
An Automatically Composable OWL Reasoner for Resource Constrained

Devices

Wei Tai, Rob Brennan, John Keeney, Declan O’Sullivan

Knowledge and Data Engineering Group, School of Computer Science & Statistics,

Trinity College Dublin, Dublin 2, Ireland

{TaiW, Rob.Brennan, John.Keeney, Declan.OSullivan}@cs.tcd.ie

Abstract

Centralized semantic sensor network systems

gradually show performance degradation as the scale

of the sensor network increases. Thus systems based on

distributed approaches with local, autonomous

management features are urgently required. In order

to achieve local autonomy, it is necessary to push

semantics towards the edge of the sensor network, but

this is hampered by the lack of availability of

lightweight ontology processing and reasoning

technologies that are cognisant of the limited

resources available in sensor network nodes. This

paper proposes an approach to dynamically and

automatically compose an ontology reasoner to

provide only the level of OWL reasoning required for a

given application. A design and prototype

implementation are presented, with initial evaluations

confirming that this approach saves memory without

loss of reasoning ability, which facilitates OWL

reasoning on the resource constrained devices typical

in sensor networks.

1. Introduction

Scalability and dynamic adaption are key

capabilities for sensor networks to function effectively.

The development of the Semantic Sensor Web brings

the additional promise of greater reusability and

flexibility for both sensor data and sensors themselves.

However the scale of these new networks, both in

terms of numbers of devices and the volume of data

generated, necessitate distributed approaches to both

data services and management that emphasise local

autonomy, for example P2P approaches or the new

governance and processing models developed in the

context of autonomic communications [1]. In

autonomic communications systems local autonomy is

directed towards maintaining system-wide goals rather

than relying on direct, centralised control or

decision-making. Hence it is our contention that as the

network expands that the locations at which application

level processing should take place must also expand, in

some cases right to the edge of the sensor network

itself. The corollary of this is that the widespread

penetration of declarative semantics envisioned by the

semantic sensor network should be accompanied by a

spread of reasoning capabilities throughout the

network. This is the best way to maximise the utility

and application of these semantics while also enabling

new capabilities at edge (or near-edge) nodes. Such

reasoners will have to be appropriately dimensioned

for the computational resources available at the edge of

the network.

In this paper we describe a composable rule-based

OWL reasoner that can be automatically composed to

be just-fit in terms of the OWL constructs of the given

ontology. Unnecessary rules are then not loaded into

reasoner. A preliminary evaluation shows this

approach reduces resource consumption (especially

memory) for OWL reasoning without loss of reasoning

ability. It differs from earlier work because

customisation of the reasoner is performed

automatically by analyzing the semantics of the actual

ontology to be reasoned and selecting required

reasoning modules rather than hand-crafting one-off

customized reasoner implementations by experts.

This automatic composable reasoner is currently

being implemented in a distributed wireless sensor

network management system, where sensors are

organized in clusters with each cluster managed by a

cluster head. The automatic composable reasoner is

employed in this system for root cause identification

and source localization: to identify from network fault

notifications their root causes and the ultimate source

of failures (typically failures in one node cause a

cascade of fault notifications from other nodes). In our

prototype sensor network management system,

manager functions are resident in both gateway

(standard PC) nodes and cluster heads (Sun SPOTs1).

The Sun SPOTs, while still an embedded platform, are

high-end devices supporting Java-based development

with greater computational resources than the low

power nodes that make up the majority of the wireless

sensor network. It is these slightly more general

purpose nodes that are the ultimate target of our current

research, rather than the lowest power devices. As

shown in section 5 this approach reduces the memory

footprint without reducing the reasoning ability, which

seems to be a promising approach to push intelligence

down to resource constrained devices.

In this paper, section 2 gives a short introduction to

related work on OWL reasoners, their categorization as

well as how they modularize and re-compose their

reasoning abilities. Section 3 includes the principles of

this approach, a description of the prototype

components and a detailed description of the rule set

used. The implementation and the preliminary

evaluation are in section 4 and section 5 respectively.

Section 6 draws conclusions and discusses future work.

