Theory of diffusive light scattering from disordered materials

Sara McMurry
Denis Weaire
James Lunney
Stefan Hutzler
Trinity College
Department of Physics
Dublin 2, Ireland

Abstract. It is suggested that the measurement of the angular distribution of light transmitted through a thick slab of diffusively scattering material may provide information about the nature of the local scattering events. Monte Carlo simulations indicate that the angular distribution depends on \(\ell/\ell^* \), where \(\ell \) and \(\ell^* \) are the true and transport mean free paths, respectively, and this dependence is confirmed analytically using a modified diffusion model. Preliminary experimental results for liquid and solid foams are explicable in terms of strong forward scattering in the individual scattering events.

Subject terms: foams; diffusive light scattering.

Optical Engineering 33(12), 3849—3852 (December 1994).

Many common substances, such as milk, foam, and white paint, owe their white appearance to diffusive light scattering. In such a case, light is multiply scattered within the material and not significantly absorbed. Durian et al.\(^1\) have shown that the measurement of the transmitted light through a sample of slab geometry can be used to monitor the statistics of the local structure that is responsible for the scattering. In particular, the scaling behavior of the coarsening of a foam can be identified by the experiment, on the assumption that the structure remains self-similar.

The procedure of Durian et al. makes only limited use of the available data. In particular, the angular dependence of the transmitted light (Fig. 1) is easily measured. We have made such measurements for both liquid and solid foam slabs, and have found that the angular dependence is well expressed by

\[
T(\theta) = a \cos \theta + b \cos^2 \theta ,
\]

(1)

where \(a \) and \(b \) are constants. This prompts the question, what is the significance of the ratio \(b/a \), and is it a useful probe of structure? Because of its importance in many fields of physics, diffusive light scattering has been addressed by many authors, for example in Ref. 2. Nevertheless, there seems to be no appropriate analysis of the angular distribution shown in Fig. 1, and its dependence on the details of the diffusion mechanism. In this paper, we relate \(b/a \) to the character of the local scattering events and argue that it should be incorporated in the phenomenology associated with this experimental method.

In common with many previous discussions, we adopt the diffusion equation as an accurate description of light propagation in the bulk of the sample (for sufficiently thick samples). This model does indeed predict a distribution of the form of Eq. (1), but the ratio of the parameters \(b/a \) is determined by the boundary conditions employed, and these cannot be rigorous because the diffusion approximation fails in the surface region. We offer, however, an approximate scheme to relate the behavior of \(b/a \) for transmitted light to the nature of the individual scattering processes within the diffusive material.

We assume that the material in question has a uniform distribution of scattering centers (particles, bubbles, etc.), each having the same scattering properties, and randomly oriented. For each scatterer, the cross section \(\sigma(k',k) \) (averaged over the orientation of the scatterer and polarization of the light) for scattering from the propagation direction \(k' \) to direction \(k \), is assumed to depend only on \(k' \cdot k = \cos \theta \). Of particular significance in transport theory is the mean of the cosine of the scattering angle for each scattering event:

\[
\langle \cos \theta \rangle = \frac{ \int_{-1}^{+1} \sigma(\theta) \cos \theta \, d(\cos \theta) } { \int_{-1}^{+1} \sigma(\theta) \, d(\cos \theta) } .
\]

(2)

The diffusion approximation can be used even when the scattering is not isotropic provided the mean free path \(\ell \) in the usual expression \(D = c\ell/3 \) for the diffusion constant (where \(c \) is the effective velocity of light in the diffusive medium) is replaced by the transport mean free path \(\ell^* \). In the case of negligible absorption, this is defined by

\[
\ell^* = \frac{\ell}{1 - \langle \cos \theta \rangle} .
\]

(3)

Large \(\ell^*/\ell \) corresponds to the case of strong forward scattering. In the cases of interest, both \(\ell \) and \(\ell^* \) can be assumed...
to be much less than the sample dimensions. They are also much greater than the wavelength of light, so we are nowhere concerned with diffraction or interference effects.

We performed model Monte Carlo simulations using an ensemble of rays that propagate from a source within a finite slab. They undergo scattering with a fixed scattering length ℓ and a cross section defined by the simple rule

$$\cos\theta_z = \frac{\mu + \cos \gamma}{\sqrt{1 + 2\mu \cos \gamma + \mu^2}}$$

where γ defines a random direction and the parameter $\mu = 0$ for isotropic scattering, whereas $\mu > 0$ biases the scattering toward forward directions. Integration of Eq. (4) over all random directions gives

$$\langle \cos \theta_z \rangle = \frac{2\mu}{3} \quad 0 \leq \mu \leq 1$$

$$= 1 - \frac{1}{3\mu^2} \quad \mu > 1$$

The obvious rule is adopted for the escape of a ray from the slab without refraction or reflection at the surface, that is, a ray that crosses the surface plane $z = L \ (> > \ell_1, \ell_2)$ is taken to have been emitted. Data are gathered for the exit angles of such rays.

By the choice of the parameter μ, we vary the strength of forward/backward scattering, and hence $\ell*/\ell$. We have found that for a wide range of values, the emitted angular intensity profile was fitted well by Eq. (1), as shown in Fig. 2. In Fig. 3, we show the variation of the shape parameter b/a with $\ell*/\ell$. It increases strongly with increasing forward scattering until saturating at a value of approximately 2.2. The same data are plotted as a function of the inverse variable $\ell/\ell*$ in Fig. 4, exhibiting a straight-line variation for $\ell/\ell* \leq 1$.

