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WEAK*-CONTINUITY OF JORDAN TRIPLE PRODUCTS
AND ITS APPLICATIONS

T. BARTON and RICHARD M. TIMONEY

S. Dineen [3] has shown that if E is a JB*-triple, then so is its bidual
E**. We observe here that the triple product on E** is in fact separately w*-
continuous (Theorem 1.4). This result is used to show that if E is a JB*-
triple and a dual Banach space, then E has a unique predual and the triple
product an E is separately w*-continuous (Theorem 2.1). From this it will
follow that the closed ideals of any JB*-triple are precisely its M-ideals,
(Theorem 3.2), and that every JB*-triple has a faithful family of triple
factor representations (Theorem 3.6).

We refer to Kaup [12], [13] for the definition and general theory of JB*-
triples; however, we prefer to write the triple product as {xyz} rather than
{xy*z}. Explicit use is made of the following facts. {-,-,"} is jointly
continuous, symmetric bilinear in the outer two variables and conjugate
linear in the middle variable, and for every xe E the linear operator
y— (xOx)(y)={xxy} is a hermitian operator on E. Further,
[{xxx}| = [|x||® for every xe E, and [|[x(dx| = || x|>.

Historically, JB*-triples arose in the study of bounded symmetric
domains in Banach spaces and it has been shown by Kaup [12] that every
such domain is biholomorphic to the unit ball of a JB*-triple. Also, the
range of a contractive projection on a C*-algebra, though not usually a C*-
algebra, is a JB*-triple for a suitable triple product (see [5], [19], [13], or
Lemma 1.1 below). Every C*-algebra is a JB*-triple in the triple product
{a,bc} = L(ab*c +cb*a). Some of our results may be viewed as the JB*-
triple analogues of similar known results relating C*-algebras to von
Neumann algebras.

We refer to Lindenstrauss and Tzafriri [15] for any Banach space facts
and notation used. In particular, B is the open unit ball of the Banach
space E, a subspace is a closed linear submanifold, the weak topology on a
Banach space induced by a specific predual is denoted w*, and the symbol
= means isometrically isomorphic.
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1. On biduals of JB*-triples.

The proof of Dineen’s theorem is based on the ultrapower formulation
of the principle of local reflexivity (U.P.L.R.) (see Heinrich [9], whose
notation we also employ), which we state here for reference.

U.P.L.R. For each Banach space E there is an ultrafilter #, linear maps
J: E¥* > Egand Q: E5 — E**, and a projection P on E4 such that
(i) J is an isometric embedding and J £ 1s the canonical embedding of E
into E4,
(i) O((x;)g)=w*-limy x; and Q has norm 1,
(iii) QJ =idg.. and QJl is the canonical embedding of E into E**,
(iv) P=JQ is a norm 1 projection of E4 onto J (E**).
Dineen’s extension of the triple product on E to E** is given by

{xyz}pe = Q(({xiyizi}E)Wl)
= Q({J(x)’J(y)sJ(z)}Eq) >

where (x;)g=J(x), (:)g=J (¥), and (z;)g=J (2).
The construction used to obtain U.P.L.R. from the principle of local
reflexivity is required in the proof of Theorem 1.4, so we sketch it here. Let

I= {l‘—'-" (M;,N,-,s,-) I M"g'_-.-E**
and N;& E* are finite dimensional subspaces, ¢;>0}

and direct I by i>jif M;2M;, N;2N,, ¢;<¢;. Let % be an ultrafilter on I
dominating 1, that is, % contains all sets of the form {i e I| i>j},j e I.

By the principle of local reflexivity, for each i € I there is a linear map
T;: M; —» E which is a (1+¢;)-isomorphism onto its image and satisfies
Tipm,ng=idpy,ng and <Tix, f>=(x, f) for all x e M; and fe N, For
x € E** define J(x) = (x;)q, Where

X, = {Ti(X) ifxe M,'
! 0 otherwise .

The properties (i)—(iv) follow readily from the properties of (T;); and the
definitions. ,

The key to Theorem 1.4 is the observation that any ultrafilter
appropriately refining the one defined above can be used to construct maps
J, P, and Q satisfying (i)—(iv). We shall return to this point after two
preliminary results.
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LemMa 1.1 Let E be a JB*-triple and P a contractive (i.e., norm 1)
projection on E with V=P (E). Then

(i) VisaJB*-triple with triple product {abc}, = P{abc} for alla,b,c € V.

