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The interaction between interface plasmons within a doped substrate and quantum dot electrons or holes has
been theoretically studied in double heterostructures based on covalent semiconductors. The interface plasmon
modes, the corresponding dispersion relationship, and the intraband carrier relaxation rate in quantum dots are
reported. We find the critical points in the interface plasmon density of states for multilayered structures results
in enhanced quantum dot intraband carrier relaxation when compared to that for a single heterostructure. A
detailed discussion is made of the relaxation rate and the spectral position dependencies on the quantum dot
layer thickness as well as on the dopant concentration. The material system considered was a p-Si/SiO2/air
heterostructure with Ge quantum dots embedded in an SiO2 layer. This structure is typical of those used in
technical applications.
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I. INTRODUCTION

Continuing strong interest in semiconductor quantum dots
�QDs� is not just due to their unique physical properties, but
also due to the growing number of devices which utilize
these properties. QDs are a key element in a wide variety of
electronic and optoelectronic devices, including single-
electron transistors,1 quantum bits,2 memory cells,3 and
lasers.4 The properties of these devices rely on the QD elec-
tronic subsystem relaxation efficiency; therefore, the study of
carrier relaxation mechanisms in QDs is of central impor-
tance. A knowledge of these relaxation phenomena is par-
ticularly important since it is intended that many nanoelec-
tronic devices will be incorporated into integrated circuits
�IC�. The characteristic distances between the structural ele-
ments in these ICs is expected to be several tens of nanom-
eters. Strong interaction of QDs with other circuit elements,
viz. doped substrates, buffer and wetting layers, semiconduc-
tor quantum wells and wires, is expected over these dis-
tances. This interaction would be expected to strongly influ-
ence the performance of the circuit, at both device and
system level. A careful analysis of energy relaxation pro-
cesses in QDs, induced by interactions occurring over char-
acteristic distances of several tens of nanometers, is required.

To date, the influence of a variety of elementary excita-
tions, either localized inside a QD or at its interface, on the
relaxation processes of QD-based devices has been consid-
ered in a number of studies. The effects of confined acousti-
cal 5 and optical phonons �including interface ones�,5–15

plasmons,16–18 polaronlike states in QDs,7,19,20 and the
Auger-like process21,22 have been analyzed.

More realistic, multicomponent, QD heterostructures have
also been investigated. Several studies on the influence of the

QD environment on the electronic dynamics have been per-
formed. The effects of optical and acoustical phonons, within
the barrier and the matrix, on the QD electronic subsystem
have also been demonstrated.8,9,23–25 Elastic Coulomb colli-
sions of carriers in the wetting layer with those in the dots26

and charge fluctuations in the impurity state due to recharg-
ing through the free electron reservoir2 were also shown to
affect the dynamics of QD optical transitions. Evidently, QD
carriers will strongly interact not only with free charges in
their environs but also with any nearby excitations which are
accompanied by electric fields. It has been demonstrated27,28

on an InAs/GaAs QD heterostructure, that plasmons and
plasmon phonons which reside in doped heterostructure
components, are strongly coupled to the QD electronic sub-
system. As a result, QD intraband carrier relaxation with a
combination of emission from the substrate bulk and surface
plasmon-LO-phonon modes will dominate relaxation pro-
cesses at a distance of ca. 20 nm between the QD and the
doped substrate.

To date, plasmon-induced relaxation processes in hetero-
structures based on ionic semiconductors have attracted most
attention. However, covalent materials are of great interest
for the fabrication of nanoelectronic devices. For example,
Ge/Si QD heterostructures can easily be incorporated into
existing Si-based process technologies. Since the optical
phonons of covalent semiconductor are not accompanied by
electric fields they do not interact with plasmons. So, the
only inherent source of the electric fields within such mate-
rials is from pure plasma oscillations. Therefore, an investi-
gation of the relaxation processes induced by plasmons in
doped covalent heterostructure layers is important with re-
spect to both fundamental physics and applications.

In this paper we investigate the relaxation of hot carriers
in QDs by scattering via interface plasmons �IPs� within the
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layered heterostructures. The paper is organized as follows.
In Sec. II we develop a macroscopic model for IPs in double
heterostructure. The Hamiltonian of the system in question,
the dispersion law for IPs and the electric potential induced
by the plasmons are derived. Section III is devoted to the
calculation of the IP-assisted relaxation rate within a disk-
shaped QD. Our results show that the presence of scattering
by interface plasmons contributes significantly to QD intra-
band relaxation and can, in some cases, determine the QD
luminescence efficiency.

