
virtual String ExplainError(Error *error)

virtual void DisplaySelf()

};

An instance of the Context class is created and initialised by the GRT when needed.

Create is called to reserve a memory region for holding objects. Typically, lan-

guages use this primitive to allocate space for their objects. The Create prim-

itive returns the address of the allocated memory.

Register is called to make the speci�ed object (represented by the VMemAdd pa-

rameter) known to the generic run-time. The GName parameter indicates the

global name of the class for this instance. The Object parameter contains the

set of up-calls required for in the registration procedure, and must be previously

created and initialised by the corresponding language speci�c run time.

AssociateGName() associates a global name to the object located at VMemAdd

address. The global name is returned.

Invoke causes invocation to be transferred to the object speci�ed by GName with

the prameters speci�ed by ActivationData.

IsLocal returns true if the object speci�ed by GName is mapped in the current

address space.

LoadObject maps the designated object in virtual memory so that it can be

scanned without being invoked. The object stays locked in memory until it is

explicitly released with the ReleaseObject primitive.

ReleaseObject informs the system the designated object is no longer needed in

memory, and therefore can be stored back to disk.

SetCurrentSignalObject informs the system that the designated object should

become the default handler for hardware traps occuring within the current

address space.

Group is called to inform the GRT that the list of objects should be stored together.

This call is advisory.



BeforeUnMap is up-called immediately before unmapping the object from an

address space. It is used for the same purposes as the AfterMap method.

Trap is up-called when a hardware or system exception is raised, and allows the

language run-time to handle exceptions caught by the virtual machine.

Dispatch is up-called by the Generic Run-Time when an incoming cross-address-

space invocation for the object is received, and when the object is mapped

locally.

GetClass returns the global name of the class object for this object.

GetVMemAdd retrieves the address of the object instance data.

GetArrayRef is up-called when the generic run-time needs to know the location

of references within an object. The structure returned is an array containing

header information and a list of o�sets, containing the location of references

within the object. The �nal address of the references is obtained by adding

these o�sets to the object location, returned by the GetVMemAdd up-call.

ConvertFormat is up-called when an object's representation need to be convert-

ed to one suitable for another architecture. Conversion between heterogeneous

architectures is performed in two steps: from current format to a standard

one (within the calling address space), and then from the standard to the de-

sired format (within the called address space). Thus, one of the Architecture

arguments is guaranteed to be a standard one.

ConvertActivationData is up-called to convert the parameters contained within

an ActivationData structure. The semantics of this primitive is similar to the

previous one.

B Class context

An instance of the Context class is created and properly initialised by the GRT when

an address space is created. The operations available on this class describe the downcalls

available to language speci�c runtimes.

class Context {

public:

VMemAdd Create(int size, Error *error);

void Register(VMemAdd vMemAdd, GName gName, Object *object,

Error *error);

GName AssociateGName(VMemAdd vMemAdd, Error *error);

void Invoke(GName gName, ActivationData *actData, Error *error);

Bool IsLocal(GName gName, Error *error);

void LoadObject(GName gName, Error *error);

void ReleaseObject(GName gName, Error *error);

void SetCurrentObject(Object *object);

void Group(GName *gName, U32 nbGname, Error *error);



A Class object

This class describes the upcalls which must be provided by a Comandos object. Each

language level object must have the following set of methods available when it wishes to

be managed by the system:

// Structure used to pass parameter frames between language specific runtimes

// and the generic runtime

struct ActivationData {

char *operationName; // String containing the name of the operation

int parametersSize; // Size of the parameters

char *parameterBlock; // raw data containing the parameters

GName targetObject; // Global name of the invoked object, defined

// later.

};

class Object {

public:

~Object(Error *error);

virtual void AfterMap();

virtual void BeforeUnMap();

virtual void Trap(int trapName);

virtual void Dispatch(ActivationData *actData, Error *error);

virtual GName GetClass();

virtual VMemAdd GetVMemAdd();

virtual RefLocation *GetArrayRef();

virtual VMemAdd ConvertFormat(Architecture *from,

Architecture *to, Error *error);

virtual VMemAdd ConvertActivationData(ActivationData *actData,

Architecture *from,

Architecture *to, Error *error);

virtual String ExplainError(Error *error)

virtual void DisplaySelf()

};

Object de�nes the set of methods that all Comandos objects must support to be cor-

rectly managed by the system. Typically, these methods are generated automatically

or are inherited by each object in the system.