2. Related Work

In this section three bodies of previous research

related to our aim are discussed: a brief survey of

OWL reasoner implementation approaches; a

discussion of the composability of existing rule-based

entailment reasoners; and a brief overview of previous

work on reasoning efficiency.

2.1. Current OWL Reasoner Implementations

A reasoner is defined as a system that “allows one

to infer implicitly represented knowledge from the

knowledge that is explicitly contained in a knowledge

base” [2]. For an OWL reasoner the knowledge base is

a set of OWL ontologies. There are a wide range of

OWL reasoners in modern knowledge-based systems.

Each implementation has its own functional and

non-functional trade-offs, including: semantic

expressiveness, computational complexity, memory

footprint and processor load. We made a survey of a

set of 28 modern OWL reasoners and categorized them

into five categories according to their internal

reasoning algorithms. The commonalities between

reasoner implementations enabled us to direct our

research based on types of reasoners rather than a

specific implementation. The categories are as follows:

Description Logic (DL) Tableaux-based reasoners

(e.g. Pellet [3]), perform OWL reasoning by translating

OWL into DL and then reduce OWL reasoning to DL

1 http://www.sunspotworld.com/

satisfiability checking. OWL entailment rule-based

reasoners (e.g. Jena [4]) compute OWL entailment by

matching OWL entailment rules in a rule engine

against OWL ontologies either in forward chaining or

backward chaining, or hybrid style. First order logic

(or its subset such as Prolog or Datalog) prover-based

reasoners (e.g. Hoolet [5], KAON2 [6]) transform

OWL ontology into first order logic (or its subset)

formulae and then delegate OWL reasoning to first

order logic theorem prover (or engines of its subset).

F-logic-based reasoners (e.g. FOWL [7]) map OWL

ontology to f-logic and perform OWL reasoning using

an f-logic engine. SQL engine-based reasoners (e.g.

Oracle’s OWLPrime [8]) model OWL entailment rules

using SQL statements and thus OWL reasoning turns

out to be evaluating SQL statements over OWL

ontologies storing in databases.

OWL Entailment rule-based OWL reasoners are

fast, small in memory footprint, are found to be easy to

modularize and re-compose to a fine granularity based

on the set of OWL entailment rules (See section 3). In

addition, the use of a rule engine offers applications

intrinsic ability not only to reason over OWL

ontologies but also to process application specific rules,

which is important for many applications, e.g. sensor

network management. For these reasons our initial

research has focused on automatic composability of

entailment rule-based reasoners. For simplification, we

use “rule” and “OWL entailment rule” interchangeably

in the following text.

2.2. Reasoning Composition Approaches

Some previous work has been done on the problem

of reasoning composition. A simple approach of

performing reasoning composition is to provide

pre-defined reasoning levels. For example, Jena

provides three built-in reasoning levels, i.e. OWL,

OWL Mini, and OWL Micro, which allow users to

select through its API. Some rule-based reasoning

systems even allow users to freely select rules from

their rule set to construct their own reasoning level, e.g.

the Oracle’s OWLPrime. Jena uses plain text encoded

rule files which potentially allow users to compose

their own reasoning level. These approaches are mostly

aiming at providing more flexibility rather than to

improve reasoning performance or to lower resource

consumption. Indeed, approaches given below are

more focused at the later aim.

Meditskos and Bassiliades introduced in [9] the

Incremental Loading of Rules and Incremental

Loading of Triples methodology. It provides a type of

algorithm level re-composition. OWL entailment rules

are partitioned into subsets according to their related

expressivity and the OWL ontology to be reasoned is

also divided into portions containing a predefined

number of triples. Then rule subsets are circularly

loaded into the reasoner which reasons over the

ontology as it is incrementally loaded. This approach

improves the memory consumption (maximum

memory) of OWL reasoning despite the extra memory

expended applying rule subsets in a circular mode.

However, it performs no semantic analysis on the

ontology, thus unused rules even though partitioned

into subsets are still loaded into the rule engine,

resulting in unnecessary memory consumption.

