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ABSRACT 

 
We present a detailed study of the localized coupled-cavity modes in a photonic molecule formed from two dielectric 
spherical microcavities with CdTe nanocrystals, which show a multi-peak narrowband modal structure resulting from 
lifting of the mode degeneracy with respect to the azimuthal quantum number. The waveguiding through the coupled 
microcavities and wavelength switching effect is demonstrated.  The feasibility of photonic molecules as the basis for a 
multi-channel, wavelength-tunable optical delay device is analysed. 
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1. INTRODUCTION 
 

There is currently great interest in design and fabrication of optical structures for manipulation of light on 
micrometer-length scale. Much of this attention has been focused on photonic band-gap structures or two-dimensional 
photonic wires due to the possibility of optical interconnection 1. Closely related to these developments is the intensive 
work on the modification of photon modes in spherical microcavities, which has been of great interest both for studies of 
fundamental optical properties and for the potential applications 2.  

Extending the ideas of the linear combination of atomic orbitals method to the classical wave case, it was 
recently suggested that Mie resonances of single spherical microcavity play the same role as the atomic orbitals in the 
electronic case and the spatial distributions of wispering gallery modes (WGM) can be described by analogy with the 
orbitals in a hydrogen atom 3. In the absence of gain, the WGM resonances can be characterized by a mode number n 
(angular quantum number), mode order l (radial quantum number), and azimuthal mode number m (azimuthal quantum 
number). The value of n is proportional to the circumference divided by the wavelength of the light propagating within 
the microsphere, the mode order l indicates the number of maxima in the radial distribution of the internal electric field, 
and the azimuthal mode number m gives the orientation of the WGMs orbital plane. WGMs in a single sphere are 
degenerate with respect to m because of the spherical symmetry. 

The electro-magnetic fields confined in microsphere are given by 4 
 

( ) ( ),,φθmnnTE rknj ΧE =                                                                                                                                             (1) 

 
for modes having no radial components of the electric field (transverse electric or TE modes) and 
 

( ) ( ),,φθmnnTM rknj ΧE ×∇=                                                                                                                                     (2) 

 
for the transverse magnetic (TM) modes (no radial component of the magnetic field). 
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Here ( )φθ ,mnX  are the vector spherical harmonics given in spherical polar,  jn(nrkr) represents the spherical Bessel 

function, where k = 2π/λ is the wavenumber, nr is the refractive index of the sphere and λ is the free space wavelength. 
On the other hand, the wave functions mlsΨ  for the electron confined in the hydrogen atom are given by 5 

 

                                                    ( ) ( ),,φθmllsmls rR Υ=Ψ                                                                                         (3) 

 

where ( )rR ls  is known as the Laguerre polynomials. The eigenfunctions (1) and (3) are very similar and their spatial 

distributions are characterized by the three integer s, l and m (for hydrogen atom) and n, l and m (for microsphere), which 
correspond to total angular, radial and the azimuthal quantum numbers, respectively. Based on all above similarities this 
approach has enabled small dielectric spheres to be considered as “photonic atoms” 3, 6. However, unlike energy states of 
electron in the atom, photonic states in spherical microcavities are not localized due to finite storage time (τ) of photons 
in the resonant mode. This “photon lifetime” is controlled by quality factor of WGM Q and therefore can be limited by 
diffractive losses, absorption, gain, shape deformation or refractive index inhomogeneity 4. As a result, the resonant 
internal field of a spherical cavity is not completely confined to the interior of the microparticle. Depending on the size 
of the microsphere, the evanescent field can extend into the surroundings up to a couple of micrometers. It was recently 
recognized that the partial delocalization of Mie resonance states is of great importance because it suggests a possibility 
for coherent coupling between WGMs of two adjacent spherical particles with closely matched sizes. Such a system of 
coherently coupled photonic atoms may be called a “photonic molecule” (PM) 7 and can be employed in order to 
manipulate photons in the micrometer length scale. In analogy to the formation of molecular electronic orbits, the tight 
binding approximation provides two combinations for the electromagnetic field in a system of interacting microspheres: 
bonding (BN) and antibonding (ABN) states 7-10. Experimentally, the coupling of the photon modes of individual 
microspheres in the PM can cause a narrow resonance of a photonic atom to split into two modes of lower Q-factor 8. 
This phenomenon has been demonstrated in a system of two square, photonic dots coupled by a narrow channel 7 in a 
dye-stained bisphere system 9, 11,12, in photonic dots doped by CdSe nanocrystals (NCs) 13 and in chains of polymer-blend 
microparticles 14. However recent theoretical considerations 10 and experimental studies 15, 16 reveal complex internal 
distribution of density of photonic states of PM originating from lifting of degeneracy of PM modes with respect to the 
azimuthal index.  
 

