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What’s Known on This Subject

Folic acid can prevent many, but not all, NTDs. Vitamin B12 interacts closely with folate
metabolism and may play a role in NTD prevention. Some studies have found low
vitamin B12 status in mothers of NTD-affected children.

What This Study Adds

This study confirms that lowmaternal vitamin B12 status is an independent risk factor for
having an NTD-affected pregnancy and is the first to address the public health question
of what B12 level might be protective for women entering pregnancy.

ABSTRACT

OBJECTIVE. Folic acid fortification has reduced neural tube defect prevalence by 50% to
70%. It is unlikely that fortification levels will be increased to reduce neural tube
defect prevalence further. Therefore, it is important to identify other modifiable risk
factors. Vitamin B12 is metabolically related to folate; moreover, previous studies
have found low B12 status in mothers of children affected by neural tube defect. Our
objective was to quantify the effect of low B12 status on neural tube defect risk in a
high-prevalence, unfortified population.

METHODS.We assessed pregnancy vitamin B12 status concentrations in blood samples
taken at an average of 15 weeks’ gestation from 3 independent nested case-control
groups of Irish women within population-based cohorts, at a time when vitamin
supplementation or food fortification was rare. Group 1 blood samples were from 95
women during a neural tube defect–affected pregnancy and 265 control subjects. Group
2 included blood samples from 107 women who had a previous neural tube defect birth
but whose current pregnancy was not affected and 414 control subjects. Group 3 samples
were from 76 women during an affected pregnancy and 222 control subjects.

RESULTS.Mothers of children affected by neural tube defect had significantly lower B12

status. In all 3 groups those in the lowest B12 quartiles, compared with the highest,
had between two and threefold higher adjusted odds ratios for being the mother of
a child affected by neural tube defect. Pregnancy blood B12 concentrations of �250
ng/L were associated with the highest risks.

CONCLUSIONS.Deficient or inadequate maternal vitamin B12 status is associated with a significantly increased risk for
neural tube defects. We suggest that women have vitamin B12 levels of �300 ng/L (221 pmol/L) before becoming
pregnant. Improving B12 status beyond this level may afford a further reduction in risk, but this is uncertain. Pediatrics
2009;123:917–923

FOLIC ACID CAN prevent up to three fourths of neural tube defects (NTDs).1–3 Folic acid fortification of grain
products in the United States was initially reported to reduce the incidence of NTDs by 19%,4 but this was

probably an underestimate.5 Recent studies have shown reductions between 35% and 78% since mandatory
fortification programs were introduced.6–10 There is debate on whether all folic acid-preventable NTDs are being
prevented11–13 and whether the observed range of effectiveness can be explained by underlying ethnic differences in
susceptibility10 or differences in completeness of case ascertainment.5 One argument is that insufficient folic acid has
been added, and there have been calls to increase the level of fortification in the United States.11–13 Nevertheless, it
is generally agreed that not all NTDs are preventable by folic acid. Therefore, to further reduce NTDs, other modifiable
risk factors must be found.

Maternal obesity has been identified as 1 modifiable risk factor.14–16 Vitamin B12 (B12) status might be another,
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given the close metabolic association between B12 and
folate and the importance of B12 status as a determinant
of plasma homocysteine.17,18 A link between low mater-
nal serum B12 level and anencephaly was suggested as
far back as 1980.19 Several studies found differences in
maternal B12 status (measured by serum total B12 or by
holotranscobalamin) both during20–23 and after21,23–27 an
NTD-affected pregnancy (AP). Lower amniotic fluid B12

or lower B12 binding capacity was also reported in NTD-
APs.28–32 The 2 largest positive studies, conducted during
the introduction of folic acid fortification in the United
States26 and postfortification in Canada,22 found a tri-
pling of risk between the lowest and highest quintiles of
serum B12

26 or quartile of holotranscobalamin.22

In a previous study, undertaken primarily to examine
the association of folate status with risk of NTD, we
found that low maternal B12 status during an AP was
associated with risk, independent of folate status.20 To
gain further insight into the role of B12 in the prevention
of NTDs, we present results on 2 additional groups, using
pregnancy blood samples from over the same years,
which predate the era of widespread food fortification
and when medical advice was to avoid unnecessary pro-
phylactic supplements during early pregnancy, including
vitamin supplements.33 For comparison, we also in-
cluded hitherto unreported risk analysis from our previ-
ous study,20 using B12 data only from women in the
study where we had definite information that they did
not take vitamin supplements.