II. THEORETICAL ANALYSIS OF THE INTERFACE
PLASMON MODEL

Without loss of generality, the double heterostructure
which we will use as a model in order to investigate the
coupling between a QD electronic subsystem and the IP
modes is represented in Fig. 1. The heterostructure is grown
along the z axis. The interface is at z=0 and the surface is at
z=b. The half-space z�0 �substrate� consists of a doped
covalent semiconductor while the layer 0�z�b consists of
undoped semiconductor or dielectric. The QD is located in
the layer at a distance a from the doped material. In this
model, we assume the QD-IPs interaction does not apprecia-
bly perturb the energy spectra of the IPs or the QD. The QD
will be considered only as a probe for the electric fields
induced by the IPs. To calculate the IP eigenmodes and the
corresponding electric potential at the dot location, we use an
approach which has been used before for the description of
the photon-plasmon interaction in a single heterostructure.29

Neglecting the retardation effect, let us start with the non-
relativistic Bloch equations describing the motion of free car-
riers and the electric field generated by their motion. These
equations are30
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where v�r , t�, n�r , t�, and p�r , t� are the hydrodynamic veloc-
ity, concentration, and pressure of the free carrier gas, ��r , t�

is the self-consistent electric potential, m is the effective
mass of the carriers, n0 is the space-independent dopant con-
centration and � is the dielectric constant. The system �1� is
incomplete since it contains five equations and six unknown
variables. Therefore, it must be supplemented by the state
equation determining the correlation between pressure, con-
centration, and temperature of the carriers. In general, this
correlation can be expressed only in an implicit form.31 If we
restrict our description to only apply to a degenerate free
carrier gas then the state equation reads29 p=�n5/3, where �
= ��3�2�2/35��2 /m. Introducing the velocity potential ��r , t�
according to the equation v=−�� we can transform Eqs. �1�,
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System �2� can be linearized in the usual way by substitution
of the following series expansion: n�r , t�=n0+n1�r , t�
+n2�r , t�+ ¯ , ��r , t�=�1�r , t�+�2�r , t�+ ¯ , and ��r , t�
=�0+�1�r , t�+�2�r , t�+ ¯ . We suppose that the free carrier
gas has a uniform concentration n0 in the nonperturbed state.
To a first approximation, we obtain the linear system of
coupled equations,
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Here 	= �5�n0
2/3 /3m�1/2 is the speed of propagation of hydro-

dynamic disturbance in the carrier gas. The system �3� is a
set of the Euler equations for the Lagrangian
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and the Hamiltonian corresponding to Eqs. �3� is given by
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From now on, the subscript 1 will be omitted for clarity.
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FIG. 1. Geometry of the double heterostructure. a is the distance
between the quantum dot and the doped covalent semiconductor X
�X=Si or Ge�, b is the thickness of the undoped semiconductor
layer Y �not necessarily covalent, e.g., Y =SiO2 or SixGe1−x�.
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In order to find the IP eigenmodes, their dispersion, and
the self-consistent electrostatic potential induced by the plas-
mons, one needs to solve the system �3� with appropriate
boundary conditions. In order to do this, we applied Eqs. �3�
to every region within the heterostructure, solving the equa-
tions for doped �d� and undoped �u� materials, as well as for
air �a�. The boundary conditions used have a clear physical
meaning. First of all, we require the functions ��r , t�, ��r , t�,
and n�r , t� to be bounded across the whole space. The
standard boundary conditions of classical electrodynamics
should be also fulfilled. In particular, the electrostatic po-
tential and the normal component of electric displacement
must be continuous at the interface, z=0, and the surface,
z=b, of the heterostructure: �d	z=0=�u	z=0, �u	z=b=�a	z=b,
�dd�d /dz	z=0=�ud�u /dz	z=0, �ud�u /dz	z=b=d�a /dz	z=b. Fi-
nally, the interface is impermeable for carriers. So, at the
plane z=0, the normal component of the hydrodynamic ve-
locity is zero �d�d /dz	z=0=0�.