2. EXPERIMENT 
 

In this paper we present a detailed study of the localized coupled-cavity modes in a PM formed from two 
dielectric spherical microcavities with CdTe NCs. Aqueous dispersions of melamine-formaldehyde (MF) microspheres, 
of 3 ± 0.05 µm in diameter, were combined with luminescent CdTe NCs using a layer-by-layer deposition technique 17. 
The colloidal solution of CdTe NCs, with a PL maximum at 563 nm (2.9 nm radius) and a PL quantum efficiency of ~ 
15% at room temperature, was used for coating MF microspheres. The PL spectra from PM were recorded using a 
RENISHAW micro-PL system equipped with a positioning stage and an Ar+ laser (λ = 488 nm, 1.0 mW power). 

The small size of the MF spheres was dictated by specific requirements for the optimal excitation conditions 
like matching the laser wavelength to one of the WGM frequencies and achieving good correlation between the WGM 
and the laser linewidths. The wide separation of WGMs in spheres of this size allows us to avoid intricate band mixing in 
the PM. Moreover, the quality factor of 3 µm spherical particles forming the PM (Q ~ 103) provides better mode 
coupling than would be the case with larger microspheres 9. We proceed from the assumption that a larger coupling 
parameter can be of crucial importance in the interaction between electromagnetic fields of two adjacent spheres, in 
order to experimentally study the fine spectral structure of coupled WGMs. 

 
 

3. RESULTS AND DISCUSSION 
 
To investigate the photon modes in interacting spherical microcavities we first  measured PL spectra scanning a 

sample along the longitudinal axis of the PM (Scheme 1., Fig.1).  The observed spectral structure originates from 
coupling of electronic transitions in NCs to the photon modes of the microsphere, with PL peaks corresponding to the 
resonant frequencies of WGMs with transverse electric (TE) and transverse magnetic (TM) polarizations. In Fig. 1 one 
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can clearly see a number of narrow peaks arising from TE and TM WGM of the individual spheres. The pronounced 
double structure, with the intensity distribution dependent on the excitation position, is just a result of superposition of 
the uncoupled WGMs of individual microspheres.  

For spherically symmetric microparticles the extinction cross-section is derivable from Lorenz-Mie theory 18:   
 

( ) ( ) ( )( )∑
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where x=2πr/λ is the size parameter, r is the radius of microsphere and the Mie scattering partial wave amplitudes 
an(x,nr) and bn(x,nr) can be expressed in the form 19 
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The pairs of functions An, Cn and Bn, Dn are determined by the Mie scattering problem 20 and resonance structure in 
scattering spectra can be expected as the real part of an or bn reaches its maximum value of 1 and the imaginary part is 
passing through 0 from the positive to the negative side. In other words the resonances in the Mie scattering 
characteristics occur when Cn = 0 or Dn = 0, which gives the the following mathematical condition for a resonance 21: 
 

( ) ( ) ( ) ( ) 0=′−′ xxnxnxn nrnrnnr ψψψψ                                                                                                                    (6) 

 
or 
 

( ) ( ) ( ) ( ) ,0=′−′ xxnxnxn nrnrnnr χψψχ                                                                                                                   (7) 

