{18} \quad \Lambda_{14}^{c_{1}}=-\Lambda_{16} \\
& \Lambda_{15}^{c_{1}}=-\Lambda_{17} \quad \Lambda_{16}^{c_{1}}=-\Lambda_{14} \quad \Lambda_{17}^{c_{1}}=-\Lambda_{15}
\end{aligned} \Lambda_{18}^{c_{1}}=-\Lambda_{13} \quad \Lambda_{19}^{c_{1}}=-\Lambda_{12} .
$$

With these transformation rules, the first crossing symmetry equation acquires the following operator form

$$
\mathrm{S}^{A B, c_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathrm{S}^{A B}\left(\begin{array}{ll}
1+2
\end{array}\right)=\mathbb{I}
$$

The second crossing symmetry relation is found by transforming the invariant operators under the crossing transformation of the two-particle bound space by means of the following substitution

Notice the opposite sign in the transformation of fermions in comparison to eq.(5.7). We find

$$
\begin{aligned}
& \Lambda_{1}^{c_{2}}=\frac{1}{3} \Lambda_{1}+\frac{4}{3} \Lambda_{2} \quad \Lambda_{2}^{c_{2}}=\frac{2}{3} \Lambda_{1}-\frac{1}{3} \Lambda_{2} \quad \Lambda_{3}^{c_{2}}=\frac{1}{2} \Lambda_{3}+\frac{3}{2} \Lambda_{4} \quad \Lambda_{4}^{c_{2}}=\frac{1}{2} \Lambda_{3}-\frac{1}{2} \Lambda_{4} \\
& \Lambda_{5}^{c_{2}}=\Lambda_{5} \quad \Lambda_{6}^{c_{2}}=\Lambda_{6} \quad \Lambda_{7}^{c_{2}}=\frac{1}{2} \Lambda_{7}+\frac{3}{2} \Lambda_{8} \quad \Lambda_{8}^{c_{2}}=\frac{1}{2} \Lambda_{7}-\frac{1}{2} \Lambda_{8} \quad \Lambda_{9}^{c_{2}}=\Lambda_{9} \\
& \Lambda_{10}^{c_{2}}=-\Lambda_{11} \quad \Lambda_{11}^{c_{2}}=-\Lambda_{10} \quad \Lambda_{12}^{c_{2}}=-\Lambda_{18} \quad \Lambda_{13}^{c_{2}}=-\Lambda_{19} \quad \Lambda_{14}^{c_{2}}=-\Lambda_{17} \\
& \Lambda_{15}^{c_{2}}=-\Lambda_{16} \quad \Lambda_{16}^{c_{2}}=-\Lambda_{15} \quad \Lambda_{17}^{c_{2}}=-\Lambda_{14}
\end{aligned} \Lambda_{18}^{c_{2}}=-\Lambda_{12} \quad \Lambda_{19}^{c_{2}}=-\Lambda_{13} . l y
$$

Then the second crossing symmetry equation acquires the following operator form

$$
\mathrm{S}^{A B, c_{2}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathrm{S}^{A B}\left(\begin{array}{ll}
1 & 2
\end{array}{ }_{2}^{(2)}\right)=\mathbb{I}
$$

The last equation implies a number of non-trivial relations between the S-matrix coefficients which can be shown to hold.

$$
\mathbb{S}^{B B}
$$

The crossing equations for the string S-matrix $S^{B B}$ are basically the same as for $\mathrm{S}^{A A}$. All one needs is to replace \mathscr{C} by \mathscr{C}_{B} in eqs.(5.6).

We multiply the canonical S-matrix $\mathbb{S}^{B B} \equiv \mathbb{S}^{22}$ with the square root of the $\mathbf{s u}(2)$ sector S-matrix (5.2)

$$
\mathbf{S}^{B B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\Sigma^{B B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & (2)^{2}
\end{array}(4)\right)^{1 / 2} \mathbb{S}^{B B}\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

where $\Sigma^{B B}\left(\begin{array}{ll}1 & 2\end{array}\right) \equiv \Sigma^{22}\left(\begin{array}{ll}1 & 2\end{array}\right)$ is the dressing phase (5.3) satisfying the equations

$$
\begin{align*}
& \Sigma^{B B}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{B B}\binom{(2)}{1}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(-2)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \frac{1-2-\frac{2 i}{g}}{1-2+\frac{2 i}{g}} \tag{5.12}\\
& \Sigma^{B B}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \Sigma^{B B}\left(\begin{array}{ll}
1 & 2-{ }_{2}^{(2)}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad(2)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \frac{1-2+\frac{2 i}{g}}{1-2-\frac{2 i}{g}}
\end{align*}
$$

With these equations for the dressing phase, the string S-matrix exhibits the following crossing symmetry relations

$$
\begin{align*}
& \mathscr{C}_{B, 1}{ }_{1}^{1} S_{12}^{B B, t_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathscr{C}_{B, 1} S_{12}^{B B}\left(1+{ }_{2}^{(2)}{ }_{2}\right)= \\
& \mathscr{C}_{B, 1}^{1} S_{12}^{B B, t_{1}}\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mathscr{C}_{B, 1} S_{12}^{B B}\left(\begin{array}{ll}
1 & 2-{ }_{2}^{(2)}
\end{array}\right)= \tag{5.13}
\end{align*}
$$

To formulate the crossing transformations in the operator language we use (5.7) to find how the invariant operators transform under the crossing transformation

$$
\begin{aligned}
& \Lambda_{1}^{c_{1}}= \frac{1}{6} \Lambda_{1}+\frac{5}{3} \Lambda_{2}+\frac{5}{6} \Lambda_{3} \quad \Lambda_{2}^{c_{1}}=\frac{1}{3} \Lambda_{1}+\frac{1}{3} \Lambda_{2}-\frac{1}{3} \Lambda_{3} \quad \Lambda_{3}^{c_{1}}=\frac{1}{2} \Lambda_{1}-\Lambda_{2}+\frac{1}{2} \Lambda_{3} \\
& \Lambda_{4}^{c_{1}}= \frac{1}{4} \Lambda_{4}+\frac{3}{4} \Lambda_{5}+\frac{3}{4} \Lambda_{6}+\frac{9}{4} \Lambda_{7} \quad \Lambda_{5}^{c_{1}}=\frac{1}{4} \Lambda_{4}-\frac{1}{4} \Lambda_{5}+\frac{3}{4} \Lambda_{6}-\frac{3}{4} \Lambda_{7} \\
& \Lambda_{6}^{c_{1}}= \frac{1}{4} \Lambda_{4}+\frac{3}{4} \Lambda_{5}-\frac{1}{4} \Lambda_{6}-\frac{3}{4} \Lambda_{7} \quad \Lambda_{7}^{c_{1}}=\frac{1}{4} \Lambda_{4}-\frac{1}{4} \Lambda_{5}-\frac{1}{4} \Lambda_{6}+\frac{1}{4} \Lambda_{7} \\
& \Lambda_{8}^{c_{1}}=\Lambda_{8} \quad \Lambda_{9}^{c_{1}}=\frac{1}{3} \Lambda_{9}+\frac{4}{3} \Lambda_{11} \quad \Lambda_{11}^{c_{1}}=\frac{2}{3} \Lambda_{9}-\frac{1}{3} \Lambda_{11} \\
& \Lambda_{10}^{c_{1}}=\frac{1}{3} \Lambda_{10}+\frac{4}{3} \Lambda_{12} \quad \Lambda_{12}^{c_{1}}=\frac{2}{3} \Lambda_{10}-\frac{1}{3} \Lambda_{12} \quad \Lambda_{k}^{c_{1}}=\Lambda_{k} \quad=13141516 \\
& \Lambda_{17}^{c_{1}}=\Lambda_{26} \quad \Lambda_{26}^{c_{1}}=\Lambda_{17} \quad \Lambda_{18}^{c_{1}}=\Lambda_{25} \quad \Lambda_{25}^{c_{1}}=\Lambda_{18} \\
& \\
& \Lambda_{19}^{c_{1}}=\Lambda_{28}-\Lambda_{32} \quad \Lambda_{23}^{c_{1}}=-2 \Lambda_{28}-\Lambda_{32} \quad \Lambda_{28}^{c_{1}}={ }_{3} \Lambda_{19}-{ }_{-}^{3} \Lambda_{23} \\
& \Lambda_{20}^{c_{1}}=\Lambda_{27}-\Lambda_{31} \quad \Lambda_{24}^{c_{1}}=-2 \Lambda_{27}-\Lambda_{31} \quad \Lambda_{27}^{c_{1}}={ }_{3} \Lambda_{20}-{ }_{-}^{3} \Lambda_{24} \\
& \Lambda_{31}^{c_{1}}=-\frac{2}{3} \Lambda_{20}-{ }_{3} \Lambda_{24} \quad \Lambda_{32}^{c_{1}}=-\frac{2}{3} \Lambda_{19}-{ }_{3} \Lambda_{23} \\
& \Lambda_{21}^{c_{1}}=\Lambda_{29} \quad \Lambda_{29}^{c_{1}}=\Lambda_{21} \quad \Lambda_{22}^{c_{1}}=\Lambda_{30} \quad \Lambda_{30}^{c_{1}}=\Lambda_{22} \\
& \Lambda_{33}^{c_{1}}=-\Lambda_{42} \quad \Lambda_{42}^{c_{1}}=-\Lambda_{33} \quad \Lambda_{34}^{c_{1}}=-\Lambda_{41} \quad \Lambda_{41}^{c_{1}}=-\Lambda_{34} \\
& \Lambda_{35}^{c_{1}}=-\Lambda_{43} \quad \Lambda_{43}^{c_{1}}=-\Lambda_{35} \quad \Lambda_{36}^{c_{1}}=-\Lambda_{44} \quad \Lambda_{44}^{c_{1}}=-\Lambda_{36} \\
& \Lambda_{37}^{c_{1}}=-\Lambda_{37} \quad \Lambda_{38}^{c_{1}}=-\Lambda_{38} \quad \Lambda_{39}^{c_{1}}=-\Lambda_{40} \quad \Lambda_{40}^{c_{1}}=-\Lambda_{39}
\end{aligned}
$$