According to the symmetry of the system, we suppose
that all the dynamic variables a�r , t�= 
��r , t� ,n�r , t� ,
��r , t�� have the form a�r , t�=a�z�exp�iqx− i
t�, where q is
the two-dimensional wave vector, x is the radius vector in
the interface plain, and 
 is the frequency of the IPs. Some
algebraic manipulation leads to the following result:
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where ��z� and n�z� are solutions of the equations
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2� /	2, 
p= �4�n0e2 /�dm�1/2 is the plasma
frequency. Evidently, the IP modes are near the interface be-
tween the doped and undoped materials if �q

2
0. Using the
above-listed boundary conditions, it is easy to obtain the dis-
persion relation for the IPs,
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where

�q =
�u�−

�u�− + �d�+
,

�± = 1 ±
�u − 1

�u + 1
e−2qb.

Notice that Eq. �5� for b→� and �d=�u=1 transforms to Eq.
�41� of Ref. 29.

Figure 2 �left-hand panel� illustrates the dispersion rela-

tion for the p-Si/SiO2/air heterostructure. In the calculations
below, we consider a p-doped substrate �p-Si� with a free
hole concentration n0. It is apparent that 
s�q� has a mini-
mum at a nonzero value of the IP wave vector qd. This re-
sults from the existence of the second interface �SiO2/air�
between the media with different dielectric constants. The
physical origin of the local minimum is the interference be-
tween the electric field penetrating through the doped
semiconductor/dielectric interface and the electric field re-
flected from the air/dielectric boundary. The depth, �
=
s�0�−
s�qd� and position, qd of the minimum depends on
the undoped layer thickness, b �Fig. 3�. The critical points of
the quasiparticle energy spectra occur where �q
�q�=0. In
this case the critical points form circles with radii qd, since
the function 
s�q� is isotropic in q space. These critical
points qd of the energy spectra result in the appearance of
critical points 
d=
s�qd� in the IP density of states �DOS�,
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FIG. 2. Left-hand panel: The dispersion relation 
s�q� for the IP
modes in the double p-Si/SiO2/air heterostructure �Fig. 1�. The
concentration of free holes n0=5�1018 cm−3, the thickness of the
SiO2 layer b=50 nm. Right-hand panel: The density of states cor-
responding to 
s�q�. The symbol � marks the critical point at which
the DOS diverges.
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FIG. 3. Solid line �left-hand scale�: Depth of the energy disper-
sion 
s�q� minimum in the double p-Si/SiO2/air heterostructure
�Fig. 1� as a function of the thickness b of the SiO2 layer. Dashed
line �right-hand scale�: Position of the minimum as a function of
the thickness b. In both cases the density of free holes is
5�1018 cm−3.
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where the summation is extended over all j branches of the
function q�
�. It is significant that in the case of a single
heterostructure there are no critical points of this type in the
IP DOS. As one can readily see from Eq. �5�, in the limiting
case as b→�, the dispersion of IP modes is a steadily in-
creasing function. The IP DOS corresponding to the disper-
sion relation 
s�q� plotted in Fig. 2 �left-hand panel� is
shown on the right-hand panel of Fig. 2. A simple analysis of
Eq. �6� shows that the DOS diverges as �
−
d�−1/2 at the
critical point 
d. This behavior of the DOS is typical for
one-dimensional systems.32 Obtaining the same result for the

two-dimensional problem is not surprising because the isot-
ropy of the IP dispersion reduces the dimension of the sys-
tem to unity. Obviously, the divergence of the DOS in some
way should be attributed to IP-assisted processes.

Let us use the solution of the system �3� for the secondary
quantization of the fields involved in the Hamiltonian �4� and
introduce the IP excitations with the creation �annihilation�
operator b̂q

+ �b̂q�. The Hamiltonian �4� takes the form

Ĥ = �
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+b̂q + 1/2� ,

and the self-consistent electric potential of the IP modes can
be represented as
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�
s�q�, � is the normalization area.
The coupling between the IP modes and any charged ex-

citations �e.g., electrons or holes� can be expressed by the
operator e�̂s�r�. This interaction gives rise to the IP-assisted
light absorption, luminescence, and Raman scattering, as
well as the intraband carrier relaxation. As an example, the
relaxation process developing in the QD electronic sub-
system will be considered in the next section.