 
Note, that for given n and m, these equations have infinitely many solutions at discrete values of x for TM and TE WGMs 
respectively. The Riccati-Bessel functions of the first and second kind can be introduced as: 
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where J(z) and Y(z) are the cylindrical Bessel functions of the first and second kind respectively. The use of Bessel 

functions for systems with cylindrical symmetry together with reccurence relation ( ) ( ) ( )zz
z

n
z nnn 1−+−=′ ψψψ  

enables to reduce the equations (6)-(7) to the form convenient for practical calculation of position of WGMs. Thus for 
real refractive index conditions for TM and TE resonances can be taken in the form: 

( ) ( ) ( ) ( ) ( ) ,0)(
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( ) ( ) ( ) ( ) .02/12/12/12/1 =− −+−+ xYxnJxnJxYn nrnrnnr                                                                                                  (10) 

These conditions are a transcendental equations, which can be solved for the size parameter x (position of a 
resonance) for given values of refractive index m and for given angular quantum number n. Thus comparing calculated 
results with the spectral positions of the WGM in the experimental PL spectra we can identify the indexes n and l for 
each mode and estimate the size of the sphere. The algorithm of the mode assignment can be as follows. 1) The resonant 

wavelengths corresponding WGM resonances exp
iλ (i = 1,2 …,N) are determined from a PL spectrum of single sphere. 2) 

We assume approximate value microsphere radius based on technical specification within distribution of the sizes. 3) 

Theoretical resonance positions theor
iλ  are then calculated using eqs. (8) and (9). 4) Two lists are compared and for each 
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value of exp
iλ  the closest value theor

iλ  is suggested and difference between them ∆i is calculated. 5) Taking into account 

spectral resolution ∆ the correlation ( )∑
−∆∆+=

N

iN
S

1

1/1
1

is then maximized by adjusting only one fitting 

parameter, namely size of microsphere. 

Figure 1 shows a result of WGM identification by this algorithm. The shift in position of the 1
22TE , 1

23TE , 
1
21TM  and 1

22TM  modes of single microspheres, which can be clearly seen in Fig.1 is a result of a difference in the size 
of the two microspheres of only 11 nm as follows from our calculations based on Mie theory.  When the excitation is 
provided at the contact point between microspheres (Fig.1,b), the excited and emitted light propagate efficiently along the 
longitudinal axis of the bisphere and the contribution of both microcavities can be clearly seen in the PL spectra at 
discrete WGM wavelengths. This contribution of PL signal from individual microcavities can be switched by changing 
excitation position from the left to the right rim of PM (Fig. 1, a, c). The above experiments have involved excitation 
beam incidence perpendicular to the longitudinal axis of the PM. For a given excitation and detection configuration we 
did not observe any new peaks in the PL spectra of the PM as compared to that of single spheres which is indication of 
weak intermode coupling. The lack of intermode coupling in this configuration (Scheme 1) is not surprising because the 
coupling between electro-magnetic fields of the spheres is expected to be minimum when the excitation and detection are 
set perpendicular to the axis of the PM 9. However, the observed redistribution of intensity between the components of 
WGM double structure clearly demonstrates the waveguiding of the light along the PM and the possibility of wavelength 
switching in the PM depending on excitation-detection geometry. 

 

 
Scheme 1:  Experimental geometry 
for scanning PM along the 
longitudinal axis. 

Figure 1:  PL spectra of a PM with excitation and detection at three different positions 
along its longitudinal axis. Insets: microscope images of the PM, with the cross-hairs 
indicating the excitation-detection position. 

 
Theoretical considerations 8, 10 show that the intersphere coupling is expected to be maximum for the pair of 

modes whose orbitals include the contact point between microspheres and lie in the same plane 9. Taking this into 
account, the PL intensity of the coupled modes is anticipated to be maximum in the direction parallel to the PM axis and 
the signal from the coupled intersphere modes should be more pronounced in the parallel configuration than in the 
perpendicular one. 

In order to control the alignment of the spheres constituting the PM we utilized a polystyrene substrate 
containing a three-dimensionally ordered array of pores of ~ 5 µm in size prepared through a thermocapillary convection 
22. The ordered structures are formed by evaporating solutions of polystyrene in a volatile solvent, in the presence of 
moisture with forced airflow across the solution surface. A hexagonally packed array of holes (microwells) of 3-5 µm 
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depth then forms on the surface of the polymer (Fig.2). Only one pair of the 3 µm microspheres can be accommodated 
within each microwell, and the axis of the PM is close to the surface normal (Scheme 2). 