Amir et al proposed in [10] a partition-based logical

reasoning. It decomposes logical theories into

signature-overlapped partitions and interconnects

partitions into a tree-shaped intersection graph with

partitions as vertices and arcs labelled by the common

signature shared by adjacent two vertices.

Consequence findings (e.g. resolution) are performed

concurrently for all partitions once a query is received

and logical consequences of each partition are

propagated to the next adjacent partition toward the

vertex whose signature covers the query formula. The

query succeeds if it is finally proved in that vertex.

This approach uses queries to guide selective

consequence finding hence reducing the resolution

search space and improves the reasoning efficiency.

In [11] Grau et al propose an approach which uses

E-Connections [14] to partition OWL knowledge base

into several modelling and logically disjoint

sub-domains, and each sub-domain is modelled as a

separate component ontology. Link properties are used

to relate a component ontology with another. This

approach allows the reasoner to load and reason over

only the relevant portion, (i.e. E-connected component

ontologies in a transitive closure under link properties,)

of the OWL knowledge base, and leaves irrelevant

component ontologies unloaded.

Guo et al propose in [13] a graph-based approach to

partition large OWL ABoxes to allow specific

reasoning performed on each partition and results are

combined to a complete answer. The rationale behind

this is to put specified assertions in the antecedent of

an inference rule into the same partition (refer to [18]

for all rules). A set of Chunk Rules is designed (based

on the rule set given above) to construct a (directed)

Chunk Graph for a given OWL knowledge base.

Vertices are disjoint chunks of triples, and arcs from a

chunk to another means a partition containing the first

chunk must contain the second. Partitions are

constructed by identifying all connected component.

This approach helps reasoners to overcome memory

limitation for knowledge bases with large ABoxes.

Fokoue et al in [19] propose an approach to reduce

the size of real world ABoxes by aggregating similar

individuals and assertions to build summary ABoxes.

Meanwhile an efficient filtering technique is also

proposed to perform ABox reasoning for specific

reasoning tasks (e.g. consistency checking). Indeed it

segments the summary ABox into partitions isolating

only relevant portions of consistency checking. The

summary technique and the filtering technique are

proved to have large reduction from both space and

time perspectives for consistency checking.

Composition approach proposed in this paper

analyzes the expressivity of given OWL ontology and

then loads only rules related to OWL constructs

present in the ontology to be reasoned. This differs

from some previous approaches which aim to partition

ontologies rather than the reasoning rule set. A

prototype implementation of this approach shows it

reduces the memory footprint (see section 5), which

shows promises for resource constrained devices.

3. Technical Approaches

The fundamental idea of the composable OWL

reasoner proposed in this paper is to automatically

compose the its rule set according to the present OWL

constructs of the ontology to be reasoned. This

includes the removal of rules irrelevant to the

reasoning of the given ontology, while keeping just

those required. A consequence of this approach is the

reduction of the rule set size, leading to a reduction of

execution time and memory consumption for RETE

network building as well as ontology reasoning. This

section presents the technical approaches we employed

in our prototype as well as its design.

3.1. Candidate Rules

Candidate rules are those rules waiting for selecting.

Since our prototype is designed mainly for proof of

concept, the expressivity it supports is selected to cover

only an OWL subset that can be easily expressed as

rules (based on the pD* interpretation [12]). Candidate

rules of this prototype are partly from the RDF(S) rule

set [15] (7 rules), partly from the pD* rule set [12] (20

rules) and for the rest (9 rules) authored to complement

the OWL constructs that are not covered by pD*

entailment rules. Rules about number restrictions (i.e.

owl:cardinality, owl:minCardinality,

owl:maxCardinality), datatypes (e.g. lg, gl, rdf2, rdfs1

and rdfs13 from [15]), and some other rules which can

cause the explosion of the size of ontology as well as

inefficient entailment process by naïve application (e.g.

se1, se2, rdf1, rdfs4a, rdfs4b, rdfs6, rdfs9 and rdfs10

from [15]), are excluded. For example, the naïve

application of se1 and se2 leads to an infinite loop and

produces redundant derivations of equivalent triples,

and the rule rdf1 asserts any predicate to be of type

rdf:Property, which is optional in OWL semantics.