$$
-\quad-\quad-\quad
$$

\square

Projecting on the singlet components of the tensor product decomposition $\mathscr{V}^{3} \otimes \mathscr{D}_{3}$, one obtains 19 invariant differential operators of the third order whose explicit form is given below.

$$
\begin{aligned}
& \Lambda_{1}=\frac{1}{6}\left(\begin{array}{ccc}
1 & 2 & 2 \\
a & b & c
\end{array}+\begin{array}{ccc}
2 & 1 & 2 \\
a & b & c
\end{array}+\begin{array}{lll}
2 & 2 & 1 \\
a & b & c
\end{array}\right) \frac{3}{2} \begin{array}{llll}
2 & 2 & 1 \\
c & b & a
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 2 \\
a & b
\end{array}+\begin{array}{cc}
2 & 1 \\
a & b
\end{array}\right) \underset{\alpha}{2} \begin{array}{ccc}
2 & 3 \\
\alpha & b & 1 \\
a
\end{array} \\
& \Lambda_{4}=\frac{1}{2}\left(\begin{array}{ccccccc}
1 & 2 \\
a & b
\end{array}-\quad \begin{array}{ll}
2 & 1 \\
a & b
\end{array}\right) \underset{\alpha}{2} \begin{array}{c}
2 \\
\alpha
\end{array} \begin{array}{l}
2 \\
b
\end{array} \\
& \Lambda_{5}=\frac{1}{2} \quad
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{7}=\frac{1}{2} \quad{ }_{a}^{2}\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}+\begin{array}{cc}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{2}{2} \begin{array}{ccc}
2 & 2 & 1 \\
a & \beta & \alpha \\
1
\end{array} \\
& \Lambda_{8}=\frac{1}{2}{ }_{a}^{2}\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}-\begin{array}{cc}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{{ }^{2}}{2} \begin{array}{lll}
2 & 2 & 1 \\
a & \alpha
\end{array} \\
& \Lambda_{9}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{13}=\begin{array}{cccccccc}
\alpha \beta & 1 & 2 & & 2 \\
\alpha & \beta & a b & c & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{16}={ }_{a b} \begin{array}{cccc}
\alpha \beta & 1 & 2 & 2 \\
& & & \beta
\end{array} \begin{array}{llll}
\gamma & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{18}=\begin{array}{ccc}
1 & 2 & 2 \\
a & b & \alpha
\end{array} \begin{array}{lll}
2 & \\
b & \begin{array}{r}
2 \\
a
\end{array} & \begin{array}{l}
\alpha \\
3
\end{array}
\end{array} \\
& \Lambda_{19}=\begin{array}{ccc}
2 & 2 & 1 \\
a & b & \alpha
\end{array} \begin{array}{llll}
2 & & \\
\underset{\alpha}{2} & b & & \\
a
\end{array}
\end{aligned}
$$

6.1.2 Coe cients of $\mathbb{S}^{A B}$

Here \quad are the parameters of the fundamental particle with momentum $\quad 1=2 \mathrm{am}{ }_{1}$, and z_{2} are the parameters of the two-particle bound state with momentum $\quad 2=2 \mathrm{am}_{2}$. The parameters k are given by

$$
{ }_{1}={ }^{i p_{2} / 2}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \quad{ }_{2}=\left(\begin{array}{ll}
2 & 2
\end{array}\right) \quad \tilde{\sim}_{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \quad \tilde{\sim}_{2}={ }^{i p_{1} / 2}\left(\begin{array}{ll}
2 & 2 \tag{6.1}
\end{array}\right)
$$

where () is defined by (2.15). The coefficients are meromorphic functions of ${ }_{1}$ and ${ }_{2}$ defined on the product of two tori. Note, however, that the tori have different moduli.

$$
\begin{aligned}
& { }_{1}=1 \\
& 2=-\frac{1}{2}-\frac{3}{2} \frac{\left(1-{ }_{1} \quad \stackrel{+}{2}\right)\left({ }_{1}^{+}-\underset{2}{+}\right)_{2}}{\left(\begin{array}{ll}
1 & 2
\end{array}\right)\binom{2}{1}_{2}^{+}} \\
& 3=-\frac{1-{ }_{2}^{2}}{2-{ }_{1}^{+}} \frac{{ }_{2}^{2}}{2} \\
& { }_{4}=-\frac{\left(\begin{array}{ll}
1-{ }_{2}^{+}
\end{array}\right)\left(\begin{array}{ll}
1 & - \\
2
\end{array}\right)_{2}}{\left(\begin{array}{lll}
1 & 2
\end{array}\right)\binom{\tilde{2}_{2}}{2}_{2}^{+}} \frac{2}{2} \\
& 5=-\frac{+{ }_{1}^{+}-\underset{2}{+}{\underset{1}{+}}_{2}^{\sim_{1}}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& 7=-\frac{1-{ }_{2}^{+}}{2-\tilde{1}_{1}^{+}} \frac{\tilde{1}_{2}}{12}
\end{aligned}
$$

$$
\begin{aligned}
& 13=-\boldsymbol{P}_{\overline{2}}^{2} \frac{1}{1_{1}^{+}{ }_{2}^{+}} \frac{\left(\begin{array}{lll}
1 & - & 2
\end{array}\right) \tilde{\sim}_{1} \tilde{\sim}_{2}}{\left(\begin{array}{lll}
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2_{2} & - \\
1
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& 15=\boldsymbol{\rho}_{\overline{2}}^{1} \frac{1}{+} \frac{\left(\begin{array}{lll}
1 & - & l^{+}
\end{array}\right)\left(\begin{array}{lll}
2 & - & + \\
1
\end{array}\right)}{\left(\begin{array}{lll}
1- & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
2 & - & + \\
1
\end{array}\right)} \frac{\sim_{1} \sim_{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 18=\boldsymbol{P}_{\overline{2}}^{1} \frac{1-\frac{1}{+}}{{ }_{2}-\frac{\sim_{1}}{1}} \frac{{ }_{1}}{1} \\
& 19=\boldsymbol{\rho}_{\overline{2}}^{1} \frac{2_{2}-{ }_{2}^{+} \sim_{1}^{+}}{\sim_{1}}
\end{aligned}
$$