MATERIALS ANDMETHODS

Sample Selection
All 3 of the studies involved a nested case-control design
where samples were selected from within 2 large popu-
lation-based cohorts. Groups 1 and 3 included case blood
samples taken from mothers during an NTD-AP. Group
2 case blood samples were taken during pregnancy from
mothers who previously delivered an NTD-affected in-
fant but whose current pregnancy was not affected
(NAP). All of the samples were collected with institu-
tional ethical approval and in compliance with applica-
ble national ethical standards.

Group 1
Between July 1983 and February 1986, serum samples
were made available from first antenatal clinic blood
samples collected from all pregnant women as part of the
Irish National Rubella Screening Program. Details of the
collection source were presented in an earlier study.34

Samples were identified from 129 women who were
currently undergoing an AP. This represented 92% of all
of the ascertained NTD affected births in the major Dub-
lin maternity hospitals between 1984 and 1986. Suffi-
cient serum was available for analysis of B12 in 95 of
these case subjects. Control samples (n � 265) were
randomly selected from the same source over the same
sampling period, using the sequential sample number-
ing system of the screening laboratory. All of the
control women had normal pregnancies, based on
hospital charts. Case and control blood samples were

processed in a similar manner and were stored at
�20°C before analysis.

Groups 2 and 3
Between 1986 and 1990, research blood samples were
collected from 56 049 women at their first antenatal visit
in the 3 major Dublin maternity hospitals. This repre-
sents �70% of women who delivered in these hospitals
during the period. Additional details have been pub-
lished elsewhere.17,20,35–37 An aliquot in 1% ascorbic acid
for red cell folate (RCF) and a plasma sample were stored
at �20°C for each participant.

Group 2 includes blood samples within the above
biobank that were collected from women with a history
of NTD-APs but who had an NAP between 1986 and
1990. From the EUROCAT birth defects registry38 and
hospital records we ascertained that there were 303 such
women during the time period in the 3 hospitals. Of
these, 187 women had given research blood samples.
We excluded 65 women because they were taking vita-
mins, mainly as participants in the Irish Trial for the
prevention of NTD.39 A further 9 women had insufficient
sample for analysis. We had blood samples for 1 woman
during both an AP and an NAP pregnancy. We in-
cluded her AP blood in group 3 below and excluded
her NAP sample. Control subjects were obtained for
each case by selecting 4 to 5 women who attended the
antenatal clinic in the same hospital on the same day.
Hospital charts for these women were scrutinized for
vitamin supplementation and other demographic de-
tails. From this, samples from 439 nonsupplemented
women were eligible for analysis. Laboratory B12 re-
sults were missing for 5 case subjects and 25 control
subjects, leaving a final data set of 107 case subjects
and 414 control subjects.

Group 3 represents a previously unpublished analysis
from our earlier study on maternal folate and B12 in
NTD-APs.20 These blood samples were also obtained
from the 1986–1990 biobank described above. For the
current analysis, all of the known vitamin supplement
users were removed, leaving data from 76 case mothers
and 222 control mothers.

Laboratory Methods
B12, serum folate, and RCF were measured by microbi-
ologic methods, as described previously.20 All of the vi-
tamin analyses were completed between 3 and 9 years
from the sample collection, with each group analyzed as
a batch in a continuous run of assays. Case and control
samples were randomly mixed in every assay, and op-
erators were not aware of the sample status. Interassay
and intra-assay coefficients of variation were within
10.4% and 12.0% for folate and B12, respectively. An
ongoing laboratory quality-control system ensured long-
term performance of the assays within established limits
over the time scale of analysis.