A diffusion model per se cannot predict effects that depend on the characteristics of the local scattering events. The relationship between the diffusion constant and the transport mean free path, $D = \ell_2/3$, is derived when the diffusion

![Fig. 1 Angular distribution of light transmitted through a solid foam slab of thickness 1.5 cm, fitted by a function of the form given in Eq. (1) with $b/a=2.7$.](image1)

![Fig. 2 Results of the Monte Carlo simulation for the angular distribution of particles transmitted through a slab, in the case $\ell*/\ell=2$, fitted by a function of the form given in Eq. (1) with $b/a=1.65$.](image2)

![Fig. 3 Results of the Monte Carlo simulation for the shape parameter b/a plotted against $\ell*/\ell$.](image3)

![Fig. 4 Results of the Monte Carlo simulation for the shape parameter b/a plotted against $\ell/\ell*$, showing the best linear fit to the data.](image4)
model is obtained as an approximation to transport theory. In this way, it can be shown that for light multiply scattered in a slab with plane surfaces normal to the z axis, a diffusion equation for \(I_0(z) \) results when the light intensity is approximated by

\[
I(z, \hat{k}) = I_0(z) + (\hat{k} \cdot \hat{z}) I_1(z) .
\] (6)

Here \(I(z, \hat{k}) \) is the rate at which electromagnetic energy propagating in the \(\hat{k} \) direction crosses unit area perpendicular to \(\hat{k} \) at a depth \(z \) into the slab, and

\[
\frac{dI_0}{dz} = \int_{-1}^{+1} d(cos \theta) I(L, \hat{k}) \cos \theta.
\]

which is Fick's law. The angular distribution of light transmitted through the surface \(z = L \) of the slab is then given by

\[
I(L, \hat{k}) \cos \theta = \left[I_0(L') + (L - L') \frac{dI_0}{dz} L' + \ldots \right] + \cos \theta \left[I_1(L') + (L - L') \frac{dI_1}{dz} L' + \ldots \right].
\] (11)

The intensity at the surface \(z = L \) [Eq. (6)] is then expanded about \(z = L' \):

\[
I_0(L') + I_1(L') \cos \theta = I_0(L') + \cos \theta \left(1 - \frac{\ell}{\ell^*} \right) I_1(L').
\]

(10)

In the absence of absorption the diffusion equation gives \(d^2I_0/\ell^2 = 0 \) at points far from the source, and use of this expression, together with Eqs. (7) and (10), in Eq. (11) reduces it to

\[
I_0(L) + I_1(L) \cos \theta = I_0(L') + \cos \theta \left(1 - \frac{\ell}{\ell^*} \right) I_1(L')
\]

\[
= \frac{2}{3} I_1(L) \left[1 + \frac{3}{2} \left(1 - \frac{\ell}{\ell^*} \right) \cos \theta \right].
\]

The resulting angular distribution of transmitted light, \(I(L, \hat{k}) \cos \theta \), is of the form given in Eq. (1) with

\[
b/a = 3/2.
\]

(12)

where \(c = 3/2 \). If we require Eq. (12) to reproduce the Milne result in the case of isotropic scattering, \(\ell^* = \ell \), then the value 3/2 should be replaced by

\[
c = 1.4 \\
1 - \alpha = 2.8, \quad \text{if } \alpha = 0.5 .
\] (13)

The best linear fit to the simulation data, shown in Fig. 4,
gives $\alpha = 0.496 \pm 0.02$, in good agreement with the expected value $1/2$, and $c = 2.268 \pm 0.05$.

In the case of a foam with a small liquid or solid fraction, as used in our experiments, the scattering can be assumed to result from the Plateau borders (the thickened lines at the junctions of films), which act as prisms with a characteristic concave cross section.4 Pittet5 performed a Monte Carlo calculation for such a prismatic scattering element, with the refractive index of water, and found ℓ^2/ℓ to be 3.23. The data of Fig. 4 give $\ell a = 2.0$ for such a case, and preliminary experimental measurements give $\ell a = 2.7 \pm 0.5$ for solid foam. It would appear that forward scattering will dominate in many cases of practical interest, but systems with more isotropic scattering can be made, and will offer a detailed test of the validity of Eq. (12).

In a recent paper, Gonatas et al.6 recognized the importance of the angular distribution of diffusely scattered light, and Freund et al.7 measured it in a quasi-two-dimensional system. These authors, however, have not related the angular distribution to the characteristics of the local scattering events as we do in this paper. In conclusion, we believe this work opens up a new dimension in the use of diffusive light scattering for structural characterizations.

Acknowledgments

We wish to thank D. J. Durian, J. Earnshaw, and C. P. Gonatas for helpful discussions and comments, and N. Pittet and Dong Dong Jia for their contributions to the experimental and computational investigations. This work was supported by the EC SCIENCE Programme, contract SC*-CT92-0777.

References

Sara McMurry is a lecturer in the Physics Department, Trinity College Dublin. She is a theoretical physicist, with interests that include the scattering of light by foams.

Denis Weaire is the Erasmus Smith Professor in the Physics Department, Trinity College Dublin. His interests include foams, amorphous solids, and computational physics. He is currently editor of the Journal of Physics: Condensed Matter.

James Lunney: Biography and photograph appear with the paper “In situ monitoring of metal multilayer growth by optical reflectometry” in this issue.

Stefan Hutzler is a graduate of the University of Regensburg, who participated in this research toward his Diplom qualification. He is now an EC Human Capital and Mobility Programme Fellow at Trinity College Dublin.