 

  
Scheme 2:  Experimental geometry for off-axis or 
parallel excitation and detection geometry. 

Figure 2: Polystyrene films with hexagonally ordered arrays of air holes 
with diameters of about 5 µm. 

 
Figure 3 shows the PL spectrum of a PM accommodated in a microwell and the spectra of the individual 

microspheres prior to being manipulated into the microwell. Pronounced doublet structure in the spectrum presented in 
Fig. 3(a), coinciding with the spectral positions of WGM of individual microspheres (Fig. 3(b)), is a result of the overlap 
of uncoupled modes of the two spheres. The shift in position of the WGM, which can be clearly seen in Figs. 3(a) and 
3(b), is a result of a difference in the size of the two microspheres of only 25 nm. However, in contrast to the spectrum in 
Fig. 3(b), this doublet is accompanied by two extra relatively broad peaks (indicated by arrows in Fig. 3(a)), which are 
indicative of strong mode coupling in the PM.   

 

 
Figure 3: (a) The PL spectrum of a PM accommodated in a microwell. Arrows indicate the coupled modes. (b) The PL spectra of 
noninteracting microspheres. Inset: microscope image of the PM in the microwell. The dark cross indicates the excitation position. 

 

576     Proc. of SPIE Vol. 5840

Downloaded from SPIE Digital Library on 04 Feb 2010 to 134.226.1.229. Terms of Use:  http://spiedl.org/terms



The appearance of these two satellites can be interpreted as a result of the formation of BN and ABN orbitals in 
the PM 7 with the ABN peak observed at lower wavelength than the BN one. In terms of cooperative scattering theory 8, 
the observed satellites originate from the removal of the WGM degeneracy with respect to the m index. The line shape of 
the satellite lines reflects the energy distribution among the coupled modes, because modes with different combinations 
of m can contribute to the PL spectra. The observation of a broader ABN peak, relative to the BN peak, reflects the 
decrease of the quality factor of the PM when compared with that of a single sphere presumably due to the interaction 

with more dissipative modes of lower l 9. The deconvolution of the lineshape of resonances belonging to 1
22TE  WGM 

(Figure 3a,b) using Lorentian functions show that the quality factors of PM peaks are ~ 8 times smaller than Q-factors of 
noninteracting microspheres.  

The high PL efficiency of CdTe NCs and the coupling of electronic transitions of NCs to the resonances of the 
PM allows us to detect the BN and ABN branches in a wide spectral region from 525 to 725 nm, corresponding to the 
full spectral range of the NC emission.  This allows the possibility of  estimating the magnitude of spectral spacing 
between bonding and antibonding branches as a function of angular mode number for comparison with theoretical 
calculations (Fig.4).  

 

 
Figure 4: Magnitude of spectral spacing between bonding and antibonding branches estimated from micro-PL spectra of PM as a 
function of angular mode number for TE (solid up-triangles) and TM (solid squares) modes. Open symbols show the result of 
theoretical calculation. The dashed lines are a guide to the eye.  

 
In order to calculate the BN/ABN splitting we adopted the maximum term approximation (MTA) of the single-

mode tight-binding (SMTB) method 10. For simplicity in our simulations we have considered only the case of identical 
spheres with WGM having radial quantum number l = 1, taking into account only the interaction between WGM of the 
same n.  

For a given WGM polarization, the value of the splitting between the BN and ABN modes of PM can be 
obtained from  
 

( )nmnnm xAx ,2Γ=∆                                                                                                                                             (11) 

 
where xn = 2πR/λn is the size parameter of a resonance with mode number n, λn is the corresponding resonant 
wavelength, Γn is the width of mode n in a single sphere, which can be calculated within Mie-theory. For a given radius 
of single spheres a, the coefficient An,m(xn) can be calculated as: 
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where k0 = xn/a is the wavenumber, Z is the characteristic length 10,  and  the spherical Hankel function of the first can be 
estimated from 
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Here, α is defined by k0Z = (2n+1/2)/cosh α. The positions of the m-resonances were estimated as xm = x ± ∆xm/2.  

