
OISIN: Operating System Support for Objects in a DistributedEnvironmentVinny Cahill, Andre KramerDistributed Systems Group,Department of Computer Science,Trinity College,University of Dublin,Dublin 2,Ireland.vjcahill@cs.tcd.ieJuly 23, 19921 IntroductionAs part of the Esprit-I COMANDOS project the distributed systems group in Trinity have designed andimplemented Oisin [2] [3], a native distributed operating system kernel supporting the object orientedstyle of programming. Oisin currently runs on both bare MicroVax II and NS32032 based workstations.Oisin provides transparent access to both local and remote objects which may be either recently createdor long-lived persistent objects (stored in the distributed storage system).Oisin provides jobs as the basic unit of processing in the system. A job consists of a set of activities(distributed threads of control) and a set of contexts (address spaces, one per node visited by the job). Allactivities of the job share the context of the job at any common node which they visit. Each job has itsown private set of contexts into which the objects it uses are mapped as required. Although contexts maynot be shared between jobs, objects may be shared between the contexts of di�erent jobs at the same node.In this short paper we summarise the experience which we have gained in the design of a native kernelto support object oriented programming. Section 2 outlines the requirements on such a kernel, the mainproblems encountered and proposes clusters as a partial solution. Section 3 describes the use of clusters inOisin while section 4 describes the relationship between clusters and objects in some detail. Section 5 givesthe performance of the resulting system while section 6 provides some conclusions which are motivatingour current and future work.2 The Role of the Kernel in an Object Oriented System.The COMANDOS project is not intended to provide a single language system, hence one of the main goalsof Oisin is to support a range of languages running above and using the basic object management serviceswhich it provides. The kernel should not enforce the use of a two level object model at the language levelnor, more generally, dictate the granularity of objects. The kernel must support the use of a uniform objectmodel and the use of di�erent language level object models as well as the more traditional operating systemfunctionalities: multiple users, protection and sharing. Sharing is particularly important in Oisin, giventhe computational model outlined in section 1.Although there is not yet a large amount of experience with distributed applications running aboveOisin, experience with other object oriented systems, notably Smalltalk, suggests that object oriented



programs will involve very large numbers of relatively small objects. Moreover many objects will be short-lived and will be known only from a limited scope [5]. It appears obvious, when one considers the overheadsthat would be involved if the kernel had to manage such objects, that it is inappropriate for the kernel todeal with language level objects. Consider, for example, the sizes of kernel tables that might be requiredto locate such objects in the distributed system, the problems of virtual memory management for suchobjects and also the cost of object creation if the kernel had to be informed about every new object.For these reasons Oisin does not deal directly with objects, although it does know of their existence.The fundamental abstraction managed by Oisin is the cluster. A cluster is simply a group of objectswhich is managed as a unit by Oisin for purposes of location, storage and virtual memory management.Oisin knows that clusters contain named objects (it is responsible for the allocation of global names asrequired) but does not otherwise know the structure of objects. The object model is implemented on topof the cluster abstraction by the Oisin runtime layer [4]. A key point is that clusters are transparent to theapplication programmer who need only deal with objects.3 Use of Clusters.The inclusion of clusters as the basic unit managed by Oisin grew out of the realisation that it was notfeasible for an operating system kernel to deal with objects of the expected granularity. However, this isby no means the only motivation for the use of clusters.Groups of related objects e.g. a closed graph of objects which will be accessed together can be stored inthe same cluster [6]. Since clusters are the unit of virtual memory mapping, attempting to map one objectof the group will cause the entire cluster to be mapped, thereby minimising the number of object faults.When mapped, clusters consist of an integral number of virtual memory pages, providing a convenientunit for memory management purposes. Clusters can be implemented in a straightforward manner on topof a segmented virtual memory system such as that provided by Chorus [1].Many objects are expected to be short-lived and known only from a limited scope. They may never beknown outside of the cluster in which they were created and in particular never known to the kernel (forsuch objects it is also unnecessary to allocate a full global name).Clusters also provide a convenient scope in which to perform virtual memory garbage collection.Clusters are the basic unit of sharing between contexts and may be mapped at di�erent virtual addressesin di�erent contexts since they contain (almost) no position dependent information.Finally, clusters are the basic unit of protection in Oisin. All objects within the cluster have the sameprotection attributes. This illustrates the basic tradeo� involved in the use of clusters, namely that ofgranularity versus 
exibility. The kernel can be more performant if it can deal with large grained entitiesbut some of the 
exibility a�orded by the ability to manage objects individually is lost, e.g. it is notpossible to assign access rights to an individual object, independent of other objects, unless the object isin a cluster on its own.4 The Implementation of Clusters.Clusters are mapped as contiguous regions into virtual memory. All addressing within a cluster is inthe form of an o�set from the start of the cluster. Thus, as noted previously, a cluster may be mappedat di�erent virtual addresses in di�erent contexts. An exception to this is a special table, (know as theimplementation address map), residing in front of a cluster when mapped, which contains the virtualaddresses of implementation objects (class or code objects) which have instances residing in the clusterwhich are bound to the implementation. This table is not shared to allow implementation objects to bemapped at di�erent addresses in di�erent contexts.A cluster consists of a header and several regions used to store the di�erent parts of its objects.