The soundness proof for RDFS entailment rules and

pD* entailment rules can be found in [15] and [12]

respectively. The soundness proof for the rules

designed by ourselves is not listed here due to space

limitations but it can be found on the web2.

3.2. Rule Selection against OWL Constructs

Generally rule selection is a process of constructing

a rule closure for rules selected according to the OWL

constructs present in the ontology. First an initial rule

set needs to be selected to start the rule closure

calculation. In order to determine whether a rule needs

to be selected, the selection process compares OWL

constructs appearing in those terms from the left-hand

side (l.h.s.) of the rule with OWL constructs present in

the ontology to be reasoned: it is selected if all OWL

constructs appearing in its l.h.s. terms also present in

the OWL ontology. For example, the rule rdfp1 (given

in Figure 1) has owl:FunctionalProperty in its l.h.s.

terms, then it is loaded for the reasoning of an ontology

if the ontology contains owl:FunctionalProperty as

well. By doing this an initial rule set is selected.

Figure 1. The OWL entailment rule rdfp1

However, the initial rule set is not as yet a complete

rule set for the reasoning of the given ontology as the

firing of some selected rules may add new constructs

that are not present in the original ontology, e.g. the

owl:sameAs introduced by the rdfp1 may not appear in

the original ontology, so rules to handle newly added

constructs may not be present. To cope with this, a rule

closure is calculated by considering OWL constructs

appearing in right-hand side (r.h.s.) terms of the initial

rule set as (potential) constructs of the OWL ontology

and then selecting extra rules according to the criteria

given above. In the above example, we suppose the

rdfp1 introduces the owl:sameAs which is not

contained in the original ontology so the rules rdfp11a,

rdfp11b are also selected to handle any inserted

owl:sameAs statements. This process iterates until no

more new rules can be added. The selected rule set is

then a rule closure for the given ontology and contains

all required rules from the candidate rule set.

2 https://www.cs.tcd.ie/~taiw/interpretations/pDStarplus.doc

4. Design and Implementation

In this section the design and implementation of the

prototype is given.

4.1. Components Description

The prototype (as illustrated in Figure 2) consists of

four main components: the Construct Analyzer, the

Rule Selector, a general-purpose rule engine and the

Ontology-to-Facts Translator.

Figure 2. Composable reasoner components

The Construct Analyzer determines the OWL

constructs included by the input ontology. Basically

this is done by testing the existence of all OWL

constructs over the loaded ontology through Jena.

Successful OWL constructs are then those explicitly

present in the ontology and they are passed to the Rule

Selector as a list.

Figure 3. A snippet of the construct rule
mappings

The Rule Selector gives a selective rules list

following the approach described in section 3.2.

However, to avoid on-the-fly analysis of rules for

OWL constructs, a XML document (Construct Rule

Mappings, as shown in Figure 3) is constructed

beforehand describing rule information required by

Rule Selector, including name, constructs present in

the l.h.s (tagged as FeaturedConstruct), constructs that

will be added into ontology (tagged as

CascadingConstruct), as well as level of reasoning it

performs (i.e. RDFS, OWL-DL or OWL-LITE). This

saves processing time and memory.

The actual ontology reasoning (i.e. rule evaluation)

is performed in the Drools 3 general-purpose rule

engine. It is selected in the first place because the

previous experience with it in our group. Rules are

3 http://www.jboss.org/drools/

(?p rdf:type owl:FunctionalProperty)

(?u ?p ?v)

(?u ?p ?w)

�

(?w owl:sameAs ?v)

Ontology-to-

Facts

Translator

Construct

Analyzer

Rule

Selector

General-

purpose

Rule Engine
Candidate

Rules

Construct-

Rule

Mappings

OWL

Document

Construct List

Selective Rule List

Load Rules

according to

Selective Rule List
Facts (Ontology)

Reasoned

Facts(ontology)

OWL Docs

(In Memory)

