
Short report

Mental state decoding v. mental state reasoning as a mediator between cognitive and social function in psychosis

Nicola McGlade, Caragh Behan, Judy Hayden, Therese O’Donoghue, Rosie Peel, Farhan Haq, Michael Gill, Aiden Corvin, Eadbhard O’Callaghan and Gary Donohoe

Summary
Theory of mind deficits in schizophrenia have been parsed into mental state reasoning and mental state decoding components. We report that mental state decoding as measured by the ‘Eyes task’ better predicted social function than mental state reasoning as measured by the ‘Hinting task’ in 73 out-patients with chronic schizophrenia. Mental state decoding task performance also partly mediated the influence of basic neuropsychological performance on social function. We discuss these findings in terms of the accumulating evidence that mental state decoding has particular relevance for understanding deficits in social function in schizophrenia.

Declaration of interest
None. Funding detailed in Acknowledgements.

Theory of mind is an aspect of social cognition that describes the ability to infer other people’s mental state. A recent meta-analysis of almost 30 studies reported a large effect size for theory of mind impairment in schizophrenia.1 Investigations of these deficits have employed tasks that index false beliefs/deception (reasoning about the mental state of others), indirect speech (understanding irony, hints and ‘faux pas’), and mental state decoding (using information such as facial expression to infer mental state). Differences between tasks (at both behavioural and neuroanatomical levels) have resulted in a distinction between mental state reasoning ability and mental state decoding ability.2,3 Following evidence linking affective recognition and social function,4 Bora et al5 suggested that mental state decoding may be more important than mental state reasoning for social outcome in schizophrenia. They argue that this was due to mental state decoding tasks being based on more spontaneous/automatic inferential processing than theory of mind tasks involving effortful verbal processing. Furthermore, they suggest that decoding affective states from facial expressions (e.g. eyes) is likely to be closely related to empathy and the neural network underpinning empathy (inferior frontal/anterior temporal lobe function);6 empathy has previously been shown to be important to social function in schizophrenia.6 Here we aimed to test whether mental state reasoning and mental state decoding ability differ in their ability to: (a) predict social function; and (b) mediate the relationship between neuropsychological and social function in chronic schizophrenia.

Method
After we received written informed consent, we assessed 73 patients (49 male) from a suburban Dublin psychiatric out-patient clinic using the Structured Clinical Interview for DSM-IV disorders’ to confirm diagnosis of schizophrenia or schizoaffective disorder. Criteria for participation included being aged 16–65 years, having no history of intellectual disability, acquired brain injury resulting in loss of consciousness or substance misuse in the preceding 6 months (all based on chart review). Mean age was 41.4 years, mean duration of illness was 18.2 years, and almost all were prescribed atypical antipsychotic medication. Patients’ theory of mind and neuropsychological performance was compared with the normal population using a sample of 78 age- and gender-matched healthy comparison participants recruited through the local media who satisfied the inclusion criteria and were free of psychiatric illness based on clinical interview (online Table DS1).

Neuropsychological function was assessed using tests from the Wechsler Adult Intelligence Scale10 and the Cambridge Neuropsychological Test Automated Battery (CANTAB; Cambridge Cognition Ltd, Cambridge, UK), selected to index the general and specific domains of impairment commonly reported in schizophrenia, namely general cognitive function, attentional control, episodic and working memory (online Table DS1).14 Symptom severity was assessed using the Scale for the Assessment of Positive Symptoms12 and the Scale for Assessment of Negative Symptoms.13 Social functioning was measured using the problem-solving factor from the Independent Living Scale (ILS).14 Of the two factors yielded by the ILS (problem-solving and performance/information), the problem-solving factor (which includes items such as ‘what would you do if the taxi you ordered didn’t come and it was getting late’), is reported to have good utility as a proxy measure for real-world functioning in schizophrenia.15

Results
Eyes task and Hinting task performance were significantly correlated (r=0.389; P=0.001). Despite this, patients only performed significantly below controls on the Eyes task (r=−2.3; d.f.=149; P=0.023). Eyes task performance correlated with verbal and performance IQ, and verbal and spatial working memory (P=0.003–0.000006) but not with verbal episodic memory. Hinting task performance by contrast was correlated with verbal episodic and working memory (P=0.008–0.02) but not IQ or spatial memory performance. Neither task correlated with attention control. Eyes task performance alone was moderately negatively correlated with positive symptom severity (r=−0.25;
McGlade et al

$P=0.03$ but not negative symptom severity. Neither task was asso-
ciated with age, gender, duration of illness or medication dosage.

Scores on the ILS were significantly positively associated with
Eyes task performance ($r=0.41; P=0.001$) but not with Hinting
task performance ($P>0.05$). To test whether social functioning was
predicted by mental state decoding performance (Eyes task performance)
we performed a multiple regression analysis with ILS scores as the de-
pendent variable. Symptom severity, which was significantly correlated
with social function, was entered in the first step of the analysis, explaining
26.5% of variance in ILS scores (20% of which was contributed by negative symptom severity alone).