Statistical Methods
Data were not normally distributed and are presented as
medians and interquartile ranges. Case-control compar-
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isons were conducted using Wilcoxon 2-sample tests.
Logistic regression models were used to test whether
decreasing levels of B12 were a significant risk for NTD
in each of the groups. B12 was entered as a continuous
variable or as quartiles of the control population. Ad-
justments were made for year of sampling and for
folate status. Analysis of risk by maternal B12 status
was conducted using cutoffs for B12 that represented
deficient (0 –149 ng/L), borderline-deficient (150 –199
ng/L), low-adequate (200 –299 ng/L), adequate-good
(300 –399 ng/L) and good (�400 ng/L) status. Based
on NTD prevalence data in the Dublin maternity hos-
pitals, an average NTD rate of 2.9 per 1000 births was
used for group 1, collected between 1984 and 1986,
and 1.9 per 1000 births for groups 2 and 3, collected
between 1986 and 1990. Confidence limits for risk
estimates were calculated by assigning each control a
representative weight (based on assumed overall risk)
and assuming no sampling variability in the popula-
tion and a Poisson distribution for the number of
cases. Comparison of risk for the B12 status categories
within each study group was based on an analysis of
maximum likelihood odds ratio (OR) estimates, using
the highest B12 category as the reference. All of the
analyses were done using SAS 9 (SAS Institute, Cary,

NC). Significant effects were those with 2-tailed P
values �.05.

RESULTS
Table 1 gives available characteristics of the 3 groups.
Median gestation was 15 weeks. Group 2 case mothers
tended to be older than control subjects and had more
pregnancies (P � .001), which is consistent with these
case subjects having a previous pregnancy history. In all
of the groups, the median B12 concentration was be-
tween 13% and 19% lower in case subjects (P � .002;
Table 2). RCF was significantly lower in group 3 case
subjects (238 vs 315 ng/mL; P � .0001) and marginally
lower in group 2 case subjects (median: 255 vs 291
ng/mL; P � .079). RCF concentrations were not avail-
able for group 1, but the serum folate was not different
between case and control subjects (2.85 vs 3.3 �g/L; P �
.42). There was a weak correlation between B12 and RCF
in group 3 samples (r � 0.16; P � .006; N � 298) but
little correlation between the B12 and RCF in group 2
(r � 0.07; P � .11; N � 514). There was little correlation
between serum/plasma folate and B12 in any of the 3
groups (r � 0.09, 0.07, and 0.10 for groups 1, 2, and 3,
respectively). The median B12 of control subjects in
group 1, sampled between 1984 and 1986, was some

TABLE 1 Characteristics of Pregnant Case and Control Women in the 3 Study Groups

Characteristic Group 1 Group 2 Group 3

Case
Subjects

Control
Subjects

Case
Subjects

Control
Subjects

Case
Subjects

Control
Subjects

Median age (IQR), y 27.0 (22–32) 28.0 (24–32) 32.1 (29–36)a 27.9 (24–32)a 26.5 (24–33) 28.0 (24–33)
Median weeks’ gestation at sampling (IQR) 16.0 (12–21) 15.0 (11–20) 15.3 (11–21) 14.5 (12–19) 14.4 (12–20) 15.1 (12–20)
Median No. of pregnancies (range) 1 (0–9) 1 (0–8) 4 (1–11)a 1 (0–10)a 0 (0–14) 1 (0–13)
NTD type, n (%)
Spina bifida only 47 (49.5) — 47 (43.9) — 36 (47.4) —
Anencephaly only 27 (28.4) — 35 (32.7) — 24 (31.6) —
Spina bifida � anencephaly 6 (6.3) — 16 (15.0) — 9 (11.8) —
Encephalocele only 9 (9.5) — 7 (6.5) — 3 (3.9) —
Other 6 (6.3) — 2 (1.8) — 4 (5.3) —

Sample year, n (%)
1983 16 (16.8) 37 (14.0) — — — —
1984 49 (51.6) 122 (46.0) — — — —
1985 28 (29.5) 103 (38.9) — — — —
1986 2 (2.1) 3 (1.1) 36 (33.6) 151 (36.5) 22 (28.9) 50 (22.5)
1987 — — 28 (26.2) 114 (27.5) 20 (26.3) 66 (29.7)
1988 — — 31 (29.0) 108 (26.1) 16 (21.1) 44 (19.8)
1989 and 1990 — — 12 (11.2) 41 (9.9) 18 (23.7) 62 (27.9)

IQR indicates interquartile range, denoting the 25th to 75th percentile values; —, no data.
a P � .001.

