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Two-dimensional viscous froth model for foam dynamics
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The two-dimensional viscous froth model is a simple tractable model for foam rheology and coarsening. It
includes, but is not confined to, the quasistatic regime. Here we present a detailed analysis and implementation
of the model, illustrated with various examples. With certain simplifying assumptions, it provides significant
insight into strain-rate-dependent effects in foam rheology and elsewhere, particularly in relation to recent
experiments.
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I. INTRODUCTION ies with varying degrees of geometrical refinement will

A simple model for a viscous froth was first introduced €ventually allow us to reliably assess the accuracy of
over one decade ago, in the context of domain groiitg].  Kawasaki-type dynamics over a range of flow velocities.
Its full potential is still to emerge, as the model is adapted Our intention is to provide a model that is appropriate for
and applied to foam rheology. It can provide a natural apihe case of foams with low liquid fraction. The opposite
proach to the analysis of the quasi-two-dimensio(2iD) limit, the dynamics of foams with high liquid content, has
scenarios which currently receive a great deal of experimenbeen addressed by the “bubble mechanics model” of Durian
tal attention[3,4]. We offer a thorough discussion of the [9].
model, and its various limiting cases. We then present results
obtained using numerical implementations of the model. We
first address the dynamics of isolated topological events in a
foam (the relaxation following film rupture and topological We have in mind a cluster df cells or bubblegb}, each
changg, before examining the effect of viscous drag in acontaining gas at a certain pressiig The interfaces sepa-
simple rheological situation(trains of bubbles passing rating the bubbles are subject tq@nstant interfacial ten-
through a bend in a channel sion y. This describes a static two-dimensional foam of neg-

The viscous froth model was initially conceived as a gendigible liquid fraction, a so-callediry foam.
eralization of two existing paradigms for coarsening dynam-  The viscous froth model adds dynamics to this descrip-
ics of cellular patterns, the ideabap frothand idealgrain  tion. Inertia is not included, being negligible in typical real
growthmodels. Indeed, it has the appealing feature of bridg2D foam systems. The equation of motion is then given by
ing between these two cases, which are found when apprahe following equilibrium of forces acting locally at each

priate limits are taken. It is analytically tractable in many point on a soap film, in the direction of the normal, as illus-
respects, because of the simple form taken for viscous dragrated in Fig. 1:

This may not be an accurate representation of any particular
experimental realization of a 2D froth, but it should still be a APy (8) = YKppy () = Av(s). (1)
good qualitative guide in most cases. Its relevance to the 3

case islless clear, and indeed the very mechanisms of dis%'andb’. The individual terms are the forcgser unit length
pation in that case remain obscui]. Nevertheless, past acting on a segment of the interfackP,,, is the pressure

experience suggests that the 2.D viscous froth quel 'S aBifference between the bubbles aKgl, is the curvature of
important step towards developing our understanding of 3

foam dynamics.

A related method of simulation has been used by Cantat
and Delannay[4] for the interpretation of experiments on
two-dimensional rheology and flow. This approach, due
originally to Fullman[6] and to Kawasakij7,8], replaces the
interfaces with straight lines and concentrates the viscous
dissipation at the vertices. It is sometimes characterized by
the term “vertex model.” The result is a tractable model for
computation, which should capture most of the main effects,
but does not proceed by controlled approximation. FIG. 1. The forces acting on a segment of soap film of letgth

Here we wish to focus on local events in the flow, for are due to surface tension the pressure difference between neigh-
which full geometrical details are essential. The model thaboring bubblesAPy,,, and a dissipative force per unit lengiy

we describe here incorporates both the cell pressures and theportional to the film velocity. In the case illustrated, the film
curvatures of the soap films. We expect that systematic stuanoves upward.

II. THE 2D VISCOUS FROTH MODEL

%eres represents the position on the film shared by bubbles

APy

Bubble ¥

5

Bubble b
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TABLE I. Notation and notes for dimensional analysis. We refer Av A
to a two-dimensional geometry, in which pressure is defined as
force per unit length and surface tension has the dimension of a
force.
Quantity Symbol &0 grain
& growth
pressure P force/length Q*'A@Q
surface tension 0% force g»\q{@ _
curvature K 1/length ng ] ~ YK
drag coefficient A forcex time/lengtt? ideal
. . soap
permeability K lengtt?/ (forcex time) froth
the interface. The right-hand side represents a local dissipa- AP

tive force opposing the motion of the interface, with a drag
coefficient\, the origin of which depends on the experimen-
tal situation under consideration.is the normal velocity of
the interface; only normal velocities are considered, sinc
they are sufficient to describe the temporal evolution of the
structure. Such a model, incorporating only normal forces of .
the simple form described, does appear to offer a satisfacto&'re obeys Plateau’s rulgsee, e.g.[11]), which we recall
qualitative account of experimenfd0]. However, it may O the_ two-dimensional case: films are arcs of circles which
well need elaboration in the future to incorporate such addiMeet in threes at the vertices, where they intersect at angles
tional effects as that of the longitudinal motion of liquid in ©f 120 degrees. In addition, curvatures must add to zero at
the Plateau borders. every vertex, for consistency with the Laplace law for cell