6.1.3 M atrix form of invariant di erential operators Λ_{k}

We use the basis of monomials (3.3). The basis vectors $j_{i} i$ of the fundamental representation are $\mathbf{j}{ }_{a} \mathbf{i}={ }_{a}^{1}{ }_{\mathbf{j}}^{\alpha} \mathbf{i}={ }_{\alpha}^{1}$, and the basis vectors $\mathbf{j}{ }_{J} \mathbf{i}$ of the two-particle bound state representation are

$$
\begin{align*}
& \mathbf{j}_{5} \mathbf{i}={ }_{1}^{2}{ }_{1}^{2}{ }_{3}^{2} \quad \mathbf{j}_{6} \mathbf{i}={ }_{1}^{2} \underset{1}{2} \quad \mathbf{j}_{7} \mathbf{i}={ }_{2}^{2}{ }_{2}^{2} \quad \mathbf{j}_{8} \mathbf{i}={ }_{2}^{2}{ }_{4}^{2} \tag{6.2}
\end{align*}
$$

A $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ invariant differential operator is represented in the matrix form as a sum over symbols $\quad k i L J$ which can be equal to either $\quad k^{i} \otimes{ }_{L}{ }^{J}$ or to $(-1)^{\epsilon_{k} \epsilon_{L}} \quad k^{i} \otimes{ }_{L}{ }^{J}$ (or anything else one wants).

$$
\begin{aligned}
& \Lambda_{1}={ }_{1111}+\frac{2}{3}{ }_{1122}+\frac{1}{3}{ }_{1133}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{1221}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{1232}+\frac{1}{3} \mathrm{P}_{\overline{2}_{2112}}+\frac{1}{3} \mathrm{P}_{\overline{2}_{2123}} \\
& +\frac{1}{3}{ }_{2211}+\frac{2}{3}{ }_{2222}+{ }_{2233} \\
& \Lambda_{2}=\frac{1}{3}\left({ }_{1122}+2{ }_{1133}-\mathrm{P}_{\overline{2}}{ }_{1221}-\mathrm{P}_{\overline{2}}{ }_{1232}-\mathrm{P}_{\overline{2}}^{2112} \text { - } \mathrm{P}_{\overline{2}}^{2123+2} 2211+{ }_{2222}\right) \\
& \Lambda_{3}={ }_{1155}+{ }_{1166}+\frac{1}{2} \quad 1177+\frac{1}{2} \quad 1188+\frac{1}{2} \quad 1275+\frac{1}{2} \quad 1286+\frac{1}{2} \quad 2157+\frac{1}{2} \quad 2168+\frac{1}{2} \quad 2255 \\
& +\frac{1}{2}{ }_{2266}+{ }_{2277}+{ }_{2288}
\end{aligned}
$$

$$
\Lambda_{17}=-1374-1484+2354+2464
$$

$$
\Lambda_{18}=\mathrm{p}_{\overline{2}}^{1351}+{ }_{1372}+\mathrm{p}_{\overline{2}_{1461}+{ }_{1482}+{ }_{2352}+\mathrm{p}_{\overline{2}}^{2373}+{ }_{2462}+\mathrm{p}_{\overline{2}_{2483}} .}
$$

$$
\Lambda_{19}=\mathrm{p}_{\overline{2}}^{3115}+{ }_{3127}+{ }_{3225}+\mathrm{p}_{\overline{2}}{ }_{3237}+\mathrm{p}_{\overline{2}}{ }_{4116}+{ }_{4128}+{ }_{4226}+\mathrm{p}_{\overline{2}}
$$

$$
\begin{aligned}
& \Lambda_{4}=\frac{1}{2}(1177+1188-1275-1286-2157-2168+2255+2266) \\
& \Lambda_{5}=3311+3322+3333+4411+4422+4433 \\
& \Lambda_{6}=1144+\quad 2244 \\
& \Lambda_{7}={ }_{3355}+\frac{1}{2} \quad 3366+\quad 3377+\frac{1}{2} \quad 3388+\frac{1}{2} \quad 3465+\frac{1}{2} \quad 3487+\frac{1}{2} \quad 4356+\frac{1}{2} \quad 4378 \\
& +\frac{1}{2} 4455+4466+\frac{1}{2} \quad 4477+\quad 4488 \\
& \Lambda_{8}=\frac{1}{2}(3366+3388-3465-3487-\quad 4356-4378+4455+4477) \\
& \Lambda_{9}=3344+\quad 4444 \\
& \Lambda_{10}={ }_{1124}+{ }^{\mathrm{P}} \overline{2}_{1234}-\mathrm{P}_{\overline{2}}{ }_{2114}-{ }_{2224} \\
& \Lambda_{11}={ }_{1142} \mathrm{P}_{\overline{2}}{ }_{1241}+\mathrm{P}_{\overline{2}}{ }_{2143}-{ }_{2242} \\
& \Lambda_{12}={ }_{1326}+\mathrm{P}_{\overline{2}}{ }_{1338}-{ }_{1425}-\mathrm{P}_{\overline{2}}{ }_{1437}-\mathrm{P}_{\overline{2}}{ }_{2316}-{ }_{2328}+\mathrm{P}_{\overline{2}}^{2415}+{ }_{2427} \\
& \Lambda_{13}={ }_{3162}+\mathrm{P}_{\overline{2}}{ }_{3183}-\mathrm{P}_{\overline{2}}^{3261}-{ }_{3282}-{ }_{4152}-\mathrm{P}_{\overline{2}}{ }_{4173}+\mathrm{P}_{\overline{2}}{ }_{4251}+{ }_{4272} \\
& \Lambda_{14}=1346-1445+2348-2447 \\
& \Lambda_{15}=3164+3284-3154-3274 \\
& \Lambda_{16}=-3147+3245-3148+4246
\end{aligned}
$$

6.2 The S-matrix $\mathbb{S}^{B B}$

6.2.1 Invariant di erential operators for $\mathbb{S}^{B B}$

Recall that $\mathscr{V}^{B} \otimes \mathscr{V}^{B}=\mathscr{W}^{2}+\mathscr{W}^{4}$, where \mathscr{W}^{2} and \mathscr{W}^{4} are long supermultiplets of dimension 16 and 48 , respectively. The branching rule for \mathscr{W}^{2} under the action of $\operatorname{su}(2) \oplus \operatorname{su}(2)$ is given by eq.(4.1). As to \mathscr{W}^{4}, it branches as follows

$$
\mathscr{W}^{4}={ }^{0} \times{ }^{0}+3{ }^{1} \times{ }^{0}+{ }^{2} \times{ }^{0}+{ }^{1} \times{ }^{1}+2^{3 / 2} \times{ }^{1 / 2}+2{ }^{1 / 2} \times{ }^{1 / 2}
$$

where the integers in the r.h.s. denote the multiplicities of the corresponding representations. Thus, the sum $\mathscr{W}^{2}+\mathscr{W}^{4}$ contains $6+10=16 \mathbf{s u}(2) \oplus \mathbf{s u}(2)$ multiplets. The basis vectors of $\mathscr{V}^{B} \otimes \mathscr{V}^{B}$ give rise to the corresponding basis vectors adopted to the $\mathbf{s u}(2) \oplus \mathbf{s u}(2)$ decomposition. Schematically,