AfterMap is up-called immediately after the mapping of the object into an address

space. This allows the programmer to update any address space dependent data

within the object.



The main complication arises when we have to deal with heterogeneous architectures.

In this case both the object itself (if it is being mapped from the storage subsystem) and

the invocation data may need to be converted to the appropriate format.

As far as the actual object is concerned, in addition to the mapping and series of asso-

ciated upcalls described in section (4.2.1), we may need to upcall ConvertFormat(from,

to) which converts to or from a standard architecture independent format. In the case

of mapping the object, it will be converted from a standard representation on disk to the

required representation for the node.

Dealing with architectural di�erences at the level of the invocation data is carried out in

a similar manner. The GRT, when it recognises that it is sending to a di�erent architecture

ensures that the outgoing invocation frame is converted to an architecture independent

one using the ConvertActivationDate(activationData, from, to) upcall. On receipt

of an incoming invocation, the standard representation is converted into one suitable for

the receiving machine. Invocation then proceeds as before using the Dispatch function.

5 Conclusions

In this paper we presented the mechanisms provided by the Comandos platform to support

a variety of languages in the Comandos distributed environment.

We are currently in the process of implementing the Comandos kernel and GRT on

Unix, CHORUS and Mach 3.0. Language speci�c runtimes for C++, Ei�el and Guide

are also being implemented. A prototype implementation, known as Amadeus, which

supports distributed persistent C++ above Unix is currently available to interested parties

for evaluation and experimentation.

6 Acknowledgements

The authors acknowledge the fruitful interactions with all of the participating institutions

in the Comandos project and in particular with Bull and IMAG in Grenoble; GMD in

Bonn; and the University of Glasgow.

The authors particularly acknowledge the contribution made by Andre Kramer while

working at Trinity College.

References

[1] \Functional Speci�cation of Release-2", Esprit Project 2071 - Deliverable D1-T2.3,

March 1991.

[2] \Comandos Language Reference Manual", Esprit Project 2071 - Deliverable D4-T2.3,

March 1991.

[3] I. Goldstein, OSF RI Notes, No 3, June 1990.

[4] B. Meyer \Object Oriented Software Construction", Prentice Hall, 1988.

[5] B. Stroustrup \The C++ Programming Language" Addison-Wesley , 1987.



� As above, however, the object is already mapped elsewhere or must be mapped

elsewhere

10

, requiring a remote invocation to be made.

Here we are only concerned with the last two cases, as the �rst will be con�ned to the

language speci�c runtime and makes no use of the GRT.

4.2.1 Map the Object Locally

When the use of a reference causes an object fault, control is passed to the GRT via the

Invoke primitive passing as parameters the global name of the object and ActivationData

- a structure holding the method identi�er and parameters for the invocation. It should

be noted here that the code handling the object fault must make a mapping from the local

C++ virtual memory pointer to a valid Comandos global name.

Invoke causes the GRT to locate the object. We will assume here that the object will

be mapped into the calling object's address space.

The GRT uses an internal service to locate the object. It then maps the object into

the current address space (c.f. section 2). Once mapped, the GRT upcalls the object's

GetArrayRef() function. This function returns the address of an array of references

contained within the object. This array, in conjunction with the GetVMemAdd() upcall

allows the GRT to obtain a list of pointers within the object to other objects.

For each reference within the object the GRT has a choice, either it can go ahead and

load the referenced object, updating the pointer

11

or it can arrange that the use of the

reference causes an object fault

12

.

Once loaded, an upcall is made to the function AfterMap() which is responsible for

ensuring that any context dependent data, such as �le descriptors as described above are

dealt with (3.1).

Once this has been carried out, the GRT can then assume that the object is cor-

rectly mapped, and initialised, and can upcall the function Dispatch(), passing it the

ActivationData structure obtained in the Invoke downcall which allows the language

level to call the correct method, after it has carried out any necessary work connected

with stack management.

4.2.2 Map the Object Remotely

The scenario for dealing with an object that is mapped remotely is similar to that of a

local invocation in terms of dealing with the mapping, converting global references etc.

However, the di�erence is in the propagation of the invocation frame.

When the object is mapped remotely, the GRT transfer processing from the current

address space to the remote address space

13

. In this case the ActivationData must be

transferred to the the remote address space.