Each relevant quantity in a two-dimensional geometry isPressure differencefq. (2)]. _

given in Table I, with a note of its relation to force, length, Subtleties arise from topological changes, such as that
and time, for the purposes of dimensional analysis. Thavhich is provoked when an interface between two bubbles
structure may be subject to change, for example due to coar§hrinks to a point. This would then lead to a fourfold vertex,
ening (diffusion of gas between bubblesr imposed shear. which is known to immediately dissociate into two threefold
Both these processes have associated time scales, relating’@1ices[11], thus effectively performing a neighbor swap-
diffusion rate and shear rate, respectively. The comparisoRiNg ©f bubbles(T1). In the soap froth model, this would
between each of these and the time scale of the structur@FCUr instantaneously, thereby leading to infinite velocities.
relaxation is crucial, as it determines whether the foam mayVe shall return later to the effect of dissipation on the dy-
be regarded as being effectively in equilibrium. Most analy-Namics of such events. . _
ses of coarsening and rheology have relied on the assumption The original interest in the ideal soap froth model, which

that this is so. It is our intention to go beyond thisasistatic ~ USeS the quasistatic approximation, was focused on the dy-
approximation. namics of thecoarseninghat occurs when the interfaces are

permeable to the gas present in the bubbles. The permeability
constantx is defined via Fick’s law as

FIG. 2. Limiting cases of the viscous froth model. In the regions
close to the three planes shown, the force balance on a film segment
is achieved by compensation of two dominating terms, the third
eing negligible. In these limit cases, simpler models are recovered.

A. Limiting cases

We first isolate the three limiting cases of the viscous d
froth model as it is given in Eq.l), which are illustrated in d_Ab =KD APpp oy, (3)
Fig. 2. t b’

1. Ideal froth .
eal soap 1o where A, is the area of bubbléd. The constantk conse-

This is the simplified case in which the drag is negligible, quently has units of volume per energy and time, like an

i.e., the velocities are small in the sense that< yK=AP.  inverse viscosity. As time evolves, the bubble areas follow
In the limiting case, Eq(1) then simply reduces to the \on Neumann’s law12],
Laplace law
APy = yKp (S). (2 dAb w
bb' = VKb (S) ) E:gk'y(nb—G), (4)

In this commonly applied approximation, the effect of diffu-
sion or shear is treated as a slowly vary{ggiasistatig con-
straint and the structure evolves through a sequence of equitheren, is the number of sides of bubble In the quasi-
librium states, which correspond to minima of the interfacialstatic regime considered here, the Von Neumann law follows
energy. This evolution is continuous except at topologicalsimply from Egs.(2) and (3) and the 120-degree condition
changes, as described in Sec. Il D. Each equilibrium strucfor vertices[11].
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2. Grain growth <tLo
Another limiting case is attained when pressure differ- :/ !
ences between bubbles are negligidd@,,,, < yK=2\v. The |/ /
motion of boundaries is then driven by curvature, as de- =/ Foam L !
scribed below. Originally, this model arose in the context of >/ Sample !
domain growth in metal$13], for which there are no rel- /l /l
evant cell pressures. The interface motion in this limiting

case is local curvature-driven growth,
FIG. 3. A sketch of a 2D simple shear experiment on a foam
v(s)=- ZK(S). (5) sample of widthL. The shear is denotefj with a shear raté. We
A characterize this with the time scale.

Although the overdamped dynamics described by ).
allows for arbitrary shapes of the interface, angles of 12G¢hanges: if combinations(avalanches of topological
degrees at vertices are maintained, except instantaneously@tanges occur, the order in which they are triggered is arbi-
topological changefl4], as described below. trary and depends upon the algorithm used. This arbitrariness

The motion of the interface results in some bubbles growin the quasistatic model has been recognized from the outset
ing at the expense of others, leading to coarsening dynamid47,18,2Q, but has not been resolved.

that obey a law of the same type as the soap froth, The viscous froth model provides at least a tentative de-
scription of realistic dynamics, in which the drag coefficient

dA, = fl’(nb_ 6). (6) A represents the effect of viscous dissipation in the Plateau

dt 3\ borders as they slide along the glass plates. The underlying

dissipation relation linking the drag force to a given velocity

This is known as Mullin’s law for grain growtflL3]. It is, at . L ;
first sight, remarkable that two apparently different models> nontrivial, and known to involve rather subtle hydrody-

have this important relation, as expressed in #@yand(6), hamics[21]. These sugges_t a power law relating the drag
in common. force and the normal velocity,

fdrag= _)\UV, (7)

and the predicted exponefi=2/3) has indeed been mea-
Finally, surface tension forces may not contribute signifi-sured for simple quasi-2D foam structures confined between

cantly: yK<Av=AP, and in this case we are dealing with two parallel glass platefl0].

interface motion directly driven by a pressure difference. For the purpose of the present paper, we shall adhere to

Then, the normal motion is uniform on each film. This doesthe simplifying choice of a linear drag relatign=1), as in

not seem to be a situation that arises in typical rheologicajhe original viscous froth model. It is conceptually straight-

experiments, and we shall not pursue it further. forward to generalize to the nonlinear case, but we shall

show below that the choice of linearity allows for significant

simplifications in the analysis and numerical implementation.

We expect this more transparent model to retain the essential
The development of rheological devices in a quasi-two-qualitative behavior following from any more realistic dissi-

dimensional geometry has been the focus of much activitpation relation, which includes values of different from

over the past few years. In one type of experiment, a foam ignity.

confined between two parallel platgs15]. When their sepa-

ration is small compared to the size of individual bubbles, C. Time scales

this constitutes an approximate realization of a two-

dimensional dry foam, provided the liquid content is kept

small [16]. Such devices allow convenient imaging of the

foam structure as the foam flows, or as it is subjected t

external perturbations such as shear of the boundaries. F

example, a simple shegmay be imposed on boundaries, at

a shear rate, as sketched in Fig. 3.