III. QUANTUM DOT INTRABAND CARRIER
RELAXATION

The results obtained in the preceding section allow us to
estimate the QD intraband relaxation rate due to interaction
with the doped substrate of the double heterostructure �Fig.
1� via the electric potential �7� induced by the IP modes. This
coupling results in transitions between the initial 	i� and final
	f� states of the electron �hole� upon emission or absorption
of the IP. Assuming that temperatures are sufficiently small,

s�q�
 
kBT, we can restrict our analysis to relaxation pro-
cesses with emission of IP quanta. Then, to a first approxi-
mation, the rates of the intraband transitions as a function of
the intraband QD level spacing �= �Ei−Ef� /� are given by

Ws��� =
2�

�2 �
q

	�i	e�q�z�eiqx	f�	2e−2qa��� − 
s�q�� , �8�

where the origin is chosen at the QD position. Generally, the
initial, final or both QD states are degenerate in some quan-
tum numbers which will be marked below by a prime. To

take into account the degeneration in Eq. �8�, one should
average the right-hand side of this expression over the de-
generate initial states 	ii�� and sum over degenerate final
states 	f f��. As a result, the following expression for the in-
traband relaxation rate will be obtained:

Ws��� =
2�

�2 �
q

�q���e−2qa��� − 
s�q�� , �9�

where the function

�q��� = �
f

�	�ii�	e�q�z�eiqx	f f��	2�i

contains all the information on the QD parameters. Since Eq.
�9� is similar in its mathematical structure to the IP DOS �Eq.
�6��, the relaxation rate Ws��� will diverge at the DOS criti-
cal points. The simplest way to avoid this problem is to
replace the � function in Eq. �9� by the phenomenological
Lorenzian

��� − 
s�q�� − →
1

�

�

�� − 
s�q��2 + �2 ,

where �=1/2��i+� f +�ip�+�pd is the total dephasing rate of
the transition between the initial and final QD states, �i, � f,
and �ip are the inverse lifetimes of electron �hole� states �i
and f� and IP excitations �ip�, �pd is the pure dephasing rate,
� is the phenomenological parameter which is assumed to be
determined by relaxation processes occurring in addition to
the IP-assisted relaxation. In order to further analyze the in-
traband carrier relaxation, let us consider a cylindrical quan-
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tum dot model �Fig. 4�, a model which is frequently used for
real QD systems.33–35 We will examine a strong confinement
regime when the height �h� and radius ��0� of the QD are
smaller than the exciton Bohr radius of the QD bulk material.
In order to be definitive, we will consider the intraband re-
laxation of holes although similar results can be obtained for
the electronic relaxation as well. The energy spectrum and
wave functions of holes in a cylindrically symmetric QD
providing an infinite potential barrier have the form

	knl� = � 2

�h�0
2�1/2Jl��ln�/�0�

Jl+1��ln�
sin��k

h
z�eil�,

Eknl =
�2

2m*��2k2

h2 +
�ln

2

�0
2 � , �10�

where k�N, �lm is the nth zero of the Bessel function of the
lth order �Jl��ln�=0�, m* is the hole effective mass. Utilizing
Eq. �10� for calculating the function �q one may obtain

�q��� = 2B�lf�� e�q
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The hole intraband relaxation rate is given by
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,

where 
�
s�q�.
In order to illustrate the mechanism of intraband hole re-

laxation in a double heterostructure �Fig. 1�, consider a Ge
QD with a fixed height, h=5 nm. We only consider the two
lowest energy hole states 	1�= 	110� and 	2�= 	111� �see Fig.

4�. In all our calculations, the effective mass of heavy holes
for Ge QDs has been used �m*=0.352me�. The relationship
�0= ����2

2−�1
2� / �2m*2���1/2 between the QD radius and �

was employed to take account of variations in the energy
level spacing with QD size. If the QD size is fixed and the
energy level spacing is varied by other means, e.g., by arbi-
trarily changing � in the equations, qualitatively similar
spectra for the relaxation rates have been obtained. It should
be noted that the model of a QD with infinite potential bar-
riers is reasonable for Ge dots embedded in an SiO2 matrix,
a system with large band offsets.