Reasoned

OWL Docs

<InfRule name = “rdfp 16”>

 <Level>OWL-LITE</Level>

 <FeaturedConstruct>http://www.w3.org/2002/07/owl#allValuesFrom</FeaturedConstruct>

</InfRule>

<InfRule name = “complement 2 disjoint”>

 <Level>OWL-DL</Level>

 <FeaturedConstruct>http://www.w3.org/2002/07/owl#complementOf</FeaturedConstruct>

 <CascadingConstruct> http://www.w3.org/2002/07/owl#disjointWith</CascadingConstruct>

</InfRule>

loaded according to the selective rule list given by the

Rule Selector. Two different selective rule loading

modes (i.e. additive and subtractive) are designed

corresponding to the two rule loading modes of Drools.

For the additive mode, rules are loaded from Drools

rule source files and then compiled on-the-fly into

RETE network in memory. This mode does not load

unselected rules, and is best for situations where only a

small subset of a large rule set is selected. For the

subtractive mode, a pre-serialized RETE network

containing the complete candidate rules set is loaded

into memory and then non-selected rules are removed

according to the selective rule list. This mode is best

for situations where the selective rule set consists of

the majority of the candidate rule set. Both modes are

evaluated in this paper.

The Ontology-to-Facts Translator performs the

bi-directional translation between the OWL ontology

and Drools facts.

4.2. Implementation

The prototype was implemented using Java 1.6.0.

The Drools rule engine v4.0.7 was used as the

general-purpose rule engine, and Jena 2 was used for

ontology access and management.

Figure 4. A candidate rule in drools rule
language

Components given by Figure 2 were implemented

as separate Java classes with the

FCRuleEntailmentReasoner as their coordinator.

Candidate rules were kept in two different formats for

the two selective rule loading modes. For additive

mode candidate rules were loaded as Drools source

files from rules.drl (as shown in Figure 4). For

subtractive mode all candidate rules were kept in a

pre-compiled rule base (rules.pkg) and loaded into

Drools in whole with non-selected rules removed

before reasoning.

A configuration class was implemented to allow

configuration on the behaviour of the reasoner. Users

can configure the location of rule source, language

level for rule selection (including RDFS, OWL-Lite

and OWL-DL), ontology location, rule loading mode,

composability switch, etc.

5. A Preliminary Evaluation

This section describes a preliminary evaluation

study of the execution time and memory consumption

of our prototype.

5.1. Environment and Methodology

This evaluation was carried out on a desktop PC

with Intel Core 2 CPU 6600 at 2.4GHz, 3.25GB RAM

and Windows XP professional version 2002 SP2. This

prototype was developed and evaluated in Eclipse 3.3.2

with JDK version 1.6.0 build 06 with –Xms32M and

–Xmx32M. The Drools engine was configured to use

stateless sessions.

Memory cost and execution time were measured for

both a complete automatic composable reasoning

process and its sub-steps, i.e. RETE network building,

and ontology reasoning (i.e. rule evaluation). These

tests were performed to prove our initial idea and also

to identify performance bottleneck of this prototype.

All tests were carried out on the prototype configured

in 4 different combinations in terms of rule loading

mode and composability: Additive On (composable

reasoning in additive loading mode), Additive Off

(non-composable reasoning in additive loading mode),

similarly, Subtractive On and Subtractive Off.

Execution time and memory cost were tested using

the built in Java time and memory methods. Each

measurement was the average of 10 independent

executions with percentage error ((standard

deviation/mean)*100%) calculated. The Java garbage

collector was invoked at least 10 times before each

memory measurement to minimise the impact of

previous memory allocations (the low percentage error

observed in the measured values showed that this

method was effective).

5.2. Ontology Selection

Five ontologies (as listed in Table 1 below) were

selected for evaluation. The selection was motivated by

the fact that they are of small or moderate sizes and

different expressivities, which to some extent can

simulate the ontology used for sensor network

management (in many cases ontologies used for sensor

network management are of low expressivity and small

size). In addition, they were commonly accepted as

examples for well known ontology tools such as

Protégé9, etc, which to a large extent avoided errors.

