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Abstract 
 

Centralized semantic sensor network systems 

gradually show performance degradation as the scale 

of the sensor network increases. Thus systems based on 

distributed approaches with local, autonomous 

management features are urgently required. In order 

to achieve local autonomy, it is necessary to push 

semantics towards the edge of the sensor network, but 

this is hampered by the lack of availability of 

lightweight ontology processing and reasoning 

technologies that are cognisant of the limited 

resources available in sensor network nodes. This 

paper proposes an approach to dynamically and 

automatically compose an ontology reasoner to 

provide only the level of OWL reasoning required for a 

given application. A design and prototype 

implementation are presented, with initial evaluations 

confirming that this approach saves memory without 

loss of reasoning ability, which facilitates OWL 

reasoning on the resource constrained devices typical 

in sensor networks. 

 

1. Introduction 
 

Scalability and dynamic adaption are key 

capabilities for sensor networks to function effectively. 

The development of the Semantic Sensor Web brings 

the additional promise of greater reusability and 

flexibility for both sensor data and sensors themselves. 

However the scale of these new networks, both in 

terms of numbers of devices and the volume of data 

generated, necessitate distributed approaches to both 

data services and management that emphasise local 

autonomy, for example P2P approaches or the new 

governance and processing models developed in the 

context of autonomic communications [1]. In 

autonomic communications systems local autonomy is 

directed towards maintaining system-wide goals rather 

than relying on direct, centralised control or 

decision-making. Hence it is our contention that as the 

network expands that the locations at which application 

level processing should take place must also expand, in 

some cases right to the edge of the sensor network 

itself. The corollary of this is that the widespread 

penetration of declarative semantics envisioned by the 

semantic sensor network should be accompanied by a 

spread of reasoning capabilities throughout the 

network. This is the best way to maximise the utility 

and application of these semantics while also enabling 

new capabilities at edge (or near-edge) nodes. Such 

reasoners will have to be appropriately dimensioned 

for the computational resources available at the edge of 

the network. 

In this paper we describe a composable rule-based 

OWL reasoner that can be automatically composed to 

be just-fit in terms of the OWL constructs of the given 

ontology. Unnecessary rules are then not loaded into 

reasoner. A preliminary evaluation shows this 

approach reduces resource consumption (especially 

memory) for OWL reasoning without loss of reasoning 

ability. It differs from earlier work because 

customisation of the reasoner is performed 

automatically by analyzing the semantics of the actual 

ontology to be reasoned and selecting required 

reasoning modules rather than hand-crafting one-off 

customized reasoner implementations by experts.  

This automatic composable reasoner is currently 

being implemented in a distributed wireless sensor 

network management system, where sensors are 

organized in clusters with each cluster managed by a 

cluster head. The automatic composable reasoner is 

employed in this system for root cause identification 

and source localization: to identify from network fault 

notifications their root causes and the ultimate source 

of failures (typically failures in one node cause a 

cascade of fault notifications from other nodes). In our 

prototype sensor network management system, 

manager functions are resident in both gateway 



(standard PC) nodes and cluster heads (Sun SPOTs1). 

The Sun SPOTs, while still an embedded platform, are 

high-end devices supporting Java-based development 

with greater computational resources than the low 

power nodes that make up the majority of the wireless 

sensor network. It is these slightly more general 

purpose nodes that are the ultimate target of our current 

research, rather than the lowest power devices. As 

shown in section 5 this approach reduces the memory 

footprint without reducing the reasoning ability, which 

seems to be a promising approach to push intelligence 

down to resource constrained devices.  

In this paper, section 2 gives a short introduction to 

related work on OWL reasoners, their categorization as 

well as how they modularize and re-compose their 

reasoning abilities. Section 3 includes the principles of 

this approach, a description of the prototype 

components and a detailed description of the rule set 

used. The implementation and the preliminary 

evaluation are in section 4 and section 5 respectively. 

Section 6 draws conclusions and discusses future work. 

 

2. Related Work 
 

In this section three bodies of previous research 

related to our aim are discussed: a brief survey of 

OWL reasoner implementation approaches; a 

discussion of the composability of existing rule-based 

entailment reasoners; and a brief overview of previous 

work on reasoning efficiency. 