C oot - We introduce a length scak characteristic of the struc-
The quasistatic model of soap froth has been applied b .
severalqgroups to describe thg theology of a dF;)F/) foan¥ure' such as the mean bubble radius. In the absence of gas

[3,17-2Q. It provides a straightforward description in the diffusion and an imposed shear, the only intrinsic time scale

limiting case where deformation is sufficiently slow that vis- is set byy, R and the drag coefficient as
cous effects remain negligible, i.e., in the limit where the AR2

time scale of relaxation after a topological charipebble ="
rearrangemeitis much less than that associated with the Y
shear rate. Strictly speaking, even in this limiting case the In Sec. Ill, we will describe the results of a numerical
model has an important shortcoming related to topologicalmplementation of the viscous froth model, allowing us to

3. Pressure-driven growth

B. Two-dimensional rheology

The parameters entering the basic viscous froth model are
the tension in the filmsgy, and their associated drag coeffi-
ient A. A simple dimensional analysis reveals the scaling
phavior of the model.

1. Relaxation dynamics

8
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relate specific relaxation times f,. In particular, it gives

the characteristic time associated with relaxation after a to-
pological change. The topological change itself, which
changes the connectivity, is instantaneous in the present
model. An interesting case is presented in the experiments of
Monnereauet al. [22], where the timebetweentopological
changes is of the same order as the relaxation time. We will
return to this case in future work.

2. Coarsening dynamics

In its original spirit, the viscous froth model was formu-
lated to interpolate between the coarsening behavior of soap
froth and grain growth modelgl,2]. The presence of diffu-
sion sets an additional time scale through the permeability

PHYSICAL REVIEW E 70, 041411(2004)

T ~1/k

static equilibrium
soap froth

ideal
soap froth

general
viscous froth

(v~ ry/R)

curvature—driven

amjonns
uozo1y

T~ A

constantk, as

FIG. 4. lllustration of limiting cases within the viscous froth
model for coarsening dynamics in terms of the time scales associ-
ated with the drag coefficient and the diffusion constant. As the
relaxation time associated with the drdg, becomes infinite, the
The associated coarsening dynamics has been sho structure becomes frozen, while infinifg corresponds to no coars-
obey ening and a static equilibrium soap froth. The conventional soap
froth and grain growth models arise in the shaded regions and their
associated axes. Also indicated on the axes are the velocities arising
during coarsening.

2
T=X ©

Ky

dA,_m_xy
dt ~ 31+\k

(ny—6). (10)

This is in the form of a generalized Von Neumann law with

an appropriately redefined prefactor. The dimensionless ratiol«> Tx, T,), the case upon which we shall focus. However,
of the two time scales, diffusion could be included very easily in the implementation

presented below, thus accommodating all three time scales in

T the model.
T—* =k, (1)

K

is indeed seen to be the relevant parameter which interpo- D. Vertex dynamics

lates between the limiting cases of the original Von Neumann

law [Eq. (3)] for a coarsening soap frothT,<T,) and To what rules does the motion of a vertex conform in the
Mullins’ law [Eq. (6)] for grain growth(T,>T,). These lim- ~ Present model? This question was raised in the context of
its can be illustrated in a schematic diagram, Fig. 4, provid<Curvature-driven growtifl,2]. It is not immediately evident
ing a comprehensive picture of the viscous froth model forthat the motion of the boundaries according to curvature en-

coarsening, which it is interesting to highlight before intro- tails any simple local rule, but this is the cg=3]. In Ap-
ducing rheology. pendix A, we briefly reconsider this problem, in order to

generalize the previous results to the viscous froth model,
and add some discussion of singular cases. Our most impor-
tant conclusion in the present context is that the viscous froth
In many rheological experiments, gas diffusion is negli-model should retain angles of 120 degrees between films at a
gible on the time scale of the experiment, and hence thgertex, as in the two limiting cases of grain growth and the
bubble areas do not vary as a function of time. In this case€deal soap froth.
the relevant time scale is defined through the sheargate Despite this general conclusion, appropriate to a dry froth,
angles not equal to 120 degrees can still arise instantaneously
T,= 1/'§_ (12) in various ways. First, one might choose an initial configu-
) o ) ration with such anomalous angles. Even if this is the case,
The ratio of the intrinsic time scaleset by the viscous  the angles must conform to the 120 degrees rule at all later
drag to the imposed ongset by the shear ratés then given  times until a topological change is encountered. We show in
by Appendix A that this implies ainfinite initial velocity for
the vertex. Secondly, something similar happens whenever a
T, _\R% (13) T1 change is made, upon the formation of a fourfold vertex
T, B y (or indeed more complex topological changeAle address
the consequences of these conclusions by means of a numeri-
For quasistatic shear, this ratio is much less than 1. It is theal representation of the viscous froth mofeg. (1)], which
only nondimensional parameter when diffusion is negligiblewe now introduce.

3. Rheology (shear)

041411-4
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a) b)

T

FIG. 5. (a) Example of a relaxed periodic structure with 83 cells and total area equal t¢piide film between the two marked vertices
is removed and the structure is allowed to relax under the viscous froth rules of m@jidre final equilibrium structure.

E. Numerical implementation transformed into the relevant dimensional quantities, as de-

We have implemented the viscous froth dynamics numeriSCriPed in Appendix B, using the length sc&representing

cally, using a discretized representation of the network of '€ Mean bubble radius as befoend the resulting energy
films, as in the earlier work of, for example, Frost and Th-Scaley Rand(2D) pressure scalg/R.

ompson[2_4]. '_I'he details are given in Apper_wdix B. Rather ;| sIMULATION OF THE DYNAMICS OF ISOLATED

fchan co_ns[derl.ng the general case of an arbitrary exponent TOPOLOGICAL EVENTS

in the dissipation laWEg. (7)], we focus on the special case ) o

of a linear dissipation relatiofw=1), as in the original vis- Our ultimate aim is to study the response of a bubble

cous froth model. The general case is easily treatable but tHduSter to external or internal perturbations. On the scale of
linear case allows for a more efficient numerical scheme fofh€ entire foam, this relates to its rheology. As a first step,
determining the bubble pressures while it should also prohowever, itis necessary to characterize t'he simpler processes
vide a reasonable description of realistic dynamics. ona local level, which ultimately determine the flow behav-