Here the basis elements of the spaces ${ }^{k} \times{ }^{m}$ are obtained from those of $\mathscr{V}^{B} \otimes \mathscr{V}^{B}$ by proper (anti)symmetrization of the $\operatorname{su}(2)$ indices. Analogously, one can construct the $\operatorname{su}(2) \oplus \operatorname{su}(2)$ basis of the dual space $\mathscr{D}_{2}+\mathscr{D}_{4}$. Finally, by analyzing the tensor product $\left(\mathscr{W}^{2}+\mathscr{W}^{4}\right) \otimes\left(\mathscr{D}_{2}+\mathscr{D}_{4}\right)$, one finds that it has 48 singlet components. Thus, there are 48 independent invariant differential operators Λ_{k} which we present below.

$$
\begin{aligned}
& \Lambda_{1}=\frac{1}{24}\left[\begin{array}{lllllllllll}
2 & 2 & 1 & 1 \\
a & b & c & d
\end{array}+4 \begin{array}{cccccccc}
1 & 2 & 1 & 2 \\
a & b & c & d
\end{array}+\begin{array}{ccc}
1 & 1 & 2 \\
a & b & c \\
d
\end{array}\right] \begin{array}{llll}
1 & 1 & 2 & 2 \\
a & b & c & d
\end{array} \\
& \Lambda_{2}=\frac{1}{12} \text { ac bd } \\
& \Lambda_{3}=\frac{1}{8} a d\left(\begin{array}{cc}
1 & 2 \\
b & c
\end{array}+\begin{array}{cc}
2 & 1 \\
b & c
\end{array}\right) k l \\
& \Lambda_{4}=\frac{1}{4}\left(\begin{array}{cc}
1 & 2 \\
a & b
\end{array}+\begin{array}{ll}
2 & 1 \\
a & b
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}+\begin{array}{ll}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{4}{4} \begin{array}{llll}
1 & 2 & 2 & 1 \\
a & b & \beta & \alpha
\end{array} \\
& \Lambda_{5}=\frac{1}{4}\left(\begin{array}{ll}
1 & 2 \\
a & b
\end{array}+\begin{array}{ll}
2 & 1 \\
a & b
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}-\begin{array}{ll}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{4}{1} \begin{array}{llll}
1 & 2 & 2 & 1 \\
a & b & \beta & \alpha
\end{array} \\
& \Lambda_{6}=\frac{1}{4} a b^{k l}{ }^{k l}{ }_{k}{ }_{l}^{2}\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}+\begin{array}{cc}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{4}{4} \begin{array}{llll}
1 & 2 & 2 & 1 \\
a & b & \beta & \alpha
\end{array} \\
& \Lambda_{7}=\frac{1}{4} a b \begin{array}{ccccccccc}
k l & \stackrel{1}{k} & 2 \\
l
\end{array}\left(\begin{array}{cc}
1 & 2 \\
\alpha & \beta
\end{array}-\begin{array}{ll}
1 & 2 \\
\beta & \alpha
\end{array}\right) \frac{4}{1} \begin{array}{llll}
2 & 2 & 1 \\
a & b & \beta & \alpha
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{13}=\frac{1}{4} \quad \begin{array}{llllllllllllllllll}
1 & 1 & b & 2 & 2 & \\
\hline
\end{array} \\
& \Lambda_{14}=\frac{1}{4} \quad \begin{array}{lllllllllllll}
2 & 2 & 1 & 1 & 1 & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{24}=\frac{1}{2} \begin{array}{llll}
\alpha \beta & 1 & 2 \\
\alpha & \beta & a d
\end{array}\left(\begin{array}{cc}
1 & 2 \\
b & c
\end{array}+\begin{array}{cc}
1 & 2 \\
c & b
\end{array}\right) \frac{4}{4} \begin{array}{llll}
1 & 1 & 2 & 2 \\
a & b & c & d
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{27}=\frac{1}{3} \begin{array}{llllllllll}
& a c & 1 & 2 & k & k l & 1 & 2 & & \\
k & & & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{29}=\frac{1}{2} \begin{array}{lllllllllll}
\alpha \beta & & 2 & \rho \delta & & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{31}=\frac{1}{6}\left(\begin{array}{llll}
2 & 1 & 1 & 2 \\
& a & b & c
\end{array}+\begin{array}{ccc}
2 & 1 & 1 \\
a & b & c
\end{array}\right) \stackrel{2}{\alpha} \begin{array}{lllll}
1 & & \\
a & { }_{b} & { }_{c} & 1 \\
c & \alpha
\end{array} \\
& \Lambda_{32}=\frac{1}{6}\left(\begin{array}{llll}
2 & 1 & 2 & 2 \\
& a & b & c
\end{array}+\begin{array}{ccc}
2 & 2 & 1 \\
a & b & c
\end{array}\right) \stackrel{1}{\alpha} \begin{array}{lllll}
1 & \\
a & 1 & 2 & 2 \\
c & \alpha & & \\
\hline
\end{array} \\
& \Lambda_{33}= \\
& \Lambda_{34}=\begin{array}{cccc}
1 & 2 & 1 & 2 \\
a & b & \alpha & \beta
\end{array} \begin{array}{lllll}
\\
a & 1 & 2 & 4 \\
b & \beta & \alpha
\end{array} \\
& \Lambda_{35}=\begin{array}{cccc}
2 & 2 & 1 & 1 \\
a & b & \alpha & \beta
\end{array} \\
& \Lambda_{36}=\begin{array}{cccccccc}
1 & 2 & 1 & 2 \\
a & b & \alpha & \beta
\end{array} \begin{array}{lllll}
& & & \\
\hline a & 2 & 1 & 1 \\
b & \beta & \alpha
\end{array} \\
& \Lambda_{37}=\frac{1}{4} \begin{array}{ccccccccccc}
1 & 2 & k l & 1 & & & & 4 \\
b & c & & k & l & \alpha \beta & & \\
b & & 1 & 2 & 2 \\
c & \beta & \alpha
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{39}=\frac{1}{4} \begin{array}{lllllllllll}
1 & 2 & k l & & \\
b & & & & \\
k & l & \alpha \beta & & \\
\hline
\end{array}
\end{aligned}
$$