There are many other test suites for evaluating

reasoners. For example, the OWL Test Case [16]

9 http://protege.stanford.edu/

rule “rdfs3”

 when

Triple(p:subject, predicate == http://www.w3.org/2000/01/rdf-schema#domain, u:object)

Triple(v:subject, predicate == p)

not (Triple(subject == v, predicate == http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

object == u))

 then

 insert(new Triple(v, http://www.w3.org/1999/02/22-rdf-syntax-ns#type, u));

0

100

200

300

400

500

600

Teams foaf mad_cow Pizza wine

K
B

y
te

Subtractive On Subtractive Off

provides nine sets of test cases to evaluate different

aspects of an OWL reasoner. However, it concentrates

more on functional evaluation rather than performance

evaluation. The LUBM are widely used for evaluating

the query answering performance of OWL reasoners. It

is not used for evaluating this approach as root cause

identification is more subsumption checking-based

rather than query answering-based. However, these test

suites will be considered in future research to refine

this approach.

Table 1. Ontologies for Evaluation

Ontology Triples Expressivity Cls./Prop.

/Indv.

Selected

rules

Teams
10

 262 ALCIN 9/3/3 16

FOAF
11

 808 ALCHIF(D) 23/69/0 22

mad_cow
12

 1012 ALCHOIN(D) 54/17/13 24

Pizza
13

 3201 ALCF(D) 87/30/0 24

Wine
14

 5710 SHOIN(D) 138/20/206 33

5.3. Data and Analysis

Figure 5. Memory consumption for RETE
network building in subtractive mode

The Figure 5 shows the memory consumption for

RETE network building in subtractive mode. The

memory consumptions for all the five ontologies are

almost the same (550K) when composability is off and

they reduce to some extent after the composability

turns on (reduced by 30% for Teams, 24% for foaf,

17% for mad_cow, 21% for Pizza and 4.3% for wine;

percentage errors are less than 0.1%). As in subtractive

mode this process is only to load a pre-built RETE

network and no other actions needs to be performed,

the memory consumption is mainly used for store the

10 http://owl.man.ac.uk/2005/sssw/teams

11 http://xmlns.com/foaf/0.1/

12 http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/mad_cows.owl

13 http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl

14 http://www.w3.org/2001/sw/WebOnt/guide-src/wine

RETE network and thus memory cost reduction are

caused by the reduce of the size of RETE network.

The memory saving shown in Figure 5 is not quite

consistent for different ontologies but shows better

improvements for ontologies with lower-expressivity.

This is mainly because memory saving in this test

comes from the removal of unused rules; the reasoning

of ontologies of high expressivity requires more rules,

which then means less un-used rules and thus less

memory saving. For some extreme cases there could be

no memory saving as all candidate rules are selected.

However, the low processing power of sensors

determines that ontology expressivity will in many

cases be quite low, which then implies a potential for

substantial memory savings with the application of

composable reasoner in sensor network.

Memory saving of additive mode is not shown in

Figure 5 for better observation as it requires far more

memory than subtractive mode. Thus improvement

turns out to be not obvious (less than 3%). This is

caused by the Drools’ high memory cost for on-the-fly

rule compilation and RETE network building (more

than 10MB), which greatly lowers the impact of

memory saved through composability (around 300K).

Figure 6. Memory consumption for reasoning

Figure 6 shows the memory cost for the reasoning

process (i.e. rule evaluation). Note that memory

savings for both additive mode and subtractive mode

are almost the same for a given ontology. This is

because non-select rules are the same for both the two

modes, leading to the same RETE network, which

determines the memory consumption for reasoning a

given ontology. There is a major memory saving for

the foaf (reduced by 37%), the mad_cow (reduced by

20%) and the Pizza ontology (reduced by 32%) for

both the two loading modes. The memory saving for

the teams ontology and the wine ontology, however,

are small: circa 5%. Percentage errors for all above

listed data are within 1%. There are a number of

factors can affect the memory consumption for

reasoning, e.g. the size of ontology, the size of selected

rule set, the amount of implicit knowledge, etc. Thus it

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Teams foaf mad_cow Pizza wine

K
B

y
te

Additive On Additive Off

Subtractive On Subtractive Off

0

200

400

600

800

1000

1200

1400

Teams foaf mad_cow Pizza wine

m
il
li
s
e
c
o
n
d

Additive On Additive Off

Subtractive On Subtractive Off

0

50

100

150

200

250

300

Teams foaf mad_cow Pizza wine

m
il
li
s
e
c
o
n
d

Additive On Additive Off

Subtractive On Subtractive Off

is hard to draw a clear tendency of memory saving in

terms of above listed factors.