The outline of our implementation is as follows. At each 0" on a larger scale. Here we shall focus on the two most
time step, we perform geometric calculations to determindmpPortant examples, the relaxation which follows the rupture
surface tension forces at each point. The motion of the ceff @ film and the topological change entailed by a neighbor
edges also depends on the cell pressures which act up&{/@Pping event. These are the singular cases of initial con-
them. Any particular choice for the cell pressures will resultditions to which reference was made earlier.
in corresponding changes in the cell areas, the relationship N the limiting case of curvature-driven growth, Brakke
being linear. But the changes in cell areas are independentl@-‘q has analyzed the dynamics of these processes, among
determined by the generalized von Neumann [&g. (10)], others, wnh math.ema.mcal rigor. Here we are mtgrested in the
and hence are knowiiln particular, they argerowhen the effect of dissipation in the framework of the viscous froth
permeability is zerg.Hence the pressures are uniquely de-mModel.
termined by invoking consistency with E¢LO). The exis-
tence of the generalized von Neumann law thus reduces to a
single solution of linear equations a problem that would oth-
erwise require a more obscure iterative process. The details
of this calculation are given in Appendix B. Having thus
established the forces acting on each element of film, we
then find the velocity of each point of the discretization from
Eg. (1) and update the shape of the films accordingly.

In addition to coding these simulatioab initio, we have
developed an alternative treatment, based on the Surface
Evolver [25]. This version facilitates dealing with finite fil

foams in const_ramed geometries such as those described ditterent configurations during the relaxation of the structure after
Sec. Il C. It relies upon the Surface Evolver for all the nec-yhe rypture. We measul(t)=D; (t) +D,(t) over time, which shows
essary topological “bookkeeping” and adherence to boundap injtial square-root behavior before an exponential relaxation to
aries(e.g., solid wallg, while it equally implements the nu- equilibrium. (b) In the early stages of the film rupture, the remain-
merical scheme described in Appendix B, expressed in thgg fims can be approximated by arcs of radiystraversing an
Evolver's command language. areaa; from their initial position. This allows us to construct upper

In the following, we shall retreat to nondimensional quan-and lower bounds to the value of the constagtdescribing the
tities, as appropriate for numerical study. They can easily bevolution.

a)

FIG. 6. (a) A sketch of the change in topology due to an induced
m rupture. Solid lines show the initial state. Dashed lines show
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0.025 -

] D(t) = Dy(t) + Dalt) = At (14)

3 The constant\, is determined by fittind>? to a polynomial
function, shown in Fig. 7. The results for four rupture events
1851078 1 on the 83-bubble foam illustrated give an estimated value of
10x10-5 [ Linearfic <= J Ap=1.18+0.02. We note in passing that this initial square-
sx10-5 | ] root regime may be traced back to the behavior of the grain
, ] growth model, for which it is well knowifil4]: choosing an
0 . . . .

0 5%10-5 0,000 (arbitrarily) small area around the kink, it follows from the

0 T 0007 00002 00003 0.000r 0000 00008 argument used in Appendix A that pressure forces cannot
Theas affect the initial dynamics.
FIG. 7. The increases in the square of the distance of the verti(—)b,é‘l ifgf;g%ﬂﬂgv&z twevil(gjﬁsicé&eorIrtlhiqé&?{_g?nnet?gsigi in

ces from their original positiorD(t), after film rupture. The length . ) L . 9

. R R . which the pressures are insignificant and the films adjacent to
scaleR is set by the mean bubble arga)=3;. Time is measured in L .

the ruptured one develop a lar@aitially infinite) curvature

units of Ty=\R?/y, and the time step wa&=10. For the short . . g
times shown in the inset, the data follow a square-root power Iaw‘]'/rl_See Fig. @). Therefore, the velocity of the original

0.015

Displacement D(t)

0.01

0.005

with coefficientAy~1.18. vertex is given bydD,/dt=1/r, and geometry give®,(t)
=r4(2/Y3-1). Eliminating r; and solving givesD,(t)=kyt
A. Film rupture with k=42(2/V3-1) = 0.556. Since we overestimate the cur-

vature in this way, this provides a lower bound to the veloc-
The first step is to produce an equilibrated foam structureity, and therefore a lower bound thy, is AR"=D(t)/t=2k
in order to provide a well-defined starting point. This is done=1.11, in close agreement with the valig=1.18 obtained
by setting up a foam structure and using viscous froth dyin the simulations.
namics to thoroughly relax the system until energy and cell In a similar manner, by calculating the areaswept out
areas have converged. An example of such a structure sy the film, we can calculate an upper boundAg Von
shown in Fig. %a). Neumann’s law states thalta,/dt=7/3, while geometrical

One film is then chosen and ruptured, i.e., deleted fronygnsiderations show thagzrf(ll\@—q-rIG). Using the rela-

the structure, thus coalescing two bubbles into one. The rejonship betweerD,(t) andr; given above, we find an upper
sulting bubble has two “kinks.” We are interested in how thepqng

structure relaxes away from this singular configuration. We

therefore measure the straight-line distarizét) which a D(t) 77(1/\5—#/6)

i its initi iti - Af=—F=2\/———=——- =~ 1.36. (15
kink has moved away from its initial position, as illustrated 0 ] ] 2

in Fig. 6a) Vvt 3(2N3-1)

Figure 5 shows an example of such a film rupture simu- Note that in practice both these arguments can be ex-
lation. We distinguish the initial regime of singular dynamicstended to provide bounds for the case of any included angle
immediately following the coalescence, localized around theather than just 2/3.
topological change, from a long-term exponential relaxation
of the foam structure to equilibriuntsee Sec. Il B. Note
that the final equilibrium configuration shown here remains
strained, corresponding to only a local energy minimum; the Another aspect of great importance to the temporal evo-
system would relax further if T1ls were initiated on the re-lution of a foam structure is the dynamics of a single T1
sulting short edges, but these do not occur naturally in such topological change, involving a neighbor switch between
dry foam. four bubbles—see Fig. 8. To create a single T1, we choose