\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=-\frac{\left(u_{1}-u_{2}-\frac{2 i}{g}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right) y_{2} y_{1}^{+}}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right) y_{1} y_{2}^{+}}-\frac{\left(y_{1}-y_{2}^{+}\right)\left(y_{1}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right) y_{2}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(-1+y_{1} y_{2}\right) y_{1} y_{2}^{+}} \\
& -\frac{3\left(y_{1}-y_{2}^{+}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right) y_{2}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right) y_{1} y_{2}^{+}} \\
& a_{3}=-\frac{\left(y_{1}-y_{1}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(-1+y_{1} y_{2}\right) y_{1}^{+} y_{2}^{+}} \\
& +\frac{\left(y_{2}-y_{1}^{+}\right)\left(-y_{2}+y_{2}^{+}\right)+y_{2}\left(y_{1}^{+}-y_{2}^{+}\right)\left(1-y_{1} y_{2}^{+}\right)-y_{2}\left(-y_{2}+y_{2}^{+}\right)\left(1-y_{1} y_{2}^{+}\right)}{\left(-1+y_{1} y_{2}\right)\left(y_{2}-y_{1}^{+}\right) y_{2}^{+}} \\
& a_{4}=-\frac{y_{1}-y_{2}^{+}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}} \\
& a_{5}=-\frac{2\left(y_{1}-y_{2}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}}+\frac{y_{1}-y_{2}^{+}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}} \\
& a_{6}=-\frac{\left(u_{1}-u_{2}-\frac{2 i}{g}\right)\left(y_{1}-y_{2}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}} \\
& a_{7}=-\frac{\left(y_{1}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(-1+y_{1} y_{2}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+} y_{2}}\left[y_{2} y_{1}^{+}+3 y_{1}\left(y_{2}\right)^{2} y_{1}^{+}-4\left(y_{2}\right)^{2}\left(y_{1}^{+}\right)^{2}\right. \\
& -2 y_{2} y_{2}^{+}-2 y_{1}\left(y_{2}\right)^{2} y_{2}^{+}+y_{1}^{+} y_{2}^{+}-5 y_{1} y_{2} y_{1}^{+} y_{2}^{+}+5\left(y_{2}\right)^{2} y_{1}^{+} y_{2}^{+}-y_{1}\left(y_{2}\right)^{3} y_{1}^{+} y_{2}^{+}+2 y_{2}\left(y_{1}^{+}\right)^{2} y_{2}^{+} \\
& \left.+2 y_{1}\left(y_{2}\right)^{2}\left(y_{1}^{+}\right)^{2} y_{2}^{+}+4 y_{1} y_{2}\left(y_{2}^{+}\right)^{2}-3 y_{2} y_{1}^{+}\left(y_{2}^{+}\right)^{2}-y_{1}\left(y_{2}\right)^{2} y_{1}^{+}\left(y_{2}^{+}\right)^{2}\right] \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}} \\
& a_{8}=-\frac{\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)^{2} y_{1}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(-1+y_{1} y_{2}\right)\left(y_{2}-y_{1}^{+}\right)\left(y_{1}^{+}\right)^{2} y_{2}} \frac{\tilde{\eta}_{1}^{2} \tilde{\eta}_{2}^{2}}{\eta_{1}^{2} \eta_{2}^{2}}-\frac{\left(y_{1}-y_{2}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} \tilde{\eta}_{2}^{2}} \frac{\tilde{\eta}_{2}^{2}}{\eta_{1}^{2} \eta_{2}^{2}} \\
& a_{9}=-\frac{y_{1}-y_{2}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{2}}{\eta_{2}} \\
& a_{10}=-\frac{y_{1}^{+}-y_{2}^{+}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{1}}{\eta_{1}} \\
& a_{11}=-\frac{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}^{+}} \frac{\tilde{\eta}_{2}}{\eta_{2}} \\
& a_{12}=\frac{\left(y_{1}-y_{2}^{+}\right)\left(-y_{1}^{+}+y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}^{+}} \frac{\tilde{n}_{1}}{\eta_{1}} \\
& a_{13}=\frac{y_{2}-y_{1}}{y_{2}-y_{1}^{+}} \frac{\tilde{n}_{2}^{2}}{\eta_{2}^{2}}-\frac{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{2}^{+}\left(-1+y_{1}^{+} y_{2}\right)+y_{2}\left(-1+y_{1}^{+} y_{2}^{+}\right)\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+} y_{2}} \frac{\eta_{2}^{2}}{\eta_{2}} \\
& a_{14}=-\frac{\left(u_{1}-u_{2}-\frac{2 i}{g}\right)\left(y_{1}^{+}-y_{2}^{+}\right) y_{2}^{+}}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{2}} \frac{\tilde{\eta}_{1}^{2}}{\eta_{1}^{2}}-\frac{\left(y_{1}+y_{1}^{+}-2 y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{2}} \frac{\tilde{\eta}_{1}^{2}}{\eta_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{15}=\frac{\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(1-y_{2} y_{1}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{2}}{\eta_{1}^{2} \eta_{2}} \\
& a_{16}=-\frac{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}^{2}}{\eta_{1} \eta_{2}^{2}} \\
& a_{17}=-\frac{\left(y_{1}-y_{1}^{+}\right)^{2}\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)^{2}\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(-1+y_{1} y_{2}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}} \frac{1}{\eta_{1}^{2} \eta_{2}^{2}} \\
& a_{18}=-\frac{y_{1} y_{2}\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right)\left(y_{1}^{+}\right)^{2}\left(y_{2}^{+}\right)^{2}} \tilde{\eta}_{1}^{2} \tilde{\eta}_{2}^{2} \\
& a_{19}=-\frac{i\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right) y_{1} y_{2}^{+}} \frac{1}{\eta_{1} \eta_{2}} \\
& a_{20}=\frac{i\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right) y_{2}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right) y_{1}^{+} y_{2}^{+2}} \tilde{\eta}_{1} \tilde{\eta}_{2} \\
& a_{21}=-\frac{i\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right) y_{1}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right)\left(y_{1}^{+}\right)^{2} y_{2}^{+}} \frac{\tilde{\eta}_{1}^{2} \tilde{n}_{2}^{2}}{\eta_{1} \eta_{2}} \\
& a_{22}=\frac{i\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)\left(-1+y_{1} y_{2}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{2}}{\eta_{1}^{2} \eta_{2}^{2}} \\
& a_{23}=-\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}} \frac{1}{\eta_{1} \eta_{2}} \\
& a_{24}=\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \tilde{\eta}_{1} \tilde{\eta}_{2} \\
& a_{25}=-\frac{\left(y_{1}-y_{1}^{+}\right)^{2}\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{2}^{2}}{\eta_{1}^{2}} \\
& a_{26}=-\frac{\left(y_{2}-y_{2}^{+}\right)^{2}\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1}^{2}}{\eta_{2}^{2}} \\
& a_{27}=\frac{\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{1} y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}^{+}} \frac{\tilde{n}_{2}}{\eta_{1}} \\
& a_{28}=\frac{\left(u_{1}-u_{2}-\frac{2 i}{g}\right)\left(y_{2}-y_{2}^{+}\right)}{\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right)} \frac{\tilde{\eta}_{1}}{\eta_{2}}-\frac{\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{1}^{+} y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \frac{\tilde{\eta}_{1}}{\eta_{2}} \\
& a_{29}=\frac{\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{n}_{1} \tilde{\eta}_{2}^{2}}{\eta_{1}^{2} \eta_{2}} \\
& a_{30}=\frac{\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1}^{2} \tilde{\eta}_{2}}{\eta_{1} \eta_{2}^{2}} \\
& a_{31}=\frac{y_{1}-y_{1}^{+}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{2}}{\eta_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{32}=\frac{y_{2}-y_{2}^{+}}{y_{2}-y_{1}^{+}} \frac{\tilde{\eta}_{1}}{\eta_{2}} \\
& a_{33}=\frac{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{2}^{2}}{\eta_{1} \eta_{2}} \\
& a_{34}=\frac{\left(y_{1}-y_{2}\right)\left(y_{2}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1}}{\eta_{2}^{2}} \\
& a_{35}=\frac{\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1}^{2}}{\eta_{1} \eta_{2}} \\
& a_{36}=\frac{\left(y_{1}-y_{1}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)\left(-1+y_{2} y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}} \frac{\tilde{\eta}_{1}}{\eta_{1}^{2}} \\
& a_{37}=\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{2}-y_{2}^{+}\right)^{2}}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}} \frac{1}{\eta_{2}^{2}} \\
& a_{38}=-\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \tilde{\eta}_{2}^{2} \\
& a_{39}=\frac{i\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}} \frac{1}{\eta_{1}^{2}} \\
& a_{40}=-\frac{i\left(y_{1}^{+}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \tilde{\eta}_{1}^{2} \\
& a_{41}=-\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1} y_{2}} \frac{\tilde{\eta}_{2}^{2}}{\eta_{1} \eta_{2}^{2}} \\
& a_{42}=\frac{i\left(y_{1}-y_{2}\right)\left(y_{1}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \frac{\tilde{\eta}_{1} \tilde{\eta}_{2}^{2}}{\eta_{2}} \\
& a_{43}=-\frac{i\left(y_{1}-y_{1}^{+}\right)\left(y_{1}-y_{2}^{+}\right)\left(y_{2}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right) y_{1} y_{2}\left(y_{2}-y_{1}^{+}\right)} \frac{\tilde{\eta}_{1}}{\eta_{1}^{2} \eta_{2}} \\
& a_{44}=\frac{i\left(y_{1}-y_{2}^{+}\right)\left(y_{1}^{+}-y_{2}^{+}\right)}{2\left(u_{1}-u_{2}+\frac{2 i}{g}\right)\left(y_{2}-y_{1}^{+}\right) y_{1}^{+} y_{2}^{+}} \frac{\tilde{\eta}_{1}^{2} \tilde{\eta}_{2}}{\eta_{1}} \\
& a_{45}=a_{46}=a_{47}=a_{48}=0
\end{aligned}
$$