10

for example, because of heterogeneity

11

and recursively load other referenced objects.

12

Again via virtual memory techniques or using proxy objects.

13

A lightweight invocation may occur if the object is in another address space but on the same site.



4 Using the Comandos GRT

To illustrate how the Comandos GRT supports the C++ language, we detail the creation

of a C++ object on the Comandos platform and the subsequent invocation of another

C++ object.

4.1 Object Creation

In traditional languages such as C++, language objects can be instantiated in several

possible scopes. An object can be declared in a global scope (outside of any function or

class), and thus reside in the data space of the application; can be dynamically allocated

in the heap of the application, by means of mechanisms similar to malloc in Unix; can

reside in the stack if declared within the scope of a function de�nition; and can exist within

another object (wherever it may be).

However, this scenario of object creation is independent of the GRT, which does not

require language objects to be located in a speci�c region. Although the GRT provides

the Create call for allocating new space,

8

we are never constrained to use only this space.

The only requirement is that all promoted objects reside in memory known to the GRT.

Thus not all language objects need be known to the GRT.

Objects to which references are passed outside of the address space in which they were

created (as described in section 2) need to become known to the GRT. This promotion is

an operation carried out on demand. In fact, whenever references are sent outside of the

address space, a test needs to be made to determine whether or not they refer to globally

known objects. If they refer to volatile objects, then these objects must be promoted by

calling the Register and AssociateGName primitives as described previously. The test is

carried out by language speci�c code, i.e. as part of the upcall to the appropriate object.

When the Register operation is called, the language speci�c run-timemust provide the

binding to the correct upcall functions to allow the GRT to manage the newly promoted

object with respect to persistence, distribution and context dependant data.

This code, that encapsulates context dependant data and the upcall functions that sup-

port persistence,

9

may be generated automaticaly using either pre-processor, or compiler

adaptations, or may be hand generated by the programmer.

The reader is directed to appendix A for a full description of the upcall functions that

must exist for each GRT managed object.

4.2 Object Invocation

When an invocation is attempted using a virtual memory pointer, a number of events may

be triggered depending on the state of the corresponding object:

� The object is known locally and the invocation proceeds without use of the GRT.

� The object is unknown locally, causing an 'object fault', passing into the GRT and

asking the GRT to locate the object and map it locally.

8

as described in section 2

9

as well as the proxy code to be used for remote objects



generated local object identi�ers to global ones i.e. those generated and managed by the

Comandos GRT.

Another problem is the need to deal with pointers to context dependent data, for

example �le descriptors. If we pass a �le descriptor out of an address space, without some

means of conversion, it may be impossible to use that descriptor in any other address

space.

In summary, the language designer has three main problems to solve:

� Dealing with context dependent data.

� Managing pointers to stored objects.

� Managing pointers to remote objects.

3.1 Context Dependent Data

We adopt an approach to context dependent data that requires programmer intervention.

Our motivation is that such data is outside the scope of the object oriented world, and,

more importantly, the programmer making no use of distribution or persistence should

not be concerned with the problem.

The approach is to encapsulate such data within a type that is capable of dealing with

distribution or persistence.

Consider for example a �le pointer; if we create a function that the system can call

whenever a �le pointer is passed into or out of an address space, to open or close the

correct �le, then we can correctly support this pointer.

3.2 Pointers to Stored Objects

Since an object may contain references to objects that are currently in the persistent store,

we must ensure that any attempt to access such an object causes an 'object fault'. We

are currently experimenting with two mechanisms for this purpose: The �rst mechanism

involves the use of a proxy object to represent the stored object such that when accessed,

the proxy is responsible for locating the correct object and overlaying itself. The alter-

native mechansim is to have references to absent objects point to invalid memory so that

attempts to access such objects cause memory faults. Thus we can trap the 'object fault'

without using a proxy and can load the required object in the fault handler.

3.3 Pointers to Remote Objects

The solution to the last major problem, that of trapping invocations to remote objects

and forwarding the request uses a model similar to that described above. However, in

the remote case we are always constrained to use a proxy so that accesses to the data of

the object can be caught. Using a proxy object in place of the remote object, we catch

invocations, locate the remote object, marshall the arguments and send the remote request

using the support provided by the GRT.



simply registered in the faulting address space's COT.