 

2.1. Current OWL Reasoner Implementations 
 

A reasoner is defined as a system that “allows one 

to infer implicitly represented knowledge from the 

knowledge that is explicitly contained in a knowledge 

base” [2]. For an OWL reasoner the knowledge base is 

a set of OWL ontologies. There are a wide range of 

OWL reasoners in modern knowledge-based systems. 

Each implementation has its own functional and 

non-functional trade-offs, including: semantic 

expressiveness, computational complexity, memory 

footprint and processor load. We made a survey of a 

set of 28 modern OWL reasoners and categorized them 

into five categories according to their internal 

reasoning algorithms. The commonalities between 

reasoner implementations enabled us to direct our 

research based on types of reasoners rather than a 

specific implementation. The categories are as follows: 

Description Logic (DL) Tableaux-based reasoners 

(e.g. Pellet [3]), perform OWL reasoning by translating 

OWL into DL and then reduce OWL reasoning to DL 

                                                           
1 http://www.sunspotworld.com/ 

satisfiability checking. OWL entailment rule-based 

reasoners (e.g. Jena [4]) compute OWL entailment by 

matching OWL entailment rules in a rule engine 

against OWL ontologies either in forward chaining or 

backward chaining, or hybrid style. First order logic 

(or its subset such as Prolog or Datalog) prover-based 

reasoners (e.g. Hoolet [5], KAON2 [6]) transform 

OWL ontology into first order logic (or its subset) 

formulae and then delegate OWL reasoning to first 

order logic theorem prover (or engines of its subset). 

F-logic-based reasoners (e.g. FOWL [7]) map OWL 

ontology to f-logic and perform OWL reasoning using 

an f-logic engine. SQL engine-based reasoners (e.g. 

Oracle’s OWLPrime [8]) model OWL entailment rules 

using SQL statements and thus OWL reasoning turns 

out to be evaluating SQL statements over OWL 

ontologies storing in databases. 

OWL Entailment rule-based OWL reasoners are 

fast, small in memory footprint, are found to be easy to 

modularize and re-compose to a fine granularity based 

on the set of OWL entailment rules (See section 3). In 

addition, the use of a rule engine offers applications 

intrinsic ability not only to reason over OWL 

ontologies but also to process application specific rules, 

which is important for many applications, e.g. sensor 

network management. For these reasons our initial 

research has focused on automatic composability of 

entailment rule-based reasoners. For simplification, we 

use “rule” and “OWL entailment rule” interchangeably 

in the following text. 

 

2.2. Reasoning Composition Approaches 
 

Some previous work has been done on the problem 

of reasoning composition. A simple approach of 

performing reasoning composition is to provide 

pre-defined reasoning levels. For example, Jena 

provides three built-in reasoning levels, i.e. OWL, 

OWL Mini, and OWL Micro, which allow users to 

select through its API. Some rule-based reasoning 

systems even allow users to freely select rules from 

their rule set to construct their own reasoning level, e.g. 

the Oracle’s OWLPrime. Jena uses plain text encoded 

rule files which potentially allow users to compose 

their own reasoning level. These approaches are mostly 

aiming at providing more flexibility rather than to 

improve reasoning performance or to lower resource 

consumption. Indeed, approaches given below are 

more focused at the later aim. 

Meditskos and Bassiliades introduced in [9] the 

Incremental Loading of Rules and Incremental 

Loading of Triples methodology. It provides a type of 

algorithm level re-composition. OWL entailment rules 

are partitioned into subsets according to their related 

expressivity and the OWL ontology to be reasoned is 



also divided into portions containing a predefined 

number of triples. Then rule subsets are circularly 

loaded into the reasoner which reasons over the 

ontology as it is incrementally loaded. This approach 

improves the memory consumption (maximum 

memory) of OWL reasoning despite the extra memory 

expended applying rule subsets in a circular mode. 

However, it performs no semantic analysis on the 

ontology, thus unused rules even though partitioned 

into subsets are still loaded into the rule engine, 

resulting in unnecessary memory consumption. 

Amir et al proposed in [10] a partition-based logical 

reasoning. It decomposes logical theories into 

signature-overlapped partitions and interconnects 

partitions into a tree-shaped intersection graph with 

partitions as vertices and arcs labelled by the common 

signature shared by adjacent two vertices. 