6.2.3 M atrix form of invariant di erential operators Λ_{k}

We use the basis of the two-particle bound state representation (6.2). A su(2) $\oplus \mathbf{S u}(2)$ invariant differential operator is represented in the matrix form as a sum over symbols ${ }_{K I L J}$ which can be equal to either $K^{I} \otimes L^{J}$ or to $(-1)^{\epsilon_{K} \epsilon_{L}} K_{K}^{I} \otimes{ }_{L}{ }^{J}$ (or anything else one wants).

$$
\Lambda_{2}=\frac{1}{3}(1133-1232+1331-2123+2222-2321+3113-3212+3311)
$$

$$
\Lambda_{3}=\frac{1}{2}(1122+1133-1221-1331-2112+2211+2233-2332
$$

$$
-3113-3223+3311+3322)
$$

$$
\Lambda_{4}={ }_{5555}+\frac{1}{2} \quad 5566+\frac{1}{2} \quad 5577+\frac{1}{4}{ }_{5588}+\frac{1}{2} \quad 5665+\frac{1}{4} \quad 5687+\frac{1}{2} \quad 5775+\frac{1}{4} \quad{ }_{5786}
$$

$$
+\frac{1}{4} \quad 5885+\frac{1}{2}{ }_{6556}+\frac{1}{4}{ }_{6578}+\frac{1}{2}{ }_{6655}+{ }_{6666}+\frac{1}{4}{ }_{6677}+\frac{1}{2} \quad 6688+\frac{1}{4} \quad 6776
$$

$$
+\frac{1}{4} \quad 6875+\frac{1}{2} \quad 6886+\frac{1}{2} \quad 7557+\frac{1}{4} \quad 7568+\frac{1}{4} \quad 7667+\frac{1}{2} \quad 7755+\frac{1}{4} \quad 7766+\quad 7777
$$

$$
+\frac{1}{2} \quad 7788+\frac{1}{4} \quad 7865+\frac{1}{2} \quad 7887+\frac{1}{4} \quad 8558+\frac{1}{4} \quad 8657+\frac{1}{2} \quad 8668+\frac{1}{4} \quad 8756
$$

$$
+\frac{1}{2} \quad 8778+\frac{1}{4} \quad 8855+\frac{1}{2} \quad 8866+\frac{1}{2} \quad 8877+\quad 8888
$$

$$
\begin{aligned}
\Lambda_{5} & =\frac{1}{4}\left(2{ }_{5566}+{ }_{5588}-2{ }_{5665}-{ }_{5687}+{ }_{5786}-{ }_{5885}-2{ }_{6556}-{ }_{6578}+2{ }_{6655}\right. \\
& +{ }_{6677}-{ }_{6776}+{ }_{6875}+{ }_{7568}-{ }_{7667}+{ }_{7766}+2{ }_{7788}-{ }_{7865}-2{ }_{7887} \\
& \left.-8558+{ }_{8657}-{ }_{8756}-2{ }_{8778}+{ }_{8855}+2{ }_{8877}\right)
\end{aligned}
$$

$$
\Lambda_{6}=\frac{1}{4}\left(2{ }_{5577}+{ }_{5588}+{ }_{5687}-2{ }_{5775}-{ }_{5786}-{ }_{5885}+{ }_{6578}+{ }_{6677}+2{ }_{6688}\right.
$$

$$
\text { - } 6776-6875-26886-27557-7568-7667+27755+7766+7865
$$

$$
-8558-8657-28668+8756+8855+28866)
$$

$$
\Lambda_{7}=\frac{1}{4}\left({ }_{5588}-{ }_{5687}-{ }_{5786}+{ }_{5885}-{ }_{6578}+{ }_{6677}+{ }_{6776}-{ }_{6875}-{ }_{7568}\right.
$$

$$
+7667+7766-7865+8558-8657-8756+8855)
$$

$$
\Lambda_{8}=4444
$$

$$
\begin{aligned}
& \Lambda_{1}=1111+\frac{1}{2} \quad 1122+\frac{1}{6} \quad 1133+\frac{1}{2} \quad 1221+\frac{1}{3} \quad 1232+\frac{1}{6} \quad 1331+\frac{1}{2} \quad 2112+\frac{1}{3} \quad 2123 \\
& +\frac{1}{2} \quad 2211+\frac{2}{3} \quad 2222+\frac{1}{2} \quad 2233+\frac{1}{3} \quad 2321+\frac{1}{2} \quad 2332+\frac{1}{6} \quad 3113+\frac{1}{3} \quad 3212+\frac{1}{2} \quad 3223 \\
& +\frac{1}{6} 3311+\frac{1}{2}{ }_{3322}+{ }_{3333}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{10}={ }_{5511}+\frac{2}{3}{ }_{5522}+\frac{1}{3}{ }_{5533}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{5721}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{5732}+{ }_{6611}+\frac{2}{3}{ }_{6622} \\
& +\frac{1}{3}{ }_{6633}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{6821}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{6832}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{7512}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{7523}+\frac{1}{3}{ }_{7711} \\
& +\frac{2}{3}{ }_{7722}+{ }_{7733}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{8612}+\frac{1}{3} \mathrm{P}_{\overline{2}}{ }_{8623}+\frac{1}{3}{ }_{8811}+\frac{2}{3}{ }_{8822}+{ }_{8833} \\
& \Lambda_{11}=\frac{1}{3}\left(2_{1177}+2{ }_{1188}-\mathrm{p}_{\overline{2}}{ }_{1275}-\mathrm{P}_{\overline{2}}{ }_{1286}-\mathrm{P}_{\overline{2}}{ }_{2157}-\mathrm{P}_{\overline{2}}{ }_{2168}+{ }_{2255}+{ }_{2266}\right. \\
& \left.+{ }_{2277}+{ }_{2288}-\mathrm{p}_{\overline{2}}{ }_{2375}-\mathrm{p}_{\overline{2}}{ }_{2386}-\mathrm{p}_{\overline{2}}{ }_{3257}-\mathrm{p}_{\overline{2}}{ }_{3268}+2_{3355}+2{ }_{3366}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{13}=1144+2244+3344 \\
& \Lambda_{14}=4411+{ }_{4422}+{ }_{4433} \\
& \Lambda_{15}={ }_{4455}+{ }_{4466}+{ }_{4477}+{ }_{4488} \\
& \Lambda_{16}={ }_{5544}+{ }_{6644}+{ }_{7744}+8844 \\
& \Lambda_{17}=1434-2424+3414 \\
& \Lambda_{18}={ }_{4143}-{ }_{4242}+{ }_{4341} \\
& \begin{aligned}
\Lambda_{19} & =1538-1637-1736+1835-2528+2627+2726-2825 \\
& +{ }_{3518}-{ }_{3617}-{ }_{3716}+3815
\end{aligned} \\
& \Lambda_{20}={ }_{5183}-5282+5381-6173+6272-6371-7163+7262 \\
& -{ }_{7361}+{ }_{8153}-8252+8351
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{21}={ }_{4548}-{ }_{4647}-{ }_{4746}+{ }_{4845} \\
& \Lambda_{22}={ }_{5484}-{ }_{6474}-7464+8454
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{25}={ }_{1441}+2442+3443 \\
& \Lambda_{26}=4114+4224+4334
\end{aligned}
$$

$$
\begin{aligned}
& -2{ }_{7117}+\mathrm{P}_{\left.\overline{2}{ }_{7215}-{ }_{7227}+\mathrm{P}_{\overline{2}}{ }_{7325}-2{ }_{8118}+\mathrm{P}_{\overline{2}}{ }_{8216}-{ }_{8228}+\mathrm{P}_{\overline{2}}{ }_{8326}\right)} \\
& \Lambda_{29}=-{ }_{5445}-{ }_{6446}-{ }_{7447}-{ }_{8448} \\
& \Lambda_{30}=-{ }_{4554}-{ }_{4664}-{ }_{4774}-{ }_{4884}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2}{3}{ }_{2662}+\frac{\mathrm{P}_{\overline{2}}}{\mathrm{p}_{\overline{2}}^{3}}{ }_{2683}+\frac{\mathrm{P}_{\overline{2}}}{3}{ }_{2751}+\frac{2}{3}{ }^{2772}+{ }^{2}+\frac{\mathrm{P}_{\overline{2}}}{3}{ }_{2861}+\frac{2}{3}{ }^{2882}+\frac{1}{3} \quad{ }^{3553}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\overline{2}}{3}{ }_{8216}+\frac{2}{3}{ }_{8228}+\frac{\overline{2}}{3}{ }_{8326}+{ }_{8338}
\end{aligned}
$$