TABLE 2 Serum B12 Concentrations During Pregnancy in Mothers With a History of Pregnancies
Affected by NTD (Cases) and NonaffectedMothers (Controls) Matched for Group

Variable Group 1 (AP) Group 2 (NAP) Group 3 (AP)

Case B12, median (IQR), ng/L 210 (162–252) 270 (208–360) 244 (208–330)
No. 95 107 76

Control B12, median (IQR), ng/L 242 (190–297) 314 (253–404) 300 (237–366)
No. 265 414 222

Wilcoxon test, P .0003 .0004 .0018

IQR indicates interquartile range, denoting the 25th to 75th percentile values; AP, case samples were taken during an AP; NAP, case
samples were taken during an NAP from women who previously had an NTD-AP.
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20% lower than groups 2 and 3, sampled between 1986
and 1990 (P � .0001). When the median B12 was plotted
by year, there was weak general trend toward increased
status over the period of the study (data not shown). We
noted a 4% difference (P � .023) in median B12 among
control subjects in groups 2 and 3, both of which were
sampled from the same population of 56 049 blood sam-
ples. This was probably because of differences in the year
of analysis and minor fluctuations in assay performance
but was well within the interassay coefficients of varia-
tion of our laboratory.

To determine the independent contributions of B12

and RCF to risk of NTD, we used logistic regression
analysis with B12 and RCF (groups 2 and 3) as continu-
ous variables. There were highly significant associations
(Table 3), such that each unit increase in B12 concentra-
tion provided an �0.3% reduction in risk, independent
of RCF. RCF was a significant factor only in group 3.

To explore whether the associations with risk were
confined to particular sectors of the B12 distribution, we
categorized the data by quartile of B12 concentration
among control subjects. Logistic regression analysis, us-
ing the highest B12 quartile as the reference group and

adjusting for RCF and year of sampling (Table 4),
showed that risk of NTD was significantly increased only
in the lowest quartile for groups 2 and 3 but extended to
the second quartile for group 1 (adjusted for serum
folate). The upper cutoffs for the second quartile in
group 1 (242 ng/L) and the lowest quartile in group 2
(252 ng/L) and group 3 (237 ng/L) were remarkably
similar. In all 3 of the groups, those with B12 concentra-
tions of �250 ng/L had a 2.5- to 3-fold higher risk of
being the mother of an NTD-affected child, after adjust-
ing for folate. Adjusting for gestation did not substan-
tially change the magnitude of the effects (data not
shown).

We then divided the B12 levels into 5 nutritionally
relevant groups (deficient, borderline deficient, etc) and
calculated relative risks for each group, based on the
known NTD prevalence rates at the time of sampling.
Point estimates with SEs are shown on Table 5. These
data show clear trends of risk reduction across the 5
categories in all of the groups, with those in the lowest
category (pregnancy B12 concentrations of �150 ng/L)
having �5-times higher risk compared with those with
pregnancy B12 levels of �400 ng/L. The effects are sig-
nificant below a concentration of 200 ng/L in groups 1
and 2. Effects were not significant for group 3, but
smaller numbers are likely to have been a factor. Figure
1 shows trends across the B12 distributions. These sug-
gest that some further reduction in risk may be afforded
by having a B12 status �320 to 350 ng/L, but there is no
statistically significant effect.

DISCUSSION
We have shown, in 3 separate groups, that low B12

status is an independent maternal risk factor for having
an NTD-AP. Moreover, our study is the first to examine
the risk by concentration of B12. Our data indicate that

TABLE 3 ORs for B12 and RCF as Independent Risk Factors for
Being aMother of an NTD-Affected Child Using a
Continuous Logistic RegressionModel

Group Effect ORa 95% CI P

1 (AP) B12, ng/L 0.995 0.992–0.998 .0005
2 (NAP) B12, ng/L 0.997 0.995–0.999 .0030

RCF, �g/L 1.000 0.999–1.001 .71
3 (AP) B12, ng/L 0.997 0.994–1.000 .0320

RCF, �g/L 0.995 0.993–0.998 .0002

OR indicates odds ratio; CI, confidence interval.
a Odds ratios are calculated per unit increase in concentration of B12 or RCF.