Further, ifa,b € V and x € E, then
(i) P{axb} = P{aP(x)b} .

Proor. This result is proven for J*-algebras by Friedman and Russo [5],
[6]. For JB*-triples (i) is found in Kaup [13] and is also essentially
contained in Stach6 [19]. For a=b, (ii) is contained in the proof of Kaup
[13, Theorem], and (ii) itself follows by polarization.

LemMmaA 1.2. Let f: E** — E** be a bounded linear or conjugate linear
function which satisfies the following condition.

(*) If (x,)y is a bounded net in E converging w* to x € E**, then f (x) is a
w*-accumulation point of (f (x,)) -

Then fis w*-w* continuous.

Proor. It is easy to check that the hypothesis implies that w*-lim, f(x,)
=f(x), whenever (x,), is a bounded net in E converging w* to x € E**.

To complete the proof we need only show that for every x* € E* the map
g(x)=<{x*, f (x)> (or {x*, f(x)))is w*-continuous. Since g € E*** by the
Krein—Smulian Theorem it is w*-continuous iff g(x,) — 0 whenever (x,),
is a net in Bg.. converging w* to 0€ E**, Let (x,) , be such a net, and let N
be any closed neighborhood of 0 in C. Let & be the w*-neighborhood base
at 0 e E** directed by reverse inclusion, and order &/ X # componentwise,
thatis, (&t;, B1)> (0o, Bo) if oty >atg and f; > B,. Since By is w*-dense in Bgue,
for every a € o and § € # we can choose y, g, € (x,+ ) N Bg. One easily
checks that y,, 5 — 0 w*, and so g(y,5) — 0 by the first part of the proof.
Thus there is (ag,B0) € o % B With g(y,5) € N for all («, B)> (a0, By). Fix
any o> oa. Since

— w1
Xqg = Wﬂ;ng(a,n) s

by the first part of the proof

= w*li .
g(x,) Wﬁegng()’(a,p))

Hence g(x,) € N since N is closed. Thus g(x,) — 0.
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We focus now on the “appropriately refining ultrafilter”” mentioned
earlier. Let o/ and 4 be two directed sets and let % , and % 4 be ultrafilters
dominating &/ and 4, respectively. Order &/ X # componentwise. Define
the filter base %, a % 4 to be the collection of sets of the form

ﬂ\eJB Ag*{B},

where Be %4 and Ag;e %, for all fe B. Let % be any ultrafilter
containing the filter generated by % ,a %,. Note that this definition is not
symmetric in &/ and 4, and that % dominates &/ X #. We shall say that %
mutually refines U, and % 4.

LemMma 1.3. Let o/, B, U 4, U g, and % be as above. Let K be any compact
Hausdorff space and (x4) S K. Then

limx = lim limx,_ ,.
@ (a,B) g U, @.8)

Proor. First recall that y = lim,,,d y, means {ae.o/|y,e N} e, for all
neighborhoods N of y, and that y exists and is unique since K is compact
and Hausdorff.

Let

x = lim limx
ag Ay P
and let N be any neighborhood of x. Then

Bs{ﬂe.@

and foreach f € B

limx g € N} EUg »
U o

Aﬂ = {aedl X(a,ﬁ)EN}e%d,

since N is a neighborhood of limy x4, 4. Since

ﬂUB Apx{B} € {(.f) € A X B | Xq,p € N}

€

and the left-hand set above is in %, o % 4 < %, the right-hand set is also in
£

THeoReM 1.4. Let E be a JB*-triple. Then E** is a JB*-triple whose triple
product extends that on E and is separately w*-continuous.
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Proor. LetI,%;,J;, Pr,and Q; be asin U.P.L.R. Then the triple product
on E** obtained in Dineen’s theorem is

(**) {xyz}ger = QulI 100,11 0), 1@}y, -
Let # be the w*-neighborhood base at 0 € E** directed by reverse
inclusion, let % 4 be an ultrafilter dominating 4, and let % be an ultrafilter
which mutually refines %; and % 4 (in that order). For each x € E** define
J(x)= (x(;, ))a» Where
M T;(x) ifxeM,;
“H =0 otherwise ’

where (T;); are as in the U.P.L.R. construction. Using this construction
and Dineen’s proof we obtain maps J, P, and Q satisfying (i)—(iv) of
U.P.L.R. and a triple product Q{J (x),J (), (2)}g, on E**. Since the triple
product of a JB*-triple is uniquely determined by the norm (Kaup [12]),
this triple product agrees with (**).