$$
\Lambda_{39}={ }_{1421}+{ }_{1432}-2411+2433-{ }_{3412}-{ }_{3423}
$$

$$
\Lambda_{40}={ }_{4112}+4123-4211+{ }_{4233}-{ }_{4321}-{ }_{4332}
$$

$$
\Lambda_{41}=-\mathrm{p}_{\overline{2}}^{1574}-\mathrm{p}_{\overline{2}}^{1684}+2554+2664-2774-2884+\mathrm{p}_{\overline{2}}{ }_{3754}+\mathrm{p}_{\overline{2}} 3864
$$

$$
\Lambda_{42}=-\mathrm{P}_{\overline{2}}^{5147}+{ }_{5245}-\mathrm{P}_{\overline{2}}^{6148}+{ }_{6246}-{ }_{7247}+\mathrm{P}_{\overline{2}}^{7345}-{ }_{8248}+\mathrm{P}_{\overline{2}}^{8346}
$$

$$
\Lambda_{43}=-{ }_{5425}-\mathrm{p}_{\overline{2}}^{5437}-{ }_{6426}-\mathrm{p}_{\overline{2}}^{6438}+\mathrm{p}_{\overline{2}}{ }_{7415}+{ }_{7427}+\mathrm{p}_{\overline{2}}{ }_{8416}+{ }_{8428}
$$

$$
\Lambda_{45}=-\mathrm{p}_{\overline{2}}^{1475}-^{\mathrm{p}} \overline{2}_{1486}+{ }_{2455}+{ }_{2466}-{ }_{2477}-{ }_{2488}+\mathrm{p}_{\overline{2}}^{3457}{ }^{2}+\mathrm{p}_{\overline{2}_{3468}}
$$

$$
\Lambda_{46}=-\mathrm{p}_{\overline{2}}^{4157}-\mathrm{p}_{\overline{2}}^{4168}+{ }_{4255}+{ }_{4266}-{ }_{4277}-{ }_{4288}+\mathrm{p}_{\overline{2}}^{4375}+\mathrm{p}_{\overline{2}}^{4386}
$$

$$
\Lambda_{47}=-{ }_{5524}-\mathrm{p}_{\overline{2}}^{5734}-{ }_{6624}-\mathrm{p}_{\overline{2}}^{6834}+\mathrm{p}_{\overline{2}}{ }_{7514}+{ }_{7724}+\mathrm{p}_{\overline{2}}{ }_{8614}+{ }_{8824}
$$

$$
\Lambda_{48}=-{ }_{5542}+\mathrm{P}_{\overline{2}}^{5741}-{ }_{6642}+\mathrm{P}_{\overline{2}}^{6841}-\mathrm{p}_{\overline{2}}^{7543}+{ }_{7742}-\mathrm{p}_{\overline{2}}{ }_{8643}+{ }_{8842}
$$

$$
\begin{aligned}
& \Lambda_{33}=\mathrm{p}_{\overline{2}}^{1546}-\mathrm{p}_{\overline{2}}^{1645}+{ }_{2548}-{ }_{2647}+{ }_{2746}-{ }_{2845}+\mathrm{p}_{\overline{2}}^{3748}-{ }^{\mathrm{p}} \overline{2}_{3847} \\
& \Lambda_{34}=\mathrm{P}_{\overline{2}}{ }_{5164}+{ }_{5284}-\mathrm{P}_{\overline{2}}{ }_{6154}-{ }_{6274}+{ }_{7264}+\mathrm{P}_{\overline{2}}{ }_{7384}-{ }_{8254}-\mathrm{P}_{\overline{2}}{ }_{8374} \\
& \Lambda_{35}=\mathrm{p}_{\overline{2}}{ }_{4516}+{ }_{4528}-\mathrm{P}_{\overline{2}}{ }_{4615}-{ }_{4627}+{ }_{4726}+\mathrm{P}_{\overline{2}}{ }_{4738}-{ }_{4825}-\mathrm{P}_{\overline{2}}{ }_{4837} \\
& \Lambda_{36}=\mathrm{P}_{\overline{2}}{ }_{5461}+{ }_{5482}-\mathrm{P}_{\overline{2}}{ }_{6451}-{ }_{6472}+{ }_{7462}+\mathrm{P}_{\overline{2}}^{7483}-{ }_{8452}-\mathrm{P}_{\overline{2}}{ }_{8473} \\
& \Lambda_{37}=1124+1234-2114+2334-3214-3324 \\
& \Lambda_{38}={ }_{1142}-1241+2143-2341+3243-3342
\end{aligned}
$$