TABLE 4 ORs for B12 as a Risk Factor for Being aMother of an NTD-Affected Child According to
Quartile of Control Mother B12 Concentrations

Effect Group 1: AP Group 2: NAP Group 3: AP

OR 95% CI OR 95% CI OR 95% CI

B12 quartile unadjusted
1 3.19 1.49–6.82a 2.89 1.51–5.53b 2.99 1.41–6.35c

2 2.77 1.28–5.98d 1.40 0.68–2.87 1.49 0.65–3.41
3 1.82 0.81–4.09 1.89 0.95–3.73 1.16 0.49–2.77
4 Ref — Ref — Ref —

Adjustede

1 3.14 1.46–6.72f 2.75 1.43–5.28g 2.45 1.12–5.32h

2 2.63 1.21–5.72i 1.34 0.65–2.77 1.55 0.66–3.61
3 1.79 0.80–4.03 1.80 0.91–3.57 1.09 0.45–2.65
4 Ref — Ref — Ref —

Ref indicates reference;—, no data.
a P � .003.
b P � .001.
c P � .005.
d P � .010.
e Data are adjusted for year of assay and serum folate (group 1) or RCF (groups 2 and 3).
f P � .003.
g P � .003.
h P � .024.
i P � .015.
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women with pregnancy B12 concentrations of �200
ng/L are at 3 times greater risk than those with levels of
�400 ng/L. These results agree remarkably with effects
observed by others.22,26 Our analysis indicates that the
majority of risk is confined to B12 levels below �250
ng/L (Tables 4 and 5), although the trend line in Fig 1
suggests that further risk reduction might be achieved by
having a B12 status �320 to 350 ng/L. Considering that
these women were sampled at an average of 15 weeks’
gestation and, by that time, there is a natural physiologic
drop of �20% to 25% in serum B12 from the prepreg-
nancy level,40,41 our data indicate that women should
aim to enter pregnancy with serum B12 concentrations
of �300 ng/L (221 pmol/L) and that levels above 400
ng/L (295 pmol/L) might be desirable, although we
found no statistically significant benefit.

It is uncertain whether further reduction in NTDs can
be achieved in the United States by increasing the level
of grain fortification with folic acid. Moreover, recent
reports on possible adverse effects of high folic acid
consumption make such a strategy unlikely.42–44 The ad-

dition of B12 in conjunction with folic acid has been
proposed but mainly to protect individuals with low B12

status.12,13,45,46 There is little information on the propor-
tion of women who enter pregnancy with B12 levels of
�300 ng/L, although a recent National Health and Nu-
trition Examination Survey report found a mean serum
B12 of just over 400 ng/L (300 pmol/L) in women be-
tween 20 and 39 years old.47 Our study suggests that the
addition of B12 to fortified grains may be a useful and
acceptable way to further reduce the prevalence of NTD,
but more studies are needed to establish the safety of
fortifying with B12 and the dose of B12 that might be
required to reach an effective level of protection.

Previous case-control reports revealed lower B12 sta-
tus in women with a history of NTD-APs who were not
pregnant at the time of study.21,23–27 Our study is unusual
in that we observed lower B12 concentrations during an
NAP in such mothers (our group 2 case subjects). There
are 2 possible explanations for this finding. One is that
B12 is merely marking low folate status. However, we
found little interaction between B12 and folate in any of
our groups. This is not surprising, because in a nonfor-
tified, nonsupplemented population, vitamin status is
determined by dietary sources of folate and B12, and the
2 are quite different. The second, more likely explana-
tion, is that long-term low B12 status may act in synergy
with low folate status to precipitate an NTD-AP. B12

status, along with genetic differences, may help to ex-
plain the low NTD rates seen in some ethnic groups and
may also help in understanding why low maternal folate
status alone usually does not result in NTD-APs. For
example, blacks, who have both lower NTD rates and
lower folate levels than other ethnic groups in the
United States, have significantly higher B12 status,48,49

and this high status is also seen during pregnancy.50 Our
case mothers were all of Irish descent (ie, white) and
lived in a region of traditionally high NTD prevalence,
suggesting a moderately high genetic predisposition. The
importance of B12 as a synergistic factor is also supported
by our previous observation20 that women in the bottom
quartile of both plasma folate and B12 had �5 times
higher ORs of a birth affected by NTD than those in the
highest quartile of both vitamins. Women in the bottom
quartile of plasma folate but the highest B12 quartile had
less than half that risk.