Remote and Cross-Address-Space Invocation

The GRT co-operates with the requesting language in performing remote and cross-

address-space invocations. The GRT supports the building of parameter frames for trans-

mission between heterogeneous machines by supplying - to language dependent RPC stubs

(which may be generated by standard stub compilers) - generic routines to encode param-

eter data in network format. The language speci�c runtime can then perform marshalling

into bu�ers provided by the GRT using the appropriate GRT routine to encode the data.

The GRT interacts with the communications subsystem and the protection subsystem

to supply the mapping between the target objects global name and the authenticated

remote invocation transport path.

Local Garbage Collection

The creation of new objects may lead to exhaustion of memory. To recycle unused memory,

the GRT incorporates a local (per address space) garbage collector, taking externally

known data objects (which have been assigned a global name) as its root, and which

collects unreachable volatile objects.

As the GRT imposes no parameter frame formats, the garbage collector must be con-

servative when scanning stacks

7

. The local collector must cooperate with on-line global

garbage collection, if it is present. Local garbage collection uses the upcall mechanism

to locate object references held by typed language level objects. The garbage collection

should be compacting only if dynamic object movement is supported by the language and

its speci�c runtime.

3 Supporting an Object Oriented Language above the

GRT

In this section we examine what the major technical problems are when mapping a lan-

guage such as C++ onto the Comandos Virtual Machine.

Our goal is to transparently provide the C++ programmer with a distributed persistent

programming environment. However, we are concerned to minimise the side-e�ects of

using our platform for programmers. This generates two, con
icting, constraints: that we

maintain, as far as is possible the current model and syntax of the C++ language, yet,

we do not penalise C++ programmers who make no use of the enhanced functionality

provided.

Both distribution, and persistence impose a common requirement on the C++ pro-

gramming model for which current compilers do not cater. All references to objects may

actually point to objects that are not mapped in the current address space i.e. objects

which are either mapped on a machine elsewhere in the system, or are currently inactive

and so are on secondary storage.

Since current implementations of C++ use virtual memory pointers to refer to objects

we are faced with a dilemma: either we adapt current compilers to generate globally

unique, long lived object pointers, or we add support for the GRT to map the compiler

7

Stack allocated objects are never visible to the GRT.



Actually achieving this promotion is a two stage process. First, the object is registered

with the GRT by the Register call which associates an upcall table to the object allowing

it to be managed by the GRT.

To become globally known, the language speci�c runtime must call the

AssociateGName function which returns a global name for the object.

The object cannot now be garbage collected using address space local information

alone. The object may be unmapped on address space deletion or when no longer required

by the language run-time.

Object Global Naming

Objects are assigned global names (only) when they are promoted. Thus a location

independent form of naming is used to transmit object references outside of the address

space in which the object was created. Global names may be passed in remote/cross-

address-space invocations and stored in the storage subsystem along with the object which

contains the name.

The GRT interacts with the storage subsystem in allocating global names since a global

name consists of a secondary storage container identi�er and a generation number which

is unique within that container. The container identi�er names the secondary storage

container initially speci�ed for the object. If the object migrates between containers, then

the initial container must track the object's current storage location. Volatile forwarding

information may be used to accelerate a search, but may be out of date or incomplete due

to node crashes.

Object Invocation

Object invocation is the basic primitive of the model re
ecting all the features related

with transparent handling of persistence, distribution and sharing.

Invocations on objects mapped locally are performed at language speci�c run time

level. However, attempts to access objects which are not mapped in the current address

space - object faults - are trapped by the speci�c runtime which calls the GRT. It in turn,

either arranges to map the object into the current address space, or arranges to carry-out

a cross-address-space or remote invocation as required. The GRT may interact with the

protection subsystem, storage subsystem and global location service in determining how to

handle the object fault. The following paragraphs introduce the basic mechanisms within

the GRT to handle object faults.

Object Mapping

When mapping an object, the GRT must �rst allocate memory for the object. The

GRT translates global names contained in the mapped object to language names, by

interacting with the mapped object's speci�c runtime. This translation may be delayed

until the object is actually used (e.g. being invoked) if the object was pre-fetched. If the

referenced object does not currently reside in the local address space, then the GRT may

be used to build a local data object which represents the referenced absent object.

The translation from global name to language name is maintained in the GRT's Con-

text Object Table (COT) within the address space where the object is mapped.