References

[1] J. A. M inahan and K. Zarembo, "The Bethe-ansatz for $\mathrm{N}=4$ super Y ang-Mills," J HEP 0303 (2003) 013, hep-th/ 0212208.
[2] D. Serban and M. Staudacher, "Planar N = 4 gauge theory and the Inozemtsev long range spin chain," J HEP 0406 (2004) 001, hep-th/ 0401057.
[3] N. Beisert, V. Dippel and M. Staudacher, "A novel long range spin chain and planar N = 4 super Yang-Mills," J HEP 0407 (2004) 075, hep-th/ 0405001.
[4] G. A rutyunov, S. Frolov and M. Staudacher, "Bethe ansatz for quantum strings," J HEP 0410, 016 (2004), hep-th/ 0406256.
[5] M. Staudacher, "T he factorized S-matrix of CFT/AdS," J HEP 0505 (2005) 054, hep-th/ 0412188.
[6] N. Beisert and M. Staudacher, "Long-range PSU $(2,2 j 4)$ Bethe ansaetze for gauge theory and strings," Nucl. Phys. B 727 (2005) 1, hep-th/ 0504190.
[7] N. Gromov and V. K azakov, "A symptotic Bethe ansatz from string sigma model on $S^{3} \times R, "$ Nucl. Phys. B 780 (2007) 143, hep-th/ 0605026.
[8] N. Beisert, "The su(2j2) dynamic S-matrix," hep-th/ 0511082.
[9] R. R. M etsaev and A. A. T seytlin, "Type IIB superstring action in AdS(5) x S(5) background," Nucl. Phys. B 533 (1998) 109, hep-th/ 9805028.
[10] G. A rutyunov and S. Frolov, "Integrable Hamiltonian for classical strings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}, "$ J HEP 0502 (2005) 059, hep-th/ 0411089.
[11] S. Frolov, J. Plefka and M. Zamaklar, "The $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ superstring in light-cone gauge and its Bethe equations," J. Phys. A 39 (2006) 13037, hep-th/ 0603008.
[12] G. Arutyunov, S. Frolov and M. Zamaklar, "The Zamolodchikov-Faddeev algebra for $A d S_{5} \times S^{5}$ superstring," J HEP 0704 (2007) 002, hep-th/ 0612229.
[13] V. A. K azakov, A . M arshakov, J . A. Minahan and K. Zarembo, "Classical / quantum integrability in AdS/CFT," J HEP 0405 (2004) 024, hep-th/ 0402207.
[14] R. A. J anik, "T he $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ superstring worldsheet S-matrix and crossing symmetry," Phys. Rev. D 73 (2006) 086006, hep-th/ 0603038.
[15] N. Beisert, R. Hernandez and E. Lopez, "A crossing-symmetric phase for $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ strings," J HEP 0611 (2006) 070, hep-th/ 0609044.
[16] N. Beisert, B. Eden and M. Staudacher, "Transcendentality and crossing," J . Stat. M ech. 0701 (2007) P 021, hep-th/ 0610251.
[17] G. A rutyunov, S. Frolov, J. Plefka and M. Zamaklar, "T he off-shell symmetry algebra of the light-cone $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ superstring," J. Phys. A 40 (2007) 3583, hep-th/ 0609157.
[18] N. Dorey, "Magnon bound states and the AdS/ CFT correspondence," J. Phys. A 39 (2006) 13119, hep-th/ 0604175.
[19] N. Beisert, "T he A nalytic Bethe A nsatz for a Chain with Centrally Extended su(2j2) Symmetry," J. Stat. Mech. 0701 (2007) P 017, nlin.si/ 0610017.
[20] H. Y. Chen, N. Dorey and K. Okamura, "T he asymptotic spectrum of the $\mathrm{N}=4$ super Yang-Mills spin chain," J HEP 0703 (2007) 005, hep-th/ 0610295.
[21] G. A rutyunov and S. Frolov, "On String S-matrix, Bound States and TBA," JHEP 0712 (2007) 024 [arX iv:0710.1568 [hep-th]].
[22] P. P. Kulish, N. Y. Reshetikhin and E. K. Sklyanin, "Yang-B axter Equation A nd Representation Theory. 1," Lett. M ath. Phys. 5 (1981) 393.
[23] V. K azakov, A. Sorin and A. Zabrodin, "Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics," Nucl. Phys. B 790 (2008) 345, hep-th/ 0703147.
[24] V. K azakov and P. Vieira, "From Characters to Quantum (Super)Spin Chains via Fusion," arXiv:0711.2470 [hep-th].
[25] M. J. M artins and C. S. M elo, "T he B ethe ansatz approach for factorizable centrally extended S-matrices," Nucl. Phys. B 785 (2007) 246, hep-th/ 0703086.
[26] M. de Leeuw, "C oordinate B ethe A nsatz for the String S-M atrix," J. Phys. A 40 (2007) 14413 [arXiv:0705.2369 [hep-th]].
[27] A. V. Belitsky, "Fusion hierarchies for $N=4$ superYang-M ills theory," arXiv:0803.2035 [hep-th].
[28] N. Beisert, "The S-M atrix of AdS/CFT and Yangian Symmetry," PoS SOLVAY (2006) 002 [arXiv:0704.0400 [nlin.SI]].
[29] T. Matsumoto, S. M oriyama and A. Torrielli, "A Secret Symmetry of the AdS/ CF T S-matrix," J HEP 0709, 099 (2007) [arX iv:0708.1285 [hep-th]].
[30] T. M atsumoto and S. M oriyama, "An Exceptional A Igebraic Origin of the AdS/ CF T Yangian Symmetry," arXiv:0803.1212 [hep-th].
[31] F. Spill and A. Torrielli, "On Drinfeld's second realization of the AdS/CFT su(2j2) Yangian," arXiv:0803.3194 [hep-th].
[32] A. Torrielli, "Classical r-matrix of the su(2j2) SYM spin-chain," Phys. Rev. D 75 (2007) 105020, hep-th/ 0701281.
[33] S. M oriyama and A. Torrielli, "A Yangian Double for the AdS/CFT Classical r-matrix," J HEP 0706 (2007) 083 [arXiv:0706.0884 [hep-th]].
[34] N. Beisert and F. Spill, "T he Classical r-matrix of AdS/CFT and its Lie Bialgebra Structure," arXiv:0708.1762 [hep-th].
[35] M . de Leeuw, to appear.
[36] G. A rutyunov, S. Frolov and M. Zamaklar, "Finite-size effects from giant magnons," Nucl. Phys. B 778 (2007) 1, hep-th/ 0606126.
[37] T. K lose and T. M cLoughlin, "Interacting finitesize magnons," arXiv:0803.2324 [hep-th].
[38] J. A. M inahan and O. Ohlsson Sax, "Finite size effects for giant magnons on physical strings," arXiv:0801.2064 [hep-th].
[39] D. M. Hofman and J. M. M aldacena, "Giant magnons," J. Phys. A 39 (2006) 13095, hep-th/ 0604135.
[40] M. Lüscher, "Volume Dependence Of The E nergy Spectrum In M assive Quantum Field Theories. 1. Stable Particle States," Commun. Math. Phys. 104 (1986) 177.
[41] J. A mbjorn, R. A. J anik and C. K ristjansen, "Wrapping interactions and a new source of corrections to the spin-chain / string duality," Nucl. Phys. B 736 (2006) 288, hep-th/ 0510171.
[42] R. A. J anik and T. Lukowski, "Wrapping interactions at strong coupling - the giant magnon," Phys. Rev. D 76 (2007) 126008 [arX iv:0708.2208 [hep-th]].
[43] Y. Hatsuda and R. Suzuki, "Finite-Size Effects for Dyonic Giant Magnons," arXiv:0801.0747 [hep-th].
[44] N. Gromov, S. Schafer-Nameki and P. Vieira, "Quantum Wrapped Giant M agnon," arXiv:0801.3671 [hep-th].
[45] M. P. Heller, R. A. J anik and T. Lukowski, "A new derivation of Luscher F-term and fluctuations around the giant magnon," arX iv:0801.4463 [hep-th].
[46] J. M. M aldacena, "T he large N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113], hep-th/ 9711200.
[47] B. S. Shastry, "Exact integrability of the one-dimensional Hubburd-model", Phys.Rev.Lett 56 (1986) 2453.
[48] N. Beisert and P. K oroteev, "Quantum Deformations of the One-Dimensional Hubbard M odel," arXiv:0802.0777 [hep-th].
[49] T. K lose, T. M cL oughlin, R. Roiban and K . Zarembo, "W orldsheet scattering in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}, "$ J HEP 0703 (2007) 094 [arXiv:hep-th/ 0611169].
[50] G. A rutyunov and E. Sokatchev, "Conformal fields in the pp-wave limit," J HEP 0208 (2002) 014, hep-th/ 0205270.
[51] F. Göhmann and V. E. K orepin, "Solution of the quantum inverse problem," J. Phys. A 33 (2000) 1199, hep-th/ 9910253.
[52] H. Y. Chen, N. Dorey and K. Okamura, "On the scattering of magnon boundstates," J HEP 0611 (2006) 035, hep-th/ 0608047.
[53] R . Roiban, "M agnon bound-state scattering in gauge and string theory," J HEP 0704 (2007) 048, hep-th/ 0608049.
[54] L. F. Alday, G. Arutyunov and S. Frolov, "New integrable system of 2dim fermions from strings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$," J HEP 0601 (2006) 078, hep-th/ 0508140.
[55] G. A rutyunov and S. Frolov, "U inform light-cone gauge for strings in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$: Solving su(1j1) sector," J HEP 0601 (2006) 055, hep-th/ 0510208.
[56] N. Dorey, D. M. Hofman and J. Maldacena, "On the singularities of the magnon S-matrix," hep-th/ 0703104.
[57] N. Dorey and K. Okamura, "Singularities of the M agnon Boundstate S-M atrix," J HEP 0803 (2008) 037 [arXiv:0712.4068 [hep-th]].
[58] G. A rutyunov and S. Frolov, "On AdS ${ }_{5} \times$ S 5 string S-matrix," Phys. Lett. B 639 (2006) 378, hep-th/ 0604043.

[^0]: ${ }^{10}$ Recall that in the light-cone gauge the particles do not carry the charge $J_{1} \equiv J$ that is taken to infinity in the decompactification limit, see [54, 55, 11] for detail.
 ${ }^{11} \mathrm{~T}$ he su(2)-sector S-matrix exhibits an intricate structure of poles and zeroes which has been shown in [56, 57] to have a natural interpretation in terms of on-shell intermediate bound states.

[^1]: ${ }^{12}$ The second equation in ($\sqrt{5.4}$) follows from the first one by using the unitarity condition $\sum^{M N}\left(z_{1}, z_{2}\right) \sum^{N M}\left(z_{2}, z_{1}\right)=1$.