It is not known how folate and B12 might interact to
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FIGURE 1
Risk of being the mother of an NTD-affected child according to pregnancy vitamin B12
status during anAP or NAP. Riskswere calculated from the proportion of case and control
subjects in defined B12 categories, multiplied by the prevalence of NTD at the time of
sampling. x-axis values are the median B12 values within each category.

TABLE 5 Risk of NTD per 1000 Births According toMaternal B12 Status

B12 Category, ng/L Group 1 (AP)a Group 2 (NAP)b Group 3 (AP)c

Risk (CI) P Risk (CI) P Risk (CI) P

0–149 5.1 (3.1–8.0) .014 8.9 (4.5–15.9) �.0001 4.0 (1.3–9.2) .14
150–199 3.6 (2.2–5.5) .050 4.5 (2.4–7.5) .0008 2.8 (1.2–5.5) .25
200–299 2.9 (2.1–3.9) .082 1.9 (1.3–2.6) .082 2.4 (1.7–3.3) .21
300–399 1.6 (0.7–3.1) .502 1.7 (1.2–2.5) .134 1.2 (0.7–1.9) .65
�400 1.0 (0.2–2.8) Ref 1.1 (0.6–1.7) Ref 1.4 (0.7–2.7) Ref

Data are the relative risk (with confidence limits) of being a casemother comparedwithbeing a controlmother, given aB12 concentration
within the designated category. CI indicates confidence limit; Ref, reference.
a Case samples were taken during an AP at a time when the underlying prevalence of NTD was 2.9 per 1000 births.
b Case samples were taken during an NAP at a time when the underlying prevalence of NTD was 1.9 per 1000 births.
c Case samples were taken during an AP at a time when the underlying prevalence of NTD was 1.9 per 1000 births.
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affect neural tube formation, but several mechanisms
are possible. As cofactor to the enzyme methionine syn-
thase, B12 influences both the incorporation of folates
into the cellular pool and the flux of folate derived
1-carbon units destined for DNA synthesis or for meth-
ylation reactions. DNA synthesis is an essential feature of
embryonic development, but other factors that trigger
developmental changes, such as cell-signaling events
that lead to differential gene expression, are partially
controlled by methylation reactions. Impairment of ei-
ther of these systems could be involved in folate or
B12-responsive NTDs.

Our study has several strengths. First, our groups
were large enough to detect an average B12 difference of
15%, enabling us to get a good estimate of the critical
level of B12 required to prevent NTDs. Several other
studies that found no difference were limited to �60
case subjects51 or were conducted in an area of very low
NTD prevalence with high reported B12 levels.52 Our
study samples were taken from a population of high
NTD risk, at a time when women were not exposed to
prenatal vitamins before the blood draw. Such popula-
tions are difficult to find nowadays, but they have the
advantage that the observed concentrations are more
likely to reflect the blood vitamin level at the time of
neural tube closure, because they have not been con-
founded by early pregnancy intake of vitamin supple-
ments. Samples from all of our groups were assayed
using the same methodology, and our collection strategy
ensured that case and control subjects were matched for
gestational, temporal, and storage variables likely to af-
fect the B12 content. One limitation is the fact that we
could not also control for maternal age and number of
pregnancies. However, we had no evidence that these
variables would affect maternal B12 status. The study is
also limited by sparse demographic data on participants
and by the lack of RCF data for group 1, which, because
of its greater stability, may have been more informative
than serum folate.

CONCLUSIONS
We have confirmed that low B12 status is an important
maternal risk factor for having an NTD-AP. More impor-
tantly, our study is first to address the public health
question of what B12 concentrations might be protective,
although our calculations are limited by extrapolation
from pregnancy values to a nonpregnant condition. Our
logistic regression analysis suggests that women who
start pregnancy with serum B12 concentrations of �300
ng/L (221 pmol/L) are at significantly higher risk for
NTDs. Improving B12 status beyond 300 ng/L might offer
further risk reduction, but this is unclear.
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