Consequence findings (e.g. resolution) are performed 

concurrently for all partitions once a query is received 

and logical consequences of each partition are 

propagated to the next adjacent partition toward the 

vertex whose signature covers the query formula. The 

query succeeds if it is finally proved in that vertex. 

This approach uses queries to guide selective 

consequence finding hence reducing the resolution 

search space and improves the reasoning efficiency. 

In [11] Grau et al propose an approach which uses 

E-Connections [14] to partition OWL knowledge base 

into several modelling and logically disjoint 

sub-domains, and each sub-domain is modelled as a 

separate component ontology. Link properties are used 

to relate a component ontology with another. This 

approach allows the reasoner to load and reason over 

only the relevant portion, (i.e. E-connected component 

ontologies in a transitive closure under link properties,) 

of the OWL knowledge base, and leaves irrelevant 

component ontologies unloaded.  

Guo et al propose in [13] a graph-based approach to 

partition large OWL ABoxes to allow specific 

reasoning performed on each partition and results are 

combined to a complete answer. The rationale behind 

this is to put specified assertions in the antecedent of 

an inference rule into the same partition (refer to [18] 

for all rules). A set of Chunk Rules is designed (based 

on the rule set given above) to construct a (directed) 

Chunk Graph for a given OWL knowledge base. 

Vertices are disjoint chunks of triples, and arcs from a 

chunk to another means a partition containing the first 

chunk must contain the second. Partitions are 

constructed by identifying all connected component. 

This approach helps reasoners to overcome memory 

limitation for knowledge bases with large ABoxes.  

Fokoue et al in [19] propose an approach to reduce 

the size of real world ABoxes by aggregating similar 

individuals and assertions to build summary ABoxes. 

Meanwhile an efficient filtering technique is also 

proposed to perform ABox reasoning for specific 

reasoning tasks (e.g. consistency checking). Indeed it 

segments the summary ABox into partitions isolating 

only relevant portions of consistency checking. The 

summary technique and the filtering technique are 

proved to have large reduction from both space and 

time perspectives for consistency checking. 

Composition approach proposed in this paper 

analyzes the expressivity of given OWL ontology and 

then loads only rules related to OWL constructs 

present in the ontology to be reasoned. This differs 

from some previous approaches which aim to partition 

ontologies rather than the reasoning rule set. A 

prototype implementation of this approach shows it 

reduces the memory footprint (see section 5), which 

shows promises for resource constrained devices. 

 

3. Technical Approaches 
 

The fundamental idea of the composable OWL 

reasoner proposed in this paper is to automatically 

compose the its rule set according to the present OWL 

constructs of the ontology to be reasoned. This 

includes the removal of rules irrelevant to the 

reasoning of the given ontology, while keeping just 

those required. A consequence of this approach is the 

reduction of the rule set size, leading to a reduction of 

execution time and memory consumption for RETE 

network building as well as ontology reasoning. This 

section presents the technical approaches we employed 

in our prototype as well as its design. 

 

3.1. Candidate Rules 
 

Candidate rules are those rules waiting for selecting. 

Since our prototype is designed mainly for proof of 

concept, the expressivity it supports is selected to cover 

only an OWL subset that can be easily expressed as 

rules (based on the pD* interpretation [12]). Candidate 

rules of this prototype are partly from the RDF(S) rule 

set [15] (7 rules), partly from the pD* rule set [12] (20 

rules) and for the rest (9 rules) authored to complement 

the OWL constructs that are not covered by pD* 

entailment rules. Rules about number restrictions (i.e. 

owl:cardinality, owl:minCardinality, 

owl:maxCardinality), datatypes (e.g. lg, gl, rdf2, rdfs1 

and rdfs13 from [15]), and some other rules which can 

cause the explosion of the size of ontology as well as 

inefficient entailment process by naïve application (e.g. 

se1, se2, rdf1, rdfs4a, rdfs4b, rdfs6, rdfs9 and rdfs10 

from [15]), are excluded. For example, the naïve 

application of se1 and se2 leads to an infinite loop and 

produces redundant derivations of equivalent triples, 



and the rule rdf1 asserts any predicate to be of type 

rdf:Property, which is optional in OWL semantics. 