Applying these equations we can see that the modeled data, presented in Fig. 4 displays behavior which is in 
good agreement with experimental data. From micro-PL spectra of the PM we have found a decrease in splitting between 
BN and ABN branches value with increasing n, with TE modes splitting being always higher than that of TM modes. 
Remarkably, the theory predicts the same behavior. Although the maximum term approximation overestimates the 
splitting (Fig. 4), it is clear that this approach provides a good qualitative guide for the analysis of a variety of 
phenomena observed in PM.  

It is worth noting that observed disagreement between calculated and experimental values for the PM mode 
splitting may also have its origin in the fact that the magnitudes of splitting were estimated as a spectral distance between 
maxima of ABN and BN peaks. However detailed consideration of coherent mode coupling in PMs using SMTB 
approach shows that in fact the BN and ABN branches consist of a number of very narrow peaks, which are due to the 
presence of m ≠ ± 1 components 10. The total number of these sharp peaks, originating from a certain mode n, is 
governed by the actual degeneracy of the Mie resonances which in the approach of the normal mode concept is n + 1. 
(Due to the dependence of the mode coupling on the orbital plane orientation, the interaction is limited between modes of 
only the same m, no degeneracy is removed between m and –m and the new degeneracy of PM modes is now n + 1 with 
m running from 0 to n) 10. In our calculations within the SMTB model we estimated the splitting as a spectral distance 
between outer peaks assigned to modes with m=±1, which do not correspond to the maximum of envelope of PM modes 
and therefore this may cause discrepancy between estimated and observed values of the mode splitting. The fine 
structure of BN and ABN modes of PM is of great interest to the experimentalists because it suggests a manifold of 
applications particularly in the field of information processing 16. However in order to observe this phenomenon two 
conditions should be met. First, the spacing between m-resonances forming BN and ABN modes of PM strongly depends 
on the angle of incidence of electromagnetic wave θ  9-10, 16. For  θ  = 0O, when the incident light propagates parallel to 
the longitudinal axis of the PM, the incident wave can preferentially  excite m = ±1 modes. The interaction with other 
dissipative modes of lower l causes the broadening of BN and ABN peaks and decreases the Q-factor relative to that of 
single spheres, as was observed in a number of papers 8-9, 15-16. In the perpendicular configuration, when θ  = 90O, the 
intermode coupling and spacing between m-resonances are expected to be minimal. In other words, in the case of  
perpendicular orientation of the PM with respect to excitation, all m-modes would merge into broad BN and ABN 
features and their fine structure would not be easily recognized. A compromise can be reached only for off-axis 
excitation with 0O < θ  < 90O.  Secondly, in order to reveal the m ≠ ± 1 components interacting cavities should have not 
only similar size, but also similar Q-factors. If the resonances of the two cavities are of greatly different width, the 
coherent coupling is disturbed (at least to some extent) and therefore fine structure of PM modes cannot be detected. 

One can see from the inset in Fig. 3a that excitation and detection in this case was provided at the centre of the 
upper sphere forming the PM i.e. along the PM axis. In order to reveal the m ≠ ± 1 components in the PL spectra of the 
MF/CdTe PM we have investigated WGM structure at different excitation (and detection) positions across the upper 
sphere. 

Figure 5a shows micro-PL spectra of a PM formed by two almost identical microspheres (sample B) with sizes 
of 3.0168 µm and 3.0189 µm measured for excitation (and signal collection) at the right edge of the upper microsphere 
(inset, Fig.5a). The presented PL spectra clearly reveal major features unique to strong coherent coupling between the 
photonic states of the two microspheres forming the PM. One can clearly see a number of narrow peaks grouping on 
both sides arising from TE and TM resonances of the individual spheres and forming BN and ABN modes of PM. The 
origin of this fine structure of BN and ABN modes lies in the lifting of the mode degeneracy in the PM 10, 16 and 
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therefore this multi peak structure would not be radically altered in scattering spectra or even in lasing, or stimulated 
Raman scattering in the same way that in a semiconductor laser the lasing does not alter the cavity resonances. 