Figure 5 shows the relaxation rate spectra for different b
for the 	2�→ 	1� transition and the same spectrum for a single
heterostructure. One can see that the relaxation window cor-
responding to the energy dispersion relation 
s�q� of the IP
modes is opened. Relaxation within the window is rapid: the
relaxation rates exceed 1010 s−1 for energies of about 1 meV.
We assumed in calculations that the transition dephasing rate
� was equal to 0.02 meV.
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y zh
0

FIG. 4. Cylindrically symmetric model quantum dot. Level 	2�
decays to the ground state 	1� by spontaneous emission of IP.
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FIG. 5. The hole relaxation rates as a function of the energy
level spacing � of the intraband transition 	2�→ 	1� for various
undoped layer thicknesses b: the solid line, b=50 nm; the dashed
line, b=75 nm; and the dotted line, b=100 nm. The dashed-dotted
line shows the corresponding relaxation rates for a single hetero-
structure. In the calculations the following parameters were used:
a=40 nm, n0=5�1018 cm−3, and �=0.02 meV.
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FIG. 6. Hole relaxation rates as a function of the energy level
spacing � of the intraband transition 	2�→ 	1� for different dephas-
ing rates �: for the solid lines, �=0.01 meV; the dashed lines, �
=0.1 meV. The symbols SH and DH indicate single and double
heterostructures, respectively. In calculations the following param-
eters were used: a=40 nm, b=50 nm, and n0=5�1018 cm−3.
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It is important to note the following three differences be-
tween double and single heterostructures. First, the existence
of the critical points in the IP DOS for the double hetero-
structure results in a strong enhancement of the intraband
relaxation rates as compared to those in the single hetero-
structure. Second, narrowing of the spectral width of the re-
laxation window occurs. Finally, the spectral position of the
relaxation window is shifted towards higher energies with
decreasing undoped layer thickness. Undoubtedly, the en-
hancement value depends on the transition dephasing rate �.
Although reliable data on � are lacking, we can estimate its
lower limit. In accordance with the results obtained by sev-
eral research groups,36–40 the electron �hole� dephasing rates
in QDs at low temperatures vary from several �eV to several
tens of �eV. On the other hand, the inverse lifetime ��ip� of
the IP modes contribute to � additively. Its value is unknown
a priori. In order to clarify this problem, we calculated the
hole intraband relaxation rates with a � value of 100 �eV,
assuming that � was determined by �ip �see Fig. 6�. One can
see that, even for this case, distinct enhancement of the in-
traband relaxation rates in the double heterostructure takes
place. Notwithstanding these significant differences, the in-
traband relaxation rates in double heterostructures exhibit n0
and a dependence similar to those for a single heterostruc-
ture. Figures 7 and 8 summarize how the spectral position of
the relaxation window changes with n0 and the relaxation
rates increase with decreasing a.

IV. CONCLUSION

We have examined the scattering of IPs at the interface of
doped covalent semiconductor substrates in a double hetero-
structure and the associated relaxation processes in the QD
embedded in an adjacent undoped layer within the hetero-
structure. Using a hydrodynamic approach, a simple estima-

tion of the IP-induced relaxation of a QD electronic sub-
system, including the effect of the finite lifetime of the IP
modes, has been presented. It has been shown that the IP
DOS has critical points arising from the presence of the un-
doped layer. The positions of these critical points depend on
the layer thickness. Their presence results in enhancement of
IP-assisted relaxation processes in QDs. We have demon-
strated that QD intraband carrier relaxation is enhanced for
layer thicknesses of the order of several tens of nanometers.
This relaxation mechanism, inherent to doped covalent semi-
conductors, is technologically important for a variety of
nanostructure-based devices, where the QD layer is located
in the immediate vicinity of the p�n�-doped elements within
the heterostructure and covered with a thin cap layer. The
concentration, distance, and layer thickness dependencies of
the relaxation rates offer the opportunity to engineer QD
electronic dynamics in doped Si-based heterostructures. An
experimental verification of the relaxation mechanism dis-
cussed in covalent QD heterostructures is required. In direct-
gap InAs/GaAs QD heterostructures, an analysis of the reso-
nant photoluminescence spectra of QDs can be used to
demonstrate that plasmons and plasmon phonons, resident in
the doped heterostructure components, can dominate the re-
laxation processes.27 The concentration, distance, and layer
thickness dependencies of the relaxation rates for the nondi-
rect gap QD heterostructures considered in our study can be
determined from an analysis of the risetime of the phonon-
assisted resonant photoluminescence. Experiments to explore
this are presently underway.
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FIG. 7. Hole relaxation rates as a function of level spacing � of
the intraband transition 	2�→ 	1� for different free carrier concentra-
tions n0: for the solid line, n0=1018 cm−3; the dashed line, n0=2
�1018 cm−3; and the dotted line, n0=3�1018 cm−3. In these calcu-
lations the following parameters were used: a=40 nm, b=50 nm,
and �=0.02 meV.
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FIG. 8. Maximum hole relaxation rates for the transition 	2�
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