The soundness proof for RDFS entailment rules and 

pD* entailment rules can be found in [15] and [12] 

respectively. The soundness proof for the rules 

designed by ourselves is not listed here due to space 

limitations but it can be found on the web2. 

 

3.2. Rule Selection against OWL Constructs 
 

Generally rule selection is a process of constructing 

a rule closure for rules selected according to the OWL 

constructs present in the ontology. First an initial rule 

set needs to be selected to start the rule closure 

calculation. In order to determine whether a rule needs 

to be selected, the selection process compares OWL 

constructs appearing in those terms from the left-hand 

side (l.h.s.) of the rule with OWL constructs present in 

the ontology to be reasoned: it is selected if all OWL 

constructs appearing in its l.h.s. terms also present in 

the OWL ontology. For example, the rule rdfp1 (given 

in Figure 1) has owl:FunctionalProperty in its l.h.s. 

terms, then it is loaded for the reasoning of an ontology 

if the ontology contains owl:FunctionalProperty as 

well. By doing this an initial rule set is selected. 
 

Figure 1. The OWL entailment rule rdfp1 
 

However, the initial rule set is not as yet a complete 

rule set for the reasoning of the given ontology as the 

firing of some selected rules may add new constructs 

that are not present in the original ontology, e.g. the 

owl:sameAs introduced by the rdfp1 may not appear in 

the original ontology, so rules to handle newly added 

constructs may not be present. To cope with this, a rule 

closure is calculated by considering OWL constructs 

appearing in right-hand side (r.h.s.) terms of the initial 

rule set as (potential) constructs of the OWL ontology 

and then selecting extra rules according to the criteria 

given above. In the above example, we suppose the 

rdfp1 introduces the owl:sameAs which is not 

contained in the original ontology so the rules rdfp11a, 

rdfp11b are also selected to handle any inserted 

owl:sameAs statements. This process iterates until no 

more new rules can be added. The selected rule set is 

then a rule closure for the given ontology and contains 

all required rules from the candidate rule set.  

                                                           
2 https://www.cs.tcd.ie/~taiw/interpretations/pDStarplus.doc 

4. Design and Implementation 
 

In this section the design and implementation of the 

prototype is given.  

 

4.1. Components Description 
 

The prototype (as illustrated in Figure 2) consists of 

four main components: the Construct Analyzer, the 

Rule Selector, a general-purpose rule engine and the 

Ontology-to-Facts Translator. 
 

Figure 2. Composable reasoner components 
 

The Construct Analyzer determines the OWL 

constructs included by the input ontology. Basically 

this is done by testing the existence of all OWL 

constructs over the loaded ontology through Jena. 

Successful OWL constructs are then those explicitly 

present in the ontology and they are passed to the Rule 

Selector as a list.  
 

Figure 3. A snippet of the construct rule 
mappings 

 
The Rule Selector gives a selective rules list 

following the approach described in section 3.2. 

However, to avoid on-the-fly analysis of rules for 

OWL constructs, a XML document (Construct Rule 

Mappings, as shown in Figure 3) is constructed 

beforehand describing rule information required by 

Rule Selector, including name, constructs present in 

the l.h.s (tagged as FeaturedConstruct), constructs that 

will be added into ontology (tagged as 

CascadingConstruct), as well as level of reasoning it 

performs (i.e. RDFS, OWL-DL or OWL-LITE). This 

saves processing time and memory.  

The actual ontology reasoning (i.e. rule evaluation) 

is performed in the Drools 3  general-purpose rule 

engine. It is selected in the first place because the 

previous experience with it in our group. Rules are 

                                                           
3 http://www.jboss.org/drools/ 
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<InfRule name = “rdfp 16”> 

  <Level>OWL-LITE</Level> 

  <FeaturedConstruct>http://www.w3.org/2002/07/owl#allValuesFrom</FeaturedConstruct> 

</InfRule> 

 

<InfRule name = “complement 2 disjoint”> 

  <Level>OWL-DL</Level> 

  <FeaturedConstruct>http://www.w3.org/2002/07/owl#complementOf</FeaturedConstruct> 

  <CascadingConstruct> http://www.w3.org/2002/07/owl#disjointWith</CascadingConstruct> 

</InfRule> 



loaded according to the selective rule list given by the 

Rule Selector. Two different selective rule loading 

modes (i.e. additive and subtractive) are designed 

corresponding to the two rule loading modes of Drools. 

