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Whispering-gallery modes in
photonic tubes
John Donegan, R. Alan Moore, Yury Rakovich,
Yurii Gun’ko, and Tania S. Perova

A new method has been developed to fabricate microtube resonators
with strong whispering-gallery-mode emission and quality factors up
to 3000.

Microcavity structures are designed to enhance the interaction of
light with matter. Wavelength-scale structures that confine light
can be used to make highly efficient micro-lasers and sensors.
Planar, spherical, and cylindrical geometries have all been de-
veloped to make efficient micro-resonators.

Among these devices, the microcylindrical or microcapillary
dielectric resonators have generated significant interest due to
their small size and material compatibility with telecommuni-
cation optical fibers.1 The cylindrical cavity format is also com-
patible with a large variety of sensing modalities such as im-
munoassaying and molecular diagnostic assaying. Recent ef-
forts to develop efficient micro-tube emitters focused on optical
modes that are concentrated at the surface of dielectric materials.
The main physical phenomenon exploited for this development
is grazing-incidence total internal reflection of light resulting in
‘whispering-gallery’ modes (WGMs). In these modes, light prop-
agates in planes near the surface, with integer numbers of wave-
lengths along closed circumferential trajectories. The high de-
gree of confinement of light in WGM results in a high resonance
quality factor (Q).

Experimentally, the most widely-studied configuration of
thin-wall microtube cavities is the microcapillary filled with
a highly luminescent dye solution. Both diameter (typically
50-200µm) and wall thickness can be controlled by the etching of
commercially-available glass samples in an HF-water solution.2

However, the short-distance evanescent field in these microcavi-
ties and the limited photostability of dye molecules are retarding
factors for potential applications.

In the small-size regime (with diameters less than 10µm),
semiconductor microdisks of finite height—micropillars—have
been widely used as a tool to control spontaneous emission and
confine photons in three dimensions. The evanescent field in

Figure 1. Room-temperature photoluminescence spectra of a single
free-standing microtube recorded with polarizer orientation parallel to
the microtube axis (red trace) and with polarizer rotated by 90◦ (black
trace).

these photonic structures extends a few micrometers into the
surroundings, thus allowing efficient coupling to an external
photonic device. However, fabrication of small high-Q cylindri-
cal semiconductor microcavities involves complex and expen-
sive processes.3

We have recently developed a simple method for fabricat-
ing highly luminescent small aluminosilicate microtubes of
∼7 − 8µm diameter using sol-gel processing and a micro-
channel glass membrane as a template.4 The microtube res-
onators for our photonic experiments were fabricated by
vacuum-assisted wetting and filtration of alumosilicate gel
through a micro-channel glass matrix.

When separated from the matrix, this type of microtube is
much more optically dense than its surrounding medium. Light
propagating inside can therefore be spatially constrained to
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travel along the rim of its cross-section, thus becoming trapped
in a WGM. The presence of sharp emission peaks in the micro-
tube spectrum (see Figure 1) is a clear signature of this optical
confinement. These peaks correspond to optical resonance lo-
cations and reflect the fact that transition probabilities are in-
creased for emission wavelengths near resonance. Fabricated
microcavities can support optical WGM at Q = 3200 which is
the highest Q-factor achieved to date in the spectra of micro-
cylinders or micro-tubes of comparable diameters. (Figure 2
shows the fluorescence lifetime of a microtube made using our
technique.)

The most striking feature of the observed spectra is the strong
polarization properties. Experimentally, the distinction between
modes of different polarization can be determined using a po-
larizer inserted into the optical beam path in front of the detec-
tion system, which selects only the component of the electro-
magnetic field parallel to the orientation of the polarizer. The
sharp peaks dominating the spectrum for a polarizer orienta-
tion parallel to the microtube axis correspond to linear polarized
light with the electric vector vibrating parallel to the axis of the
cylinder. Rotating the polarizer by 90◦ strongly quenches these
WGMs, indicative of their transverse magnetic character.

It is well known that the resonant internal field of a micro-
cavity is not completely confined to the interior of the microres-

Figure 2. Fluorescence lifetime image of a single aluminosilicate mi-
crotube and corresponding lifetime histogram. The image was collected
using a Microtime200 time-resolved confocal-microscopy setup. Every
pixel in the lifetime image gives the lifetime at that particular position
in space.

onator. It was recently recognized that the partial delocaliza-
tion of the resonance states is of great importance, because it
implies the possibility of coherent coupling between WGMs of
two adjacent microcavities with closely matched sizes.5, 6 In the
case of microtube cavities, the evanescent field can be probed
by analysing the integrated photoluminescence (PL) efficiency
while scanning the excitation beam position in a direction per-
pendicular to the microtube axis. Our recent experiments show
that the distance through which the evanescent field acts can be
as long as 10µm away from the microtube axis.

As a result of their high Q-factor and very narrow WGM peaks
along with the cylindrical geometry considered useful for opti-
cal pumping, microtube cavities now represent very promising
systems for the design of an optically pumped microlaser emit-
ting at room temperature with significant potential for photonic
applications. In addition, the potential to couple photonic struc-
tures through their evanescent fields opens the possibility of de-
veloping highly efficient and controllable emitters down to the
single photon level.
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