Reduction of Execution time for RETE network

building after composability is on (as illustrated in

Figure 7) is small (within 15%) for additive mode and

no obvious or even slightly higher (e.g. for Teams, foaf

and wine) for subtractive mode. The improvement for

additive mode is because composability reduces the

number of loaded rules, which then saves the time

spent on rule compilation and RETE network building.

The slight increase for subtractive mode is because

reasoner under this mode loads a pre-compiled RETE

network with a complete candidate rule set no matter

composability is on or off, but removes un-used rules

only if composability is on, where more time is

consumed. Percentage errors for data in this test are

within 7%.

Figure 7. Execution time for RETE network
building

As shown in Figure 8, there is no significant

reduction on execution time for both the two modes.

The Pizza ontology and the team ontology have the

most reduction of execution time for additive mode (by

12.4%) and subtractive mode (by 13%) respectively.

Except for the Pizza ontology (reduced by 10.7% in

subtractive mode), the execution times for other

ontologies, although reduced, are all in 10%.

Percentage errors for those data are within 16%.

Figure 8. Execution time for reasoning

As shown in Figure 9, for all the five ontologies

tested, the memory consumption of the composable

reasoner can compete with Jena Micro, which is the

smallest Jena reasoner, and is less than the other

reasoners. However they use different expressivities,

e.g. complete OWL-DL for Pellet, a reduced version of

OWL-DL for Jena, and a variation of pD* for the

composable reasoner. The comparison of total

reasoning time is not listed here for space limit.

However generally it (in both modes) is slightly worse

than Pellet and Jena. This is indicative of the prototype

nature of this implementation and the heavyweight

nature of the Drools rule engine.

Figure 9. Comparison of total memory

To sum up, the application of automatic

composability significantly reduces the memory cost

(an average of 27%). However, as yet there is not a

significant reduction in terms of time performance.

This is mainly because the Drools engine is a heavy

weight engine designed as a general rule engine

without dedicated optimization for OWL reasoning.

Secondly, the current prototypical implementation is

lack of optimizations. More work need to be done to

address those problems. Although some inefficiencies

are found the evaluation result still shows promise in

pushing intelligence into local sensor network

management. We are currently building the

composable reasoner on a light weight rule engine to

reduce the time and memory consumption caused by

the rule engine itself.

6. Conclusion and Future Work

The objective to push semantics towards the edge of

the sensor network is hampered by the lack of

availability of lightweight ontology processing and

reasoning technologies that are cognisant of the limited

resources available in sensor network nodes. This

paper proposes an approach to dynamically and

automatically compose an OWL ontology reasoner to

provide only the level of reasoning required for the

ontology in use. This is primarily driven by the

Total Memory

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Team foaf mad_cow Pizza wine

K
b
y
te

Subtractive On Subtractive Off Pellet

Jena Full Jena Mini Jena Micro

semantic sensor network management scenario

described in the introduction section.

A design and prototype implementation for this

approach is presented. The automatic composition of

the semantic reasoner is facilitated by a modular set of

entailment rules, where only appropriate rules are

selected. Although implemented using a heavy weight

rule engine, our evaluation of this prototype still shows

that this approach greatly saves memory (on an

average of 27% for subtractive mode). Thus although

the time saving is not yet obvious, this approach still

seems promising. In addition, the automatic

composition feature obviates the need for expert-level

input to customise the reasoner for specific

deployments.