The displacement grows in a singular way from timeone film and slowly vary the volumes of the four neighbor-
t=0, corresponding to a relaxation of the kinks with an infi-ing bubbles, in such a way as to obtain a thoroughly equili-
nite initial velocity. The data in this initial behavior well brated structure with the chosen edge length close to zero.
described by a power law, After updating the topology according to the T1 topological

B. Neighbor swapping (T1)

D(t)

FIG. 8. Sketch of neighbor swapping event. We inflate and deflate bubbles as required to create a zero-length film. The topology is then
changed according to a T1 neighbor swapping process, and the system is allowed to evolve following viscous froth dynamics. We measure
the increase in length of the new filrD(t).
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0.09 T T T T T T T T T
0.08
0.07
0.06
0.05

0.04

| Numerical result
0.03 Linlear fit cit

Length D(t)

1
0.02 0  2x10-% 4X10-® 6x10~° 8x10-%0.0001 ]
001 F 3

0 ] 1 1 L 1 ! 1 1 Il

0 001 002 003 004 005 006 007 008 009 01 FIG. 11. Viscous froth simulations of a 2D ordered foam struc-
Time ¢ ture flowing around a 180° bend of widthand radius of curvature

r. The initial configuration is shown on the left. At low velocitiy

this casev=0.8), there is no topological change and the final struc-

ture is indistinguishable from that of a quasistatic calculation. At a

higher velocity (e.g., v=1.1), the bubbles successively change

neighbors due to a T1 transformati@rircled) as they pass close to

the apex of the bend. As the velocity is increased, the T1 position

moves farther around the channel, away from the start.

FIG. 9. The increase in the length of the new filb(t), after a
T1 event. The length is measured in unitsRoéssociated with the
mean bubble are{am:ai3 and time is in units ofT, =\R?/y. The
time step wasst=10"%. The inset shows the square of the length,
which is a straight lingwith a small offset due to the vertex sepa-
ration at the T1, which is finite but very smadlince the data follow
a square-root power law with coefficieAt =~ 1.7.

thre which is forced through a narrow channel with a 180°
bend, as in Fig. 11. This is one of many interesting experi-
mental devices demonstrated in the experiments of Weaire
et al.[26]; further details will be given in Drenckhd7]. In
D(t) :Al\E_ (16) this case, a chain of pairs of bubbles is pushed through the

. __channel; if the rate at which this moves is sufficiently great,
For long times, as the structure approaches a new equilidhen a T1 topological change occurs somewhere in the bend,
rium, the motion of the network slows down exponentially. caysing bubbles that were originally neighbors to move
An example is shown in Fig. 10. In this regime, the lenBth  apart. A quasistatic simulation of this experiment does
is no longer a good measure of the structural response. Ishow the neighbor switching, in keeping with the low-

change, we let the system evolve and measure the increase
length of the new film, denote®(t) (see Fig. 9. Again,
there is an initial square-root increase,

stead, we evaluate the overall edge length velocity experimental results. This problem thus provides a
(D) =1, + A eV, (17) very app_ropriate quz;li';ative test of the viscous froth model.

For this purpose, it is practical to use the Surface Evolver

wherel,, is the edge length of the relaxed structure. version of our code, mostly in order to accommodate the

In this case we performed four simulations. We estimateconstraints representing the sides of the channel. The values
A,=~1.3 and 7.,=~0.02=1.64, for the asymptotic time of the geometric constants defining the shape of the channel
constant. are clearly important design parameters for such a device,
and we will explore their effect on the dynamics in future
work. For the present, we vary only the bubble area and

) ) ] ) bubble velocity to demonstrate the application of the viscous
As a further illustration of the implementation of the foth model.

model, we will present results for an ordered 2D foam struc- |, the simulations described here, the channel is of width

d=2 and the bend has an inner radius of curvaturd,
Nemerical rosalt shown in Fig. 11. We insert a chain of 12 bubbles in pairs, all
~6.71681 - ¢/0.022 -~ ] with the same ared,. We introduce a single bubble of area
A, at one end of the channel whose area we inflate at a rate

A, in order to push the other bubbles around the bend. The

bubbles therefore move at a velocity Aq/d.
The only other significant parameter is a cutoff length
a film between two vertices which is shorter thians de-
leted, allowing a T1 to occur. The paramelgis related to
the liquid fraction—with higher values, the T1 changes can
0 002 004 0.06 0.08 01 012 occur when two vertices are further apart, as in a wetter
Time ¢ foam. We fix this to bd.=0.01; this corresponds to a rather
FIG. 10. Examp|e of the |0ng-time dynamics after a T1 topo_dry foam, but again, its influence will be inVeStigated in fu-
logical change, for the same simulation as in Fig. 9, during whichture work.
the structure relaxes exponentially to a new equilibrium. The total Rather than a sheaf of the whole sample, discussed
length of all films is plotted over time, to give a relaxation time in above, this introduces a more complicated deformation
Eq. (17) of 7,,=~0.02. which may be characterized by the time scale

C. Application to neighbor switching in a bent channel

Line-length In (Lot (£) — loo)
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FIG. 13. For small bubbles, in this casg=0.5, a T1 transfor-