For the additive mode, rules are loaded from Drools 

rule source files and then compiled on-the-fly into 

RETE network in memory. This mode does not load 

unselected rules, and is best for situations where only a 

small subset of a large rule set is selected. For the 

subtractive mode, a pre-serialized RETE network 

containing the complete candidate rules set is loaded 

into memory and then non-selected rules are removed 

according to the selective rule list. This mode is best 

for situations where the selective rule set consists of 

the majority of the candidate rule set. Both modes are 

evaluated in this paper.  

The Ontology-to-Facts Translator performs the 

bi-directional translation between the OWL ontology 

and Drools facts.  

 

4.2. Implementation 
 

The prototype was implemented using Java 1.6.0. 

The Drools rule engine v4.0.7 was used as the 

general-purpose rule engine, and Jena 2 was used for 

ontology access and management.  
 

Figure 4. A candidate rule in drools rule 
language 

 
Components given by Figure 2 were implemented 

as separate Java classes with the 

FCRuleEntailmentReasoner as their coordinator. 

Candidate rules were kept in two different formats for 

the two selective rule loading modes. For additive 

mode candidate rules were loaded as Drools source 

files from rules.drl (as shown in Figure 4). For 

subtractive mode all candidate rules were kept in a 

pre-compiled rule base (rules.pkg) and loaded into 

Drools in whole with non-selected rules removed 

before reasoning. 

A configuration class was implemented to allow 

configuration on the behaviour of the reasoner. Users 

can configure the location of rule source, language 

level for rule selection (including RDFS, OWL-Lite 

and OWL-DL), ontology location, rule loading mode, 

composability switch, etc. 

5. A Preliminary Evaluation 
 

This section describes a preliminary evaluation 

study of the execution time and memory consumption 

of our prototype. 

 

5.1. Environment and Methodology 
 

This evaluation was carried out on a desktop PC 

with Intel Core 2 CPU 6600 at 2.4GHz, 3.25GB RAM 

and Windows XP professional version 2002 SP2. This 

prototype was developed and evaluated in Eclipse 3.3.2 

with JDK version 1.6.0 build 06 with –Xms32M and 

–Xmx32M. The Drools engine was configured to use 

stateless sessions. 

Memory cost and execution time were measured for 

both a complete automatic composable reasoning 

process and its sub-steps, i.e. RETE network building, 

and ontology reasoning (i.e. rule evaluation). These 

tests were performed to prove our initial idea and also 

to identify performance bottleneck of this prototype. 

All tests were carried out on the prototype configured 

in 4 different combinations in terms of rule loading 

mode and composability: Additive On (composable 

reasoning in additive loading mode), Additive Off 

(non-composable reasoning in additive loading mode), 

similarly, Subtractive On and Subtractive Off. 

Execution time and memory cost were tested using 

the built in Java time and memory methods. Each 

measurement was the average of 10 independent 

executions with percentage error ((standard 

deviation/mean)*100%) calculated. The Java garbage 

collector was invoked at least 10 times before each 

memory measurement to minimise the impact of 

previous memory allocations (the low percentage error 

observed in the measured values showed that this 

method was effective). 

 

5.2. Ontology Selection 
 

Five ontologies (as listed in Table 1 below) were 

selected for evaluation. The selection was motivated by 

the fact that they are of small or moderate sizes and 

different expressivities, which to some extent can 

simulate the ontology used for sensor network 

management (in many cases ontologies used for sensor 

network management are of low expressivity and small 

size). In addition, they were commonly accepted as 

examples for well known ontology tools such as 

Protégé9, etc, which to a large extent avoided errors. 