 

 
Figure 5: (a) PL spectra of the PM formed by two almost identical microspheres with off-axis excitation and detection. (b) The PL 
spectra of noninteracting microspheres. Inset: microscope image of the PM in the microwell. The dark cross indicates the excitation 
position. 

 
It turns out that the number of experimentally resolved peaks increases with angular mode number both for TE 

and TM modes, and is very close to the n value, although never in excess of n. Indeed we have observed 19 peaks in the 

spectral region of 1
20TE (19 peaks for 1

20TM ), 21 peaks around the 1
21TE  resonance (20 peaks for 1

21TM ), 21 peaks in 

the region of the 1
22TE  resonance (21 peaks for 1

22TM ), 22 peaks for 1
23TE  (22 peaks for 1

23TM ) and 23 peaks around 

the 1
24TE resonance.  Note that the spectral region occupied by a set of these narrow resonances is much wider than 

linewidth of WGMs of non-interacting microspheres (Fig.5). 
The deconvolution of the lineshape of the m-resonances of the PM using Lorentian functions shows that m-

resonances of the BN branch are always sharper than that of ABN one, providing a higher quality factor Q value for 
these modes and therefore a higher photon lifetime in the resonant modes τ 16.   However, the most remarkable 
experimental fact is that the Q factor of the m-resonances in the spectra of the PM exceeds the Q value of single 
noninteracting microspheres, suggesting the respective modification of photon lifetime in PM (τPM) relative to photon 
storage time in single spherical microcavities before contact (τSS). These two facts along with estimated value of 
BN/ABN splitting (~ 5-7 nm) implies the possibility for development of a new PM-based photonic device such as an 
optical delay line with controllable spectral and temporal tunability.   

Figure 7 shows spectral distribution of the ratio between photon lifetime of m-modes of PM and photon storage 

time in WGMs of single sphere calculated from corresponding values of mode linewidth in the region of 1
21TE  and 

1
20TM resonances demonstrating a threefold photon storage enhancement. It is evident from Fig. 7, that the interaction 

between spherical microcavities results in periodic group delay spectra with peaks occurring at each of the m-resonant 
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frequencies with bigger delay times for higher m-values, which implies that the spectral components near these m-
resonance spend more time traveling within the PM.  

 
Figure 7: (a) PL spectra of the PM (solid line) formed by two almost identical melamine-formaldehyde microspheres 
with off-axis excitation and detection. Dashed lines show PL spectra of noninteracting microspheres. (b) Ratio 
between photon lifetime of the m-modes of photonic molecule and one of single spheres. The solid lines are result of 
linear fit.  

The relative increase in photon storage time R=τPM/τSS shows almost linear dependence on azimuthal number m 
for given mode number n (Fig.7,8), however it turned out that slope of this dependence (∆R/∆m) in its turn varies with n 
(Fig. 9, inset).  

 
Figure 8: Ratio between photon lifetime of m-modes of photonic molecule (τPM) and photon storage time in WGM of 
single sphere (τSS). Inset shows n-dependence of slopes ∆R/∆m for BN and ABN modes.  The solid lines are result of 
linear fit. 
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In our experiments we have investigated the strong coupling phenomenon in the spectra of the PM in the visible 

and near-IR spectral regions. In order to study the feasibility of the PM as a optical delay device, we have theoretically 
analysed the m-dependent structure for modes accommodated within the C band from 1525 – 1565 nm using MTA 
(Eq.11-13) and extrapolated the n-dependence of ∆R/∆m presented in Fig.8 into region of higher values of angular mode 
number. 

 
Figure 9: (a) Spacing between adjacent m-modes calculated in spectral region of the C-band for PMs formed by two identical SiO2 
microspheres with sizes of 10 µm (3), 12 µm (2) and 16 µm (1). (b) Calculated distribution of delay time between m-modes.  The 
zero value on wavelength axis corresponds to the position of TE24, TE29 and TE40 WGM of the single spherical microcavity. 