This was followed by scores on the Eyes task and Hinting
tasks on the second step. Eyes task performance explained a further
9.0% of the variance in social functioning ($F_{2,63} \text{ change}=8.5; $ $P=0.005$); Hinting task performance was not a significant variable
in the regression equation. The statistical significance of these
results was unchanged by considering patients with schizophrenia
and patients with schizoaffective disorder separately.

We performed two further stepwise multiple regression
analyses. In the first analysis, when verbal IQ (the neuropsych-
ological measure most highly correlated with ILS performance)
was entered on the first step of the analysis followed by Eyes task performance on the second step, Eyes task performance continued
to significantly predict variance in ILS ($r^2 \text{ change}=0.09, F_{1,63}=7.26, $ $P=0.009$). In the second regression analysis, when Eyes task performance was entered on the first step and verbal IQ on the
second, verbal IQ’s ability to predict ILS scores was partly attenu-
ated ($r^2 \text{ change reducing from }16.3\% \text{ to }7.5\%$). Following Baron &
Kenny’s criteria for mediating variables this suggests that Eyes task performance partly mediated the relationship between verbal
IQ and ILS scores. Again, the statistical significance of these
results was unchanged by considering patients with schizophrenia
and patients with schizoaffective disorder separately.

Discussion

This study provides further evidence that mental state decoding
rather than mental state reasoning ability predicts social function in
patients with chronic schizophrenia. Bora et al argue that the mental
state decoding requires emotional perception and empathy. Perceptual deficits in social cognition (e.g. affect
recognition) are reported as stable over time in schizophrenia,
apparent in both patients with first-episode schizophrenia and
those who are chronically ill, and mediate the relationship
between basic cognition and social function. Our findings suggest
that decoding the mental state of others is similarly important to
social function in schizophrenia. This view is consistent with the
model of emotional intelligence developed by Mayer & Salovey17
in which emotional perception and emotional understanding are
two of the four main abilities related to ‘emotional intelligence’
(together with emotional self-regulation and emotional facilita-
tion of thinking), which contributes to higher social functioning.

Because of the general decline in cognitive function associated
with schizophrenia, a challenge for studies of specific cognitive functions (either basic or social) is to establish whether any
specific deficit has a unique or particular value in explaining
outcome. In the regression analyses undertaken, mental state
decoding performance (on the Eyes task) was able to explain
variance in social function even after the variance explained by
general cognitive ability (measured by verbal IQ) was already
accounted for. Furthermore, accounting for the variance in mental state
decoding led to attenuation in the amount of variance explained by general cognition. These results lead us to conclude
that mental state decoding is not simply reflecting more general
aspects of cognitive decline in schizophrenia, but instead is
important in its own right in explaining social function. As further
confirmation of these findings, and the earlier report by Bora et al,1 it may be helpful to investigate this relationship between
mental state decoding and social function using multiple mental state
decoding tasks within the same study design. Finally, for
future studies, the ILS measure employed here, although
previously validated in schizophrenia,15 is a proxy measure for
social function and outcome; further theory of mind studies
may benefit from more direct outcome measures.

Nicola McGlade, MPhill, Caragh Behan, MB, MRCPsych, Cluain Mhuire Family Centre, Blackrock, Co. Dublin; Judy Hayden, BA, Therese O’Donoghue, MSC, Rosle Peef, MRCPsych, Neuropsychiatric Genetics Research Group, Trinity College Dublin; Farhan Haq, MRes, MRCPsych, Cluain Mhuire Family Centre, Blackrock, Co. Dublin; Michael Gill, MRCPsych, Alden Corvin, MRCPsych, PhD, Neuropsychiatric Genetics Research Group, Trinity College Dublin; Eastbhard O’Callaghan, MRCPsych, MD, Cluain Mhuire Family Centre, Blackrock, Co. Dublin; Gary Donohoe, PhD, Neuropsychiatric Genetics Research Group, Trinity College Dublin, Ireland.

Correspondence: Dr Gary Donohoe, Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity Health Sciences Building, St. James’s Hospital, Dublin 8, Ireland. Email: donoghug@tcd.ie

First received 20 Aug 2007, final revision 3 Mar 2008, accepted 20 Mar 2008

Acknowledgements

This research was supported by research grants from the Wellcome Trust (M.G., A.C.), Science Foundation Ireland (S.O.) and the Higher Education Authority of Ireland (M.G.).

References

3 Bora E, Eryüksel A, Kayahan B, Sungü G, Veznedaroglu B. Social functioning, theory of mind and neurocognition in outpatients with schizophrenia; mental state decoding may be a better predictor of social functioning than mental state reasoning. Psychiatry Res 2007; 149: 11–23.

12 Andreasen NC. The Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa, 1983.

13 Andreasen NC. Negative symptoms in schizophrenia. Definition and reliability. Arch Gen Psychiatry 1982; 39: 784–8.

17 Mayer JD, Salovey P. What is emotional intelligence? In Emotional Develop-

SPAF file chunk 78