Fixa,b € E**and definef: E** — E**byf(x)={axb}gs. Note that fis
a bounded conjugate linear operator by norm continuity of the triple
product. Let (x;)g be a bounded net in E converging w* to x € E**. Let
X p=xp for alli e I. Note that

K, p)2) = W*;}im X, )
= w*-lim w*-lim X,
g @, @i,B)

= w¥-lim Xg
7

=x
by Lemma 1.3. Then
f(x) = {axb}ger = Q{Ja,Jx,Jb}g,
= Q{Ja,JQ((%.p))a): Ib}E,
= QP{Ja, P((%,))n). Jb}E,
= Q{Ja, (%; ))a,Jb}E,

= {@p)a> Fap)us Giplale,

= Q(({ai x5, bi}p)a)
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il

w*-lim w*-lim {a;, x;,b,}
Ug %

it

W*;;Em 01{J1(a),J; (xp),J1 (b)}Eq,
= w*-lim {axzb} g+«
L7
= wrli
w ‘W;m f(xﬁ) H

where we have used JQ=P, QP=Q, Lemma 1.1 (ii), Lemma 1.3, and the
fact that a; 5, (respectively b 45,) does not depend upon f. Thus f(x) is a
w*-accumulation point of (f (xg))g- Since any net in E** which is
w*-convergent to x has a subnet indexed by #, Lemma 1.2 implies f is
w* —w* continuous. The proof of w*-continuity in the other variables of
the triple product is furnished by the next lemma.

LEMMA 1.5. Let E be a JB*-triple and let E, be any predual of E for which
the map x — {axb} is o(E, E*)-continuous for all a,b € E. Then the maps
x — {abx} and x — {xab} are o (E, E,)-continuous for all a,b € E.

PRroOF. By polarization and symmetry in the outer variables it suffices to
show that x — D,(x)={aax}is o(E, E,)-continuous for all a € E. We first
show that D, is “locally” ¢ (E, E,)-continuous.

Fix any regular tripotent e € E and let Q.(x)={exe}. Then Q2 is the
projection onto the Pierce l-eigenspace belonging to e. Define U,
=exp (it D,)foranyt € R,andleté=U,(e). U,is anisometry of E,so U,isa
J*-homomorphism and € is also a regular tripotent (recall that by Kaup
and Upmeier [14], the regular tripotents are exactly the (real or complex)
extreme points of the unit ball). Thus

x = {eex} iffU,(x) = {€eU,(x)}

and so the image of U,Q? is Q%(E).
Denote A =Q2?(E). Ais a JB*-algebra which is a w*-closed subspace of E
since Q2 is a w*-continuous projection. Further,

***) (E%/A,)* = (4,)* = FEE) = 4,

so A is also a dual space. Hence A4 is a JBW*-algebra and so has, in
particular, a unique predual A, (Edwards [4]). Likewise B=Q2(E) has a
unique predual B,. Since U,QZ,:4 — B is a surjective isometry, it is
d(A,A,)-0(B,B,) continuous. By (***) the o(4,4,)-topology and the
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relative o (E, E, )-topology on A coincide, and similarly for B. Thus U,Q? is
o(E,E,)-o(E, E,) continuous for all t € R and all regular tripotents e.
Now,

iD,QZ = 2 exp (it DO,

= lim (U,02-Q?)
t~>0

is a limit of ¢(E,E,)-continuous operators, the convergence being in
operator norm. Thus D,0? is ¢(E,E,)-continuous, and so D,Q,=D,020,
1s, too.

Using the main identity for Jordan triple systems we obtain

D,Q.(x) = {aa{exe}}
= 2{{aae}xe} —{e{aax}e} .

Thus @D, is the difference of two o (E, E,,)-continuous operators and so is
itself 6 (E, E*)-continuous.