FIG. 12. The ordered foam structure is pushed around the benahation occurs only for alternate bubbles, leading to the final struc-
in Fig. 11 with velocityv. At a sufficiently large value of the ve- ture shown.
locity, a topological T1 change occurs. This critical value of veloc-

ity v, is shown—it decreases in inverse proportion to the bubblqty is for the leading(unshadeyibubble in Fig. 11 to be on
size (the line isv=0.353/,+0.684, within the limits of possible o ingide of the channel. In this case, the critical velocities
structures. Outside these limits, i.e., for small values of bubble areg o approximately a factor of 2 higher. ,Secondly the leading
Iess.than abouAb_:o.28 and larger values greater thz.’m ab’a".'t and trailing bubbles do not behave in the sam,e manner as
:;' 1t 'Sl nl(:)t pzssblg:e o Createf z sttak;;:ggture dOfotgls typetr:n th(%hose in the bulk of the foam structure, but if a T1 occurs for
channel. For bubble areas of betw .28 and 0.6, a rather : ! _
different behavior occurs at high velocity in which the T1 is Seentgha?[eliﬁ(rjcl)zghbt‘hbeblsetrrjhcetﬂr(tehe topological change will propa-
only for alternate bubble palksee Fig. 13 For small bubble areas, it is not possible to make a stable
ordered structure of the type shown in Fig. 11—instead the
T, = r _ (18) structure will be one in which three or more bubbles span the
A, channel. Or, for slightly larger areas, a structure such as that
shown in Fig. 13 can occur, with a T1 transformation only
for alternate bubble pairs. For large bubble areas, the struc-
ture dissociates into a “bamboo” structure with plane parallel
films separating bubbles that span the width of the channel.
The fact that such an elementary example has such a rich
variety of behavior underlines the need for a simple method
of simulation, if devices are to be designed to manipulate
ordered foam structurd28].

That is, the outer films move a distanee greater than the
inner films, over a distancer. The shear therefore varies by
an amound/r over a timenr/v, giving a shear rate d/r?
which leads to the above time scalg.is roughly equivalent
to T,

V\g/e find, as expected, that for low velocitié=., close to
the quasistatic limjtthere is no topological change as the
foam structure flows around the channel. The structure be-

comes more defor_meo_l as the velocity is i_ncreas_ed, with a IV. CONCLUSIONS
consequent reduction in the length of the inner films when
they pass around the bend. At a critical value of velogity The two-dimensional viscous froth model provides a

for given bubble area, the length of one of these films simple and tractable description of the dynamics of a foam
shrinks to zero as it passes around the bend and the T1 oby retaining viscous drag forces on the moving Plateau bor-
curs. The critical value of. for a range of bubble sizes is ders. We have revisited selected features of the model and
shown in Fig. 12: as the bubble size increases, this criticatliscussed limiting cases as well as the general scaling fea-
velocity decreases. tures. A straightforward scheme has allowed us to implement
It seems clear that this critical velocity is determined bya simulation of 2D viscous froth dynamics which retains full
the competition between the two time scalgs and T, geometrical details. The simple form chosen for the viscous
whose ratioT, /Ty, is proportional to the produddv. If no  drag provides a good qualitative guide to the results of rheo-
other length scales are required to determine the time scalegical experiments.
T, in this situation, the critical velocity should decrease with  The present model is intended partly as a heuristic guide
the bubble size. The line,=0.353/A,+0.684 is shown in to the understanding of the effects of incorporating viscosity.
Fig. 12, and is in reasonable agreement with the numericahs such, it should take a place alongside otH&$8] which
results. have complementary advantages. Comparison with experi-
In the simulations described here, there can be significarmment, as presented here and in further work to be published,
end effectsassociated with the front and back ends of thesuggests that it can serve as a semiquantitative guide to the
finite bubble train. These may also occur in the correspondinterpretation and design of specific experiments. In certain
ing experiments, and we thus describe them in order to giveases, we can observe deviations from the predictions of the
a suggestion of the predictive power of the viscous frothmodel, such as apparent departures of vertex angles from 120
model. First, note that we have considered only one possibldegrees, and we expect to develop refinements to cope with
orientation of the ordered foam structure—another possibilthese. However, there are several different possible sources
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TABLE Il. A summary of some regimes of the 2D viscous froth model. The general(efiségme scales of the same orgenight be
described as rheology and diffusion with dissipative effects.

Th<T.T; Ideal soap froth
Quasistatic equilibrium description of general rheology with diffusion
Instantaneous structural changes after topological rearrangements

T\ <T,<T; Ideal soap froth model applied to diffusion without rheology
Von Neumann'’s law
T\ <T;<T, Ideal soap froth model applied to rheology without diffusion
0<T,<T,, T, Ideal grain growth(curvature driveh
Mullins’ law
O<T,,T,<T, Viscous froth model applied to rheology without diffusion

Finite relaxation-time structural changes
Fixed cell areas
0<T,, T, <T, Viscous froth model applied to diffusion without rheology
Finite relaxation-time structural changes
(Generalizedvon Neumann law
0<T\<T,,T; Viscous relaxation to static equilibrium structure

for such deviations, such as the changes in tension due to tlitscussion of singular cases. To do so, we express the motion
stretching of the filmg29], and most of them are not easily of a vertex as a translatiofwith velocity v) and a rotation
captured. There is also, for example, the possibility of a sigfwith angular velocityw).

nificant role for longitudinal flow in the Plateau borders. Sys-

tematic experiments will be undertaken to guide further

progress in theory and simulation. Vertex angles

The first results from this model begin to shed light on the  g\51ing structures in both the quasistatic soap froth and

effect of the various.com_peting time sca!es _in the evc')lutionthe grain growth models maintain angles of 120 degrees be-
of the froth, summarized in Table II. Application to a simple yyeen films at a vertex. This remains valid for viscous froth
rheological situation has allowed us to show that the mOdeJiynamics.

qualitatively rgproduceg what.has b_een observed in experi-" 1, justify this, consider a small volume around a vertex,
mental work in a quasi-two-dimensional geometry. We an-

e L . , ~'"as illustrated in Fig. 14. The vertex is subject to the forces
ticipate application to further rheological experiments, with gy o rteq by the film tensions, gas pressures, and drag forces.