There are many other test suites for evaluating 

reasoners. For example, the OWL Test Case [16] 

                                                           
9 http://protege.stanford.edu/ 

rule “rdfs3” 

  when 

Triple(p:subject, predicate == http://www.w3.org/2000/01/rdf-schema#domain, u:object) 

Triple(v:subject, predicate == p) 

not (Triple(subject == v, predicate == http://www.w3.org/1999/02/22-rdf-syntax-ns#type, 

object == u)) 

  then 

    insert(new Triple(v, http://www.w3.org/1999/02/22-rdf-syntax-ns#type, u)); 
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provides nine sets of test cases to evaluate different 

aspects of an OWL reasoner. However, it concentrates 

more on functional evaluation rather than performance 

evaluation. The LUBM are widely used for evaluating 

the query answering performance of OWL reasoners. It 

is not used for evaluating this approach as root cause 

identification is more subsumption checking-based 

rather than query answering-based. However, these test 

suites will be considered in future research to refine 

this approach. 

Table 1. Ontologies for Evaluation 

Ontology Triples Expressivity Cls./Prop. 

/Indv. 

Selected 

rules 

Teams
10

 262 ALCIN 9/3/3 16 

FOAF
11

 808 ALCHIF(D) 23/69/0 22 

mad_cow
12

 1012 ALCHOIN(D) 54/17/13 24 

Pizza
13

 3201 ALCF(D) 87/30/0 24 

Wine
14

 5710 SHOIN(D) 138/20/206 33 

 

5.3. Data and Analysis 
 

Figure 5. Memory consumption for RETE 
network building in subtractive mode 

 
The Figure 5 shows the memory consumption for 

RETE network building in subtractive mode. The 

memory consumptions for all the five ontologies are 

almost the same (550K) when composability is off and 

they reduce to some extent after the composability 

turns on (reduced by 30% for Teams, 24% for foaf, 

17% for mad_cow, 21% for Pizza and 4.3% for wine; 

percentage errors are less than 0.1%). As in subtractive 

mode this process is only to load a pre-built RETE 

network and no other actions needs to be performed, 

the memory consumption is mainly used for store the 

                                                           
10 http://owl.man.ac.uk/2005/sssw/teams 

11 http://xmlns.com/foaf/0.1/ 

12 http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/mad_cows.owl 

13 http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl 

14 http://www.w3.org/2001/sw/WebOnt/guide-src/wine 

RETE network and thus memory cost reduction are 

caused by the reduce of the size of RETE network.  

The memory saving shown in Figure 5 is not quite 

consistent for different ontologies but shows better 

improvements for ontologies with lower-expressivity. 

This is mainly because memory saving in this test 

comes from the removal of unused rules; the reasoning 

of ontologies of high expressivity requires more rules, 

which then means less un-used rules and thus less 

memory saving. For some extreme cases there could be 

no memory saving as all candidate rules are selected. 

However, the low processing power of sensors 

determines that ontology expressivity will in many 

cases be quite low, which then implies a potential for 

substantial memory savings with the application of 

composable reasoner in sensor network.  

Memory saving of additive mode is not shown in 

Figure 5 for better observation as it requires far more 

memory than subtractive mode. Thus improvement 

turns out to be not obvious (less than 3%). This is 

caused by the Drools’ high memory cost for on-the-fly 

rule compilation and RETE network building (more 

than 10MB), which greatly lowers the impact of 

memory saved through composability (around 300K). 
 

Figure 6. Memory consumption for reasoning 
 

Figure 6 shows the memory cost for the reasoning 

process (i.e. rule evaluation). Note that memory 

savings for both additive mode and subtractive mode 

are almost the same for a given ontology. This is 

because non-select rules are the same for both the two 

modes, leading to the same RETE network, which 

determines the memory consumption for reasoning a 

given ontology. There is a major memory saving for 

the foaf (reduced by 37%), the mad_cow (reduced by 

20%) and the Pizza ontology (reduced by 32%) for 

both the two loading modes. The memory saving for 

the teams ontology and the wine ontology, however, 

are small: circa 5%. Percentage errors for all above 

listed data are within 1%. There are a number of 

factors can affect the memory consumption for 

reasoning, e.g. the size of ontology, the size of selected 

rule set, the amount of implicit knowledge, etc. Thus it 
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is hard to draw a clear tendency of memory saving in 

terms of above listed factors.  