 
Figure 9a shows the values of spacing between adjacent m-resonances calculated in spectral region of the C-

band for PMs formed by two identical SiO2 microspheres with sizes of 10 µm (3), 12 µm (2) and 16 µm (1). The 
standard for channel spacing in today’s optical communication systems 40 GHz - 100 GHz 23 was taken into account 
deciding on microsphere sizes. In our model each m-resonance in the PM signal can be considered as a channel with 
spacing between channels depending on the size of the microspheres and the azimuthal mode number. 

For 10-µm individual microcavities, only one TE mode (λ24 = 1542.4 nm) is found in the C-band. The 
maximum splitting between BN and ABN modes (i.e. for m = 1) of 15.7 nm was estimated in this case. Calculating the 
positions of resonances for asingle 16-µm microsphere we have found 2 WGMs in the region of the C-band: 
TE40(λ=1544.6 nm)  and TM39 (λ=1559.6 nm). Maximum splitting in this case is much smaller: 8.8 nm for the TE40 
WGM, but accommodates a larger number of m-resonances. These results clearly demonstrate that two coupled WGM 
spherical microcavities can generate modal structure with controllable number of peaks distributed across the major 
communication band. In contrast to the case of single spheres, the bandpass of the proposed delay-line device can be as 
wide as the width of all communication bands and can be controlled by the size of spherical microcavities forming PM.   

Figure 8b shows the estimated distribution of delay times between m-modes of the PM taking values of the 

photon storage time in single microspheres to be τSS = 55 ps for 1
40TE , 3 ps for 1

29TE  and 0.9 ps for 1
24TE  as  

determined  from our calculations based on the Mie-theory. We can anticipate that values of delay time, τPM, calculated 
in such a way are underestimated, because of the difference in Q-factor achievable for 3-µm spheres and 10-16µm ones. 
Recent experimental studies clearly show a strong dependence of the Q-factors of m-resonances (and therefore delay 
times) on quality factor of individual microspheres 15, 16.   
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The observed non-uniformity of spacing between m-resonances (Fig.8, Fig.9a) provides a unique possibility to 
control the distribution of photon storage times in a particular spectral region (Fig.9b). For all sizes of interacting 
microspheres, we have obtained an initial increase of the spacing within the region of first three m-resonances followed 
by a dip and then an increase in spacing again (Fig. 8a). This theoretical result is in good qualitative agreement with 
experimental data 16. For the smallest PM size, 18 m-modes are available within a window of 12 – 200 GHz. The smaller 
Q-factor of WGMs in the individual spheres forming the PM results in a relatively moderate increase in delay time –  
from 1.5 ps (obtained for ABN resonance with m = 1) up to 7 ps calculated for the corresponding m-resonance of BN 
mode of PM. For microsphere of larger size, the number of available modes increases. Indeed, for 12-µm coupled 
spheres 20 m-resonances fit into above indicated spacing window, with biggest value of intermode spacing ~ 130 GHz. 
Delay times distributed between these m-modes increase from 5 ps up to 32 ps. The upper limit of intermode spacing 
drops even more for PMs formed from 16-µm microspheres. In that case, 22 m-resonances with spacing between 12 and 
76 GHz can be seen in Fig. 8a, providing discrete time delays found to be distributed between 94 ps and 960 ps. 
Remarkably, this maximum delay provided by two interacting microspheres of 16-µm size corresponds to a ~ 15 cm 
length of silica-glass waveguide delay line. 

 
4. CONCLUSIONS 

 
Using these results we can draw a few general conclusions.  In the weak coupling regime interacting spherical 

microcavities provide the possibility of waveguiding and wavelength switching in the PM depending on the excitation-
detection geometry. When coupling is strong, two spherical microcavities can generate modal structure with quality 
factors and photon lifetimes higher than that of single spheres. By analysing the m-dependent splitting of BN and ABN 
modes of PMs as a function of  size, we have introduced a new strategy for the potential application of coupled spherical 
microcavities as a multi-channel, wavelength-tunable optical delay device. In the proposed scheme the bandpass width, 
mode spacings and delays depend only on the physical parameters of the interacting microcavities and have the desired 
property of being independent of the modulation frequency of the communication signal.  
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