the requirement of a more detailed quantitative comparisonag the control volume shrinks to a point, only contributions

In particular, the model should prove a valuable tool for theg.o 1 the tensions remain, and therefore a force balance be-
efficient design of experiments and devices. tween tensions alone must hold. The vertex itself remains in
equilibrium and Plateau’s rules imply angles of 120 degrees,
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APPENDIX A: VERTEX DYNAMICS The velocityv of a vertex is required to be consistent with

_ _ the motion of all three boundaries, if they are to continue to
To what rules does the motion of a vertex conform in themeet at a point. Eacinormal) velocity is given by

present model? This question was raised in the context of
curvature-driven growtkil,2]. It is not immediately evident
that the motion of the boundaries according to curvature en-
tails any simple local rule, but this is the case. Here we shall
generalize some previous resylis2,23 to the viscous froth  wherei=1, 2, 3 labels the films joining a given vertex. The
model to account for the role of cell pressures, and add som&mmetry of the vertex dictates that

AV - ﬁi = Apl - ’yKi, (Al)
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takes place, except from singular shapes such as those to be
discussed now.

Vertex rotation

We will omit the details of the derivation of the explicit
formula for the rotational velocitw of the vertex, which are
contained in[23], and simply state the result,

1’)/ aKi
== —. A7
© 3)\; 5 (A7)

Incidentally, it should be noted that the individual terms of
the sum donot give the angular velocity of the correspond-
ing arms of the vertex. Rather, there is an additional term,
which evaluates to zero when all three expressions are aver-
aged. The equality of rotational velocity of all three arms
> fA,=0. (A2) imposes further consistency conditions enkK;, and K{,

i which will not be explored here.

FIG. 14. lllustration of the force equilibrium on a control vol-
ume &V around a vertex, in the limit agV—0. Both pressure
forces and viscous forces vanish in this limit.

Using this, as well as the fact thatAP;=0, since the pres-

sure differences are defined cyclically, the summation of Eq. Singular cases

(A1) fori=1, 2, 3 gives The above argument applies to any vertex respecting the
120 degree condition. It is possible, however, to prepare a
2 Ki=0, (A3)  system in an initial configuration which does not respect

I

these rules. In fact, topological changes naturally lead to

wherekK; stands for the limiting value of the film curvature as such deviations in vertex angl€$1 processor to kinks in

the vertex is approached. Hence it follows that the curvaturethe boundariegfilm rupture. Since neither pressure forces
just around a vertex must add to zero, just as in the simplefor drag forces act on a point, the surface tension force re-
curvature-driven case. EquatigA3) is a necessary condi- mains unbalanced, implying an infinite velocity. Such dy-

tion, which holds at all times other than those of the instannamics are illustrated in Sec. III.
taneous singular cases mentioned above. In contrast, suppose now that the angular conditions are

satisfied, but that the curvature sum ril&;=0 is not. It is
possible to define such an initial configuration. Just as an
infinite velocity is entailedonly) at the vertex in the previ-

A general rule may be derived for the translation velocityous case, so an infinite angular velocity follows here. We
v of a vertex, relating it to the curvatures of all three bound-may redefine curvatures precisely at the vertex, to satisfy
aries at the vertex. To obtain an explicit formula fgrwe  2K;=0, but this entails an infinite ter@K;/Js in each case:
use hence the infinite angular velocity, according to E47).

\ertex translation

2 . . .
V= _E A(fA; V), (A4) APPENDIX B: NUMERICAL IMPLEMENTATION

! We describe here the details of the numerical implemen-

which again follows from vertex symmetry, in order to tation of the viscous froth model. This is based upon a dis-
obtain cretized representation of the network of films—refer to Fig.

15 for an illustration.
—22 AP; = yK))f (A5)
)\v—3 : (AP = YK, Dimensionless units
As indicated in the text, we first write the defining equa-
tions in terms of dimensionless variables: the typical energy
§_cale isyR, and the(2D) pressure scale ig/R, whereR is,

as before, the mean bubble radius. Thus we write(Egas

This generalizes the previously derived r{#3] to incorpo-
rate pressure differences between bubbles.

For coarsening dynamics, we have shown that the quas
static regime is characterized hx<1. Von Neumann’s law
[Eq. (4)] shows that the vertex velocities in this limit are of

orderv,_.o~ «y/R, whereR is a measure of a cell size, e.g., Ap-K=v, (B1)
its mean radius. Thus where the dimensionless variables are
AP, = %K ~ kL (A —0) (A6) p=2 K=KR andi=—2—. (B2
R vIR vI\R)

in the more general viscous froth case. In the quasistati¥he model therefore contains no explicit parameters beyond
limit, all velocities disappear asymptotically and no motionthe obvious scaling relations and, potentially, additional geo-
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N face, we use this to define a normal to a pgirds
L A= (=15 = 1. (B7)

Velocities and displacements
FIG. 15. lllustration of the discretized representation of the
curve representing a film. The velocity of a poinp on a film is determined from the

local geometry and the pressures of adjacent cells, according

metrical properties of the structutsuch as its polydisper- to the dimensionless viscous froth equation of motion,

sity). Any externally imposed constraints, or additional fea-
tures of the model, such as gas diffusion, will of course also
introduce additional dimensionless parameters, as discussed
in the main text.

o[AP,K]=AP-K. (B8)