Reduction of Execution time for RETE network 

building after composability is on (as illustrated in 

Figure 7) is small (within 15%) for additive mode and 

no obvious or even slightly higher (e.g. for Teams, foaf 

and wine) for subtractive mode. The improvement for 

additive mode is because composability reduces the 

number of loaded rules, which then saves the time 

spent on rule compilation and RETE network building. 

The slight increase for subtractive mode is because 

reasoner under this mode loads a pre-compiled RETE 

network with a complete candidate rule set no matter 

composability is on or off, but removes un-used rules 

only if composability is on, where more time is 

consumed. Percentage errors for data in this test are 

within 7%. 
 

Figure 7. Execution time for RETE network 
building 

 
As shown in Figure 8, there is no significant 

reduction on execution time for both the two modes. 

The Pizza ontology and the team ontology have the 

most reduction of execution time for additive mode (by 

12.4%) and subtractive mode (by 13%) respectively. 

Except for the Pizza ontology (reduced by 10.7% in 

subtractive mode), the execution times for other 

ontologies, although reduced, are all in 10%. 

Percentage errors for those data are within 16%. 
 

Figure 8. Execution time for reasoning 
 

As shown in Figure 9, for all the five ontologies 

tested, the memory consumption of the composable 

reasoner can compete with Jena Micro, which is the 

smallest Jena reasoner, and is less than the other 

reasoners. However they use different expressivities, 

e.g. complete OWL-DL for Pellet, a reduced version of 

OWL-DL for Jena, and a variation of pD* for the 

composable reasoner. The comparison of total 

reasoning time is not listed here for space limit. 

However generally it (in both modes) is slightly worse 

than Pellet and Jena. This is indicative of the prototype 

nature of this implementation and the heavyweight 

nature of the Drools rule engine.  
 

Figure 9. Comparison of total memory 
 

To sum up, the application of automatic 

composability significantly reduces the memory cost 

(an average of 27%). However, as yet there is not a 

significant reduction in terms of time performance. 

This is mainly because the Drools engine is a heavy 

weight engine designed as a general rule engine 

without dedicated optimization for OWL reasoning. 

Secondly, the current prototypical implementation is 

lack of optimizations. More work need to be done to 

address those problems. Although some inefficiencies 

are found the evaluation result still shows promise in 

pushing intelligence into local sensor network 

management. We are currently building the 

composable reasoner on a light weight rule engine to 

reduce the time and memory consumption caused by 

the rule engine itself. 

 

6. Conclusion and Future Work 
 

The objective to push semantics towards the edge of 

the sensor network is hampered by the lack of 

availability of lightweight ontology processing and 

reasoning technologies that are cognisant of the limited 

resources available in sensor network nodes. This 

paper proposes an approach to dynamically and 

automatically compose an OWL ontology reasoner to 

provide only the level of reasoning required for the 

ontology in use. This is primarily driven by the 
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semantic sensor network management scenario 

described in the introduction section. 

A design and prototype implementation for this 

approach is presented. The automatic composition of 

the semantic reasoner is facilitated by a modular set of 

entailment rules, where only appropriate rules are 

selected. Although implemented using a heavy weight 

rule engine, our evaluation of this prototype still shows 

that this approach greatly saves memory (on an 

average of 27% for subtractive mode). Thus although 

the time saving is not yet obvious, this approach still 

seems promising. In addition, the automatic 

composition feature obviates the need for expert-level 

input to customise the reasoner for specific 

deployments.  

This prototype does not yet provide support for 

reasoning on datatype and number restriction; and the 

lack of consistency checking rules makes this 

prototype unable to detect inconsistencies in an 

ontology. These drawbacks will be addressed by future 

work. It is also planned to extend the rule set to add 

support for more expressive OWL reasoning, in a 

modular and composable manner. 

As mentioned, this prototype is built on a heavy 

weight general-purpose rule engine (Drools), where 

complicate data structures are used for both rules and 

facts maintenance. This puts some drawbacks on our 

work such as high memory consumption for runtime 

RETE network building, etc. Ongoing work is focused 

on the integration of a lightweight J2ME compatible 

forward chaining production rule system.  

Further research is also required to continue our 

investigation of the composability of other OWL 

reasoner technologies, e.g. DL reasoners. It is hoped 

that further improvements in resource optimisation and 

reasoning expressivity. 
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