Groups of objects, i.e. clusters, form the actual unit of transfer between the GRT

and the storage subsystem. Since objects are retrieved in clusters, the GRT must handle

demand loading of one object and pre-fetching of the others. Pre-fetched objects are



where an up-call is a call from a lower level to a higher one, using an entry point previously

supplied by a regular call (down-call).

This two-way interface between a language-speci�c runtime and the GRT allows ob-

jects of heterogeneous languages to be handled commonly by the GRT. This scheme is

su�ciently generic so as to allow 
exible implementations of both the generic and language

speci�c runtimes.

The next section gives an overview of the basic functionality of the GRT.

2 The Generic Runtime

The GRT provides �ne grained passive data objects (which will be refered to, in this and

subsequent sections, simply as objects) to which a language, through its language speci�c

runtime, may bind class code. Language level object models can thus be built. An object

may be uniquely identi�ed by its so-called global name which is su�cient to locate the

object even when it is mapped on a remote node or stored in the storage subsystem.

The GRT provides generic support for local management of these passive objects,

including their creation and possible garbage collection. Objects, which are viewed by the

GRT simply as contiguous blocks of memory, are used to contain and enclose language

level objects (refered to as language objects) containing both direct data and references to

other language objects.

Supported languages (i.e. their language speci�c runtimes) can build language speci�c

forms of object references (refered to as language names), such as tagged pointers, which

may be stored in language objects, and thus in objects while they are mapped into some

address space.

In particular, the GRT supports direct addressing over the objects mapped into an

address space. The identi�ers for objects communicated between the GRT and a supported

language take the form of direct addresses

6

.

The protocol between the GRT and the language (speci�c runtime) - the upcall mech-

anism - allows the GRT to perform a number of operations on language objects, such as

location of language names stored in local objects and conversion of these names to/from

global names as objects are mapped and unmapped. This protocol requires that each

object must have a minimum set of methods, one for each basic operation which the GRT

may request.

Object Creation and Promotion

Objects are brought into existence by the Create call. Create allocates space, which is

untyped, and will be used by the language speci�c run time as a repository for language

objects.

Any object created in this way is known as a volatile. Such objects exist and are

known only within the address space in which they were created. Objects may become

known outside of their address space of creation (either because a reference to the object

has been passed out of the address space, or because the object itself migrates out of the

address space). If this happens, the object is said to have been \promoted" to being a

globally known object.

6

Note that a language name itself is not necessarily a direct address.



� the Execution Subsystem (ES) provides support for object execution and the Co-

mandos notion of a distributed process;

� the Virtual Object Memory (VOM) hnadles all operations related to the manipu-

lation of virtual address spaces;

� the Storage Subsystem (SS) provides long-term storage for persistent objects;

� the Transaction Subsystem (TS) supports the execution of atomic transactions;

� the Communication Subsystem (CS) is responsible for providing a generic RPC

interface independent of the underlying stack of protocols;

� the Protection Subsystem (PS) ensures the speci�ed level of protection during

application execution.

The implementation of these components is split across three interfaces.

� the Virtual Machine Interface | The interface across which a supported language

communicates with the Comandos platform;

� the Kernel Interface | Dividing those parts of the platform which are accessible

directly by applications (\user" mode) and those which are accessible only in a

privileged mode (i.e. the Comandos kernel);

� the Environment Interface - The interface from a Comandos implementation to its

underlying hosting environment: Unix or micro-kernels like CHORUS

5

.

The Virtual Machine Interface is the uniform view presented by the Comandos platform

to each of the various supported languages. It is provided by the primitives of the Generic

Runtime (GRT) layer that itself interfaces with the services of the underlying Comandos

kernel.

The GRT implements the local object space directly manipulated by application pro-

grams i.e. it is mainly concerned with local object management. The GRT is implemented

by code running in user mode within each address space. Services such as address space

creation and deletion; remote invocation; sharing of objects between address spaces as

necessary and object location within the distributed system may be implemented in ker-

nel mode or by speci�c servers as well as in user mode within an address space, depending

on the underlying environment.

As di�erent languages have di�erent calling semantics, a language speci�c runtime

must adapt the GRT primitives to the language speci�c format. Moreover, as most of

these primitives are based on manipulation of objects, whose format and model di�er

is each of the di�erent languages, each speci�c runtime must also hide these language

dependencies from the GRT support.