This prototype does not yet provide support for

reasoning on datatype and number restriction; and the

lack of consistency checking rules makes this

prototype unable to detect inconsistencies in an

ontology. These drawbacks will be addressed by future

work. It is also planned to extend the rule set to add

support for more expressive OWL reasoning, in a

modular and composable manner.

As mentioned, this prototype is built on a heavy

weight general-purpose rule engine (Drools), where

complicate data structures are used for both rules and

facts maintenance. This puts some drawbacks on our

work such as high memory consumption for runtime

RETE network building, etc. Ongoing work is focused

on the integration of a lightweight J2ME compatible

forward chaining production rule system.

Further research is also required to continue our

investigation of the composability of other OWL

reasoner technologies, e.g. DL reasoners. It is hoped

that further improvements in resource optimisation and

reasoning expressivity.

Acknowledgments: This work is supported by the

Irish Government under the “Network Embedded

Systems” project (NEMBES) as part of the Higher

Education Authority's Programme for Research in

Third Level Institutions (PRTLI) cycle 4.

References

[1] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E.

Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt,

and F. Zambonelli, "A survey of autonomic

communications", ACM Transactions on Autonomous

and Adaptive Systems, 2006.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,

and P. F. Patel-Schneider, The description logic

handbook, Cambridge University Press New York, NY,

USA, 2007.

[3] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y.

Katz, "Pellet: A practical OWL-DL reasoner," Web

Semantics: Science, Services and Agents on the World

Wide Web, 2007.

[4] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A.

Seaborne, and K. Wilkinson, "Jena: implementing the

semantic web recommendations", International World

Wide Web conference on Alternate track papers &

posters, 2004.

[5] D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks,

"Using Vampire to Reason with OWL", International

Semantic Web Conference, 2004.

[6] U. Hustadt, B. Motik, and U. Sattler, "Reducing SHIQ-

Description Logic to Disjunctive Datalog Programs",

International Conference on Principles of Knowledge

Representation and Reasoning, 2004.

[7] Y. Zou, T. Finin, and H. Chen, "F-OWL: an Inference

Engine for Semantic Web", IEEE Workshop on Formal

Approaches to Agent-Based Systems, vol. 3228, 2004.

[8] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M.

Annamalai, and J. Srinivasan, "Implementing an

Inference Engine for RDFS/OWL Constructs and

User-Defined Rules in Oracle", International

Conference on Data Engineering, 2008.

[9] G. Meditskos and N. Bassiliades, "A Rule-Based

Object-Oriented OWL Reasoner" IEEE Transactions on

Knowledge and Data Engineering, 2008.

[10] E. Amir and S. McIlraith, "Partition-based logical

reasoning for first-order and propositional theories,"

Artificial Intelligence, vol. 162, pp. 49-88, 2005.

[11] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur,

"Automatic partitioning of owl ontologies using

e-connections," Description Logics, vol. 4, 2005.

[12] H. J. ter Horst, "Completeness, decidability and

complexity of entailment for RDF Schema and a

semantic extension involving the OWL vocabulary",

Web Semantics: Science, Services and Agents on the

World Wide Web, 2005.

[13] Y. Guo and J. Heflin, "A scalable approach for

partitioning owl knowledge bases," in Second

International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2006), 2006.

[14] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev,

"E-connections of abstract description systems,"

Artificial Intelligence, vol. 156, pp. 1-74, 2004.

[15] P. Hayes, "RDF Semantics", W3C Recommendation,

vol. 10, 2004.

[16] J. J. Carroll and J. De Roo, "OWL web ontology

language test cases", W3C Recommendation, vol. 10,

2004.

[17] Y. Guo, Z. Pan, and J. Heflin, "LUBM: A benchmark

for OWL knowledge base systems", Web Semantics:

Science, Services and Agents on the World Wide Web,

2005.

[18] V, Royer and J. J. Quantz, "Deriving Inference Rules for

Description Logics: a Rewriting Approach into Sequent

Calculi," Technische Universitaet Berlin 1993.

[19] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and

K. Srinivas, "The summary abox: Cutting ontologies

down to size," in Proc. of the 5th International Semantic

Web Conference, 2006, p. 343.