Implementation MapObjectsInstance DataObject MapObject HeadersCluster Header � Base linefor o�setaddressing
Figure 1: Cluster StructureEach object in a cluster has a header, giving an o�set to the object's instance data as well as otherinformation about the object. All object headers reside within one region of the cluster while the object'sinstance data resides in another region.All invocations on an object indirect through the invoked object's header. This allows easy movementof an object's instance data during compaction or on dynamic object growth.Finally, there is a hash table which is used to locate an object's header given the object's global name,as well as another map, hashed on implementation object name, which is used to bind all instances of animplementation in the cluster to their implementation when an instance is �rst invoked.4.1 Object ReferencesAn object reference is 8 bytes long. There are two types of object reference. One type is used when referingto an object within the same cluster (intra-cluster reference), the other being used to refer to objects whichcurrently reside in other clusters (inter-cluster reference).If the reference is intra-cluster then it contains only the o�set of the referenced object's header formthe start of the cluster.Inter-cluster references contain the referenced object's global name (allocated by the kernel) as well asa hint for the cluster in which the object resides.The two types of reference are distinguished by a designated bit.4.2 The Invocation MechanismThe runtime maintains a set of registers which identify the object that an activity is currently executingin. These give the virtual addresses of the cluster in which the object resides, the object's header and theobject's instance data.These registers are changed on each invocation and return, as well as by the kernel on object or clustergrowth. If the reference used for an invocation is intra-cluster then an inline instruction sequence is used to



- ObjectHeader -- to codeInstanceDataIntra Ref. o�set o�set
Figure 2: Object Structurechange the latter two object registers and a jump is made into the invoked object's implementation (at thevirtual address given in the per cluster implementation address map mentioned previously) where methodselection is performed.If the reference is inter-cluster then a longer invocation path must be taken. The cluster in which theobject currently resides is located using the hint contained in the reference which is used to search a percontext cluster map.A cluster fault results if the cluster is not mapped in the context or the object does not in fact residein the hinted cluster. The kernel is called either to map the cluster containing the object or to perform aremote invocation on the target object.If the cluster is mapped, the cluster's object map is searched using the global name contained in thereference to obtain the o�set of the referenced object's header in the cluster. The activity's current clusterregister is updated to re
ect the fact that the activity is now executing in a di�erent cluster. The targetobject is then invoked as in the intra-cluster case.Inter-cluster invocation returns are trapped to allow location of the invoking object (cluster) which mayhave been unmapped.Any references passed as arguments in an inter-cluster invocation are converted to inter-cluster if theywere intra-cluster (see below).4.3 Mature and Immature ObjectsWhen an object is �rst created it is not visible outside of its initial cluster. The object does not have aglobal name or any map entries, and may be garbage collected using knowledge available entirely withinthe object's cluster.Such an object is said to be immature. However, if a reference to an immature object is passed in aninter-cluster invocation then the runtime converts that reference to the inter-cluster form. This results inthe referenced object becoming mature. It is assigned a global name (by the kernel), given map entriesand may now be potentially known from anywhere in the distributed system.4.4 Clustering Policy and Migration.Clustering policy is extremely important in maximising the performance of the system. Currently theruntime implements a default policy of creating new (immature) objects in the cluster of the current objectat the time of creation. It is also possible for an application programmer to specify the cluster in which



new objects are to be created. Application programmers (or even system administrators) can explicitly(re)cluster objects by means of inter-cluster migration primitives which are provided. Finally, automaticgrouping of objects into clusters based on static or dynamic analysis of inter-cluster reference patterns isan area for future investigation.5 System performance.In this section we brie
y outline the current performance of the Oisin runtime:The performance of the invocation mechanism has proved acceptable. A null intra-cluster invocationwas timed at 26 �s on the NS32000 and 31 �s on the MicroVAX II. This can best be compared with a nullC function call which costs 12 �s on the NS32000 and 16 �s on the MicroVAX.Inter cluster invocations cost about 10 times as much as an intra-cluster invocation, largely due tohashing and activity synchronization overheads.Object creations are hard to time as creating many objects results in the cluster of creation eitherexpanding or being garbage collected. A �gure of 950 �s was obtained for the MicroVAX, using a run of1000 creations, each object being of size 32 bytes, which caused �ve cluster expansions.6 Conclusions, Current and Future Work.Clusters appear to be a useful way of minimising the kernel overheads associated with managing largenumbers of relatively small objects. The main disadvantage of the mechanism is the loss of 
exibility inmanaging individual objects.While performance is acceptable, we are currently investigating the use of virtual addresses in localobject references both to improve performance and to allow us to support conventional languages withgreater ease. Such support will obviously have major consequences for object mobility within a contextand for sharing between contexts.References[1] Vadim Abrossimov, Marc Rozier, and Marc Shapiro. Generic Virtual Memory Management for OperatingSystem Kernels. In Proceeding of the 12th ACM Symposium on Operating Systems Principles, pages 123{136.Association for Computing Machinery, December 1989. ACM Operating Systems Review, 23(5), Special Issue.[2] Vincent Cahill. OISIN, The Design of a Distributed Object-Oriented Kernel for COMANDOS. Master's thesis,Department of Computer Science, Trinity College Dublin., March 1988.[3] J. Alves Marques et al. Implementing the COMANDOS Architecture. In Proceedings of the 5th ESPRITConference, pages 1140{1157, Brussels, November 1988.[4] Andre Kramer. The Design and Implementation of the OISIN Runtime. Master's thesis, Department ofComputer Science, Trinity College Dublin., September 1989.[5] G. Krasner. Smalltalk-80 : Bits of History, Words of Advice. Addison-Wesley, 1983.[6] James W. Stamos. Static grouping of small objects to enhance performance of a paged virtual memory. ACMTransactions on Computer Systems, 2(2), May 1984.