The velocityv is in the normal direction, its sign being cho-
Discretization sen consistently with the signs of the pressure dk@&pand
curvatureK. In the next time stegt, the resulting displace-

corYx?acTeat\j/ebtol';isgglemae”ngrg? fl'rr:t'?e alleiegléer;ce Aosf t'?](;_}'ms’ment is then made in the normal direction associated with
y 9 nl geuges. this point. Once each point of the discretization has been

number of discretization points is increased, this can reDredisplaced we move all vertices in order to maintain angles of

sent a smooth curve as clqsely as required. We denote tl'iezo degrees, using analytig solution of the Fermat-
edged vectodrs ?Ssoc'attehd with the slegmtehntst]ic.ﬁll e(;_rors i Steiner problen{30]. This rule for vertex motion, albeit in
?Irri Z%e/g zmdutﬁgnd' eera\./ter?]ggd eg?en (:h € discre 'Ze(ﬂe spirit of the arguments given in Sec. 1l D, is only correct
nms, di2I'R, ISpersi Y 9 gt ) to lowest order, since no curvature of the line segments is
The pressure force associated with a point, which mustqngjgered when determining their point of intersection. A
also act in the normal direction, is therefore more careful extrapolation procedure would be desirable,
FE = API Ay, (B3) and is envisaged in future work. The error mad_e by imposing
_ _ 120 degree angles decreases as the discretization becomes
where we attribute one-half of each adjacent edge to &iner, and can in principle be made arbitrarily small by suc-

point p, cessive refinements.
1 On the technical side, it is preferable to work with a tes-
== +1)). (B4) selation of edges of comparable length, for which our dis-
PTolp T p R ) .
cretization is most accurate. In order to achieve this, we de-

fine a narrow range for the desired edge length. After each

dime step, longer edges are refined and shorter ones fused. In

our ab initio implementation, we have furthermore intro-

duced small artificial tangential displacements of the discreti-
+_ - zation points, designed to keep the latter equally spaced
o= al ! ! ‘

K=E2t—L~_— (B5)  while leaving the shape of the interface unchanged.

To make contact with the equation of moti¢gq. (1)], it
may be useful to observe that this amounts to attributing
curvature vector

to each poinfp, as is indeed the lowest-order approximation

to the definition of curvature intrinsic to the curve, as indi- Bubble pressures and constant areas

cated in the last term of EqB5). It would ultimately be ) )
desirable to incorporate higher-order terms. Here, we have After evaluation of the local geometry and calculation of
instead used the simple approximations stated for the nofl'€ resulting surface tension forces, we must calculate the
mals and for the curvature. Since these are accurate only fubble pressures. In the general cgitrary exponent in

the length disparity between adjacent edges is small, we haJ8€ dissipation law, Eq7)] this can be done using an itera-
taken measures to ensure this in our simulat&ee below. tive procedure, introducing a penalty function to keep the

The interfacial tension induces a forég on a pointp bubble areas fixed. We will illustrate here a simplification,
which is given by ' leading to a more efficient scheme, for the special case of a

linear dissipation relatioiy=1). Any change in cell pres-
Fg:ig _f;, (B6) sures leads to corresponding changes in the cell areas, and in
. this case the relationship is linear. The changes in cell areas
wherel§:I§/|I§| are the unit tangents of the edges to eitherare also subject to the generalized von Neumann’s[&ey
side of the pointp, assuming consistent orientation of con- (10)], and hence are known independently. The existence of
secutive edgegsee Fig. 1% Since the Laplace laiEq. (2)]  the generalized von Neumann law thus reduces the problem
requires the surface tension force to be normal to the interto a single solution of linear equations.
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To this end, we integrate the equation of mot[&u. (1)]

around the boundargb of an arbitrary bubbl®. The change
in area of the bubble is equal to the integral of the normal

velocity fieldv on the surrounding films,

dA, _

g (B9)

vdl =§ (AP -K)dl.
b db

As in the derivation for the coarsening dynamisge, e.g.,

[1,2]), Gauss’ theorem says that the curvature must integratgtr

around a bubble to 2, deductingz/3 at each of then,
vertices,

d T
B T =6+ 3 (Py - Po)low
dt 3 =

(B10)

where the summation is over all bubbles adjacent tab,
and wherdy,y is the length of the film shared by bubbles
andb’. Generalizing the definition of a length, to

lppy =0 if b, b’ are not neighbors, or ib=b’,

(B11)

it becomes clear that the previous equation represents in fa

a simple matrix equation for thd bubble pressures,

Lbberr = C.l’b, (812)

PHYSICAL REVIEW E 70, 041411(2004)

— |tot
2o =I5 i p =y
Loy =9 V"

- Ibb’

(B13)
otherwise

I is the total length of the perimeter of bublide Thus to
find Ly, we need only to calculate the length of each film.
The NX N matrix L,y is sparse in a large bubble cluster,
since its off-diagonal entries are nonzero only if bublies
andb’ share a film.

The calculation of the right-hand-side vecteg is also
aightforward, although the nature of the calculation de-
pends upon the situation. Ikh entry is

(B14)

wheren, is the number of sides of the bublideln the study

of rheology, it is usual that the bubble areas do not vary,
dA,/dt=0, leading to a further simplification. Nevertheless,
gas diffusion is conceptually straightforward to include,
since the area variation of a given bubble can be deduced
from the generalized von Neumann Ilg&q. (10)] for any
given permeability constari.

The evolution of the network can now be projected a time
step &t ahead, according to E@¢B8). Two technical points
are worthy of mention(i) Even in the case of fixed bubble
SPeas, slight numerical inaccuracies can lead to variations in
the individual cell areas; we then choose a valuelAf/dt
for each bubble that restores its specified a(@a.When
applied to a periodic cluster, the matrix equatj&uy. (B12)]
is singular. The eigenvector with zero eigenvalue corre-

in which the vectorP, contains the bubble pressures. Thesponds to adding an overall constant to all cell pressures. It is
matrix Ly iS @ purely geometrical object, obtained by ex-therefore sufficient to determinany solution for the pres-

plicit summation for a given configuration,

sure, which can be done using special technidGés
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