To provide this 
exibility and to make a minimum number of impositions on any

language, we propose a general model in which the language makes calls to the GRT

but expects the GRT to understand little of the semantics of these calls. To deal with

the problem of language speci�c information, the architecture makes heavy use of up-calls ,

5

CHORUS is trademark of Chorus Syst�emes



its components, and to provide the enabling technology for reducing the cost of distributed

application development and maintenance.

The overall objective of the Comandos project is to identify and construct an inte-

grated multi-language application support environment for developing and administrating

distributed applications which can manipulate persistent { long-lived { data. It is intend-

ed to provide such an environment in the framework of multi-vendor distributed systems.

This platform will allow both the development of new applications, and the co-existence

with old-style (Unix

4

oriented) applications.

The Comandos platform includes infrastructure for:

� distributed concurrent computations;

� storage and retrieval of persistent data;

� multiple programming languages;

� reuseable and extensible software modules;

� secure and protected data;

� on-line management, monitoring and control;

� access to pre-existing applications and information systems;

� interworking with non-Comandos environments.

The project is innovative in that it is integrating operating systems, programming lan-

guages and databases technologies. The unifying view is provided by a model and system

architecture based on the object-oriented approach, coupled with persistent distributed

storage.

Within the Comandos project, the object paradigm provides the basis for an integrated

view of application construction, and system management and control.

The project started by de�ning a conceptual model for structuring distributed applica-

tions. This model de�nes the Comandos virtual machine, and provides an object-oriented

view of the distributed environment.

Based on this model, the project is providing a multi-lingual environment which sup-

ports the concepts of the model through various languages (initially C++[5], Ei�el [4] and

the Comandos object-oriented language, known as Guide [2]).

In this paper we describe the support provided by the Comandos platform for language

implementers and show how an existing language can be adapted to use the facilities of

the Comandos platform.

1 The Comandos Virtual Machine

The Comandos Virtual Machine is internally composed of six components:

4

Unix is a trademark of Unix Systems Laboratories, Inc.



CS/TR-91-56

SUPPORTING OBJECT ORIENTED LANGUAGES ON THE

COMANDOS PLATFORM

1

Vinny Cahill , Chris Horn, Gradimir Starovic

Distributed Systems Group, Dept. of Computer Science, Trinity College, Dublin, Ireland.

Rodger Lea

2

Chorus Syst�emes, 6 av. Gustave Ei�el, 78182 St. Quentin-en-Yvelines, France

Pedro Sousa

INESC, Rua Alves Redol, 9, 1000, Lisboa, Portugal

Abstract

The Comandos project

3

is designing and implementing a platform to support dis-

tributed persistent applications. In particular the platform supports the object ori-

ented style of programming. An essential requirement of the Comandos platform is

that it must support applications written in a variety of existing as well as new (object

oriented) programming languages. Moreover, the platform must support interworking

between di�erent languages. Each language may naturally have its own object model

and execution structures implemented by a language speci�c runtime system. Rather

than forcing each language to adopt a common object model and execution structures

in order to exploit the distribution and persistence support provided by the Coman-

dos platform, Comandos provides a generic runtime system on top of which individual

language's speci�c runtimes may be implemented. In this paper we show how a lan-

guage speci�c runtime for an existing language such as C++ can be constructed above

the Comandos generic runtime.

The growing use of distributed systems re
ects both technological and organisational

evolutions. Advances in computing and networking have led to the use of local-area dis-

tributed systems composed of heterogeneous workstations and servers. Human organisa-

tions are often, by their nature, distributed, but with strong requirements for interworking

and overall integration within the enterprise. This evolution leads currently to the concept

of \collective computing" [3], in which the overall application is constructed or assembled

from many components, each performing its own specialised function.

The development and integration of application software is currently a labour and cost-

intensive proposition, particularly for distributed applications which handle large volumes

of structured data. Methodologies and tools are needed to master the complexity inherent

in heterogeneous distributed environments and application requirements.

Comandos is primarily targeted at the development and support of integrated distribut-

ed applications within a cell, which constitutes the basic organisational and administrative

component within an enterprise. A cell is composed of a set of cooperating workstations,

servers and processor pools connected through a high-speed local area network. The goal

is to present the distributed system as a coherent entity to its users despite the variety of

1

This paper was presented at the Esprit technical conference, Brussels, 1991.

2

email rodger@chorus.com

3

Esprit Project Nr 2071