Finally, let f € E,. It remains to show that fDa is ¢ (E,E,)-continuous.
f attains its norm on some extreme point e of the unit ball of E, which is a
regular tripotent. Thus

Il = IKfe)l =1 edl < Izl < lifl,
and so f=/Q? by [7, Proposition 1]. Then
fD, = ngDa = ererDa

is a composition of o(E,E,)-continuous operators, and the lemma is
proven.

2. JBW*-triples.

Our goal in this section is to prove the JB*-triple analogue of a theorem
of Sakai for C*-algebras.

If E is a dual Banach space, then a Banach space F is a predual of E if
F*=E. F is the unique predual of E if every predual of E is isometrically
isomorphic to F, and if every surjective isometry of E is w*-w* continuous.
Equivalently, F is the unique predual of E if the canonical image of any
predual of E in E* coincides with the canonical image of F in E*.
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DEeFINITION, A JBW*-triple is a JB*-triple which is a dual space
possessing a predual with respect to which the triple product is separately
w*-continuous,

Recently, Horn [11] has shown that a JBW*-triple has a unique predual,
and that a JB*-triple with a unique predual has a separarely w*-continuous
triple product. We shall use Theorem 1.4 to conclude that a JB*-triple
which is dual Banach space is a JBW*-triple, and so obtain the following
result.

THEOREM 2.1. Let E be a JB*-triple which is a dual Banach space. Then E
has a unique predual E,, and the triple product on E is separately o (E, E,)-
continuous.

We begin with some definitions. Let E be a JB*-triple. A tripotent is a
non-zero element e € E with {eee}=e. Since llell =Il{eee}ll=lel3, every
tripotent has norm 1. In Kaup and Upmeier [14, Proposition 3.5] it is
shown that every complex extreme point of By is a (regular) tripotent. In
general, E may contain no tripotents, but if E is a dual space then it has
many due to the Krein—Milman theorem. Two tripotents e¢; and e, are
orthogonal if e;,[1e,=0=e,[e,.

The following lemma is almost wholly contained in Horn [11]. We offer
an elementary proof.

LEmMMA 2.2. Let E be a JBW*-triple and (e,), a family of pairwise
orthogonal tripotents in E. Then

(i) for every finite subset A of s/ and scalars |2)=1, a € A, we have
IS e q Aeeall =1.

(ii) Y 4c €, converges in the w*-topology to a tripotent.

PROOF.,

(i) Let & be the family of finite subsets of o/, andlet 4 € Zand 1,,a € 4,
with |4,/ =1 be chosen. It is easily verified that Y we 4 Aaq is @ tripotent,
and thus has norm 1.

(ii)) Let fe E*. By (i)

Sy X A

“lfl 2 su
12d=1 acAd

=Y Kfiedl VAeR.
o ae A
Thus, given £>0 there is an 4 € & with |{f,eg—ec)l <& for all B,C € #
with B N C 24. Hence, (e,)g is weakly (and also w*) Cauchy. Since B is
w*-compact, (e,)g converges w* to an element e € Bj.
It remains only to verify that e is a tripotent. Fix « € /. By Theorem 1.4
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{eee,} = w*-lim{ee e,} = {ee,e,} = w*-lim{e e,e,} = e, .
Ae® Ae®
Consequently, {eee,} =e, for all 4 € 4. Hence,
eee} = w*-lim{eee,} = w*-lime, = e .
feee} = whlim {ece,} = whlime,

We recall two further results from Horn [11].

LEMMA 2.3. Let E be a JBW*-triple and let E,, be a predual of E such that
the triple product in E is separately o (E, E)-continuous. Then fe E*\E,
iff there is an orthogonal family of tripotents (e,)y in E with f(} 4e,)

+ Zd f (ea)-

LEMMA 2.4. Let E be a JB*-triple which is dual Banach space. If E has a
unique predual, then the triple product in E is separately w*-continuous.

Finally, we summarize some of the results in Godefroy [8] relevant to
our purpose. In his paper, Godefroy studies the property of being the
unique predual of a dual space by means of a property he terms well-framed
(*“bien-encadre”).

LEMMA 2.5. Let E be a Banach space.

(i) If E is well-framed, then E is the unique predual of E*.

(i) Suppose that for each x € E** \ E there is a subspace F of E* which does
not contain a subspace isomorphic to 1, such that xlg ;- is not w*-
continuous. Then E is well-framed.

(i) If E is well-framed, then so is any subspace of E.

PROOF. (i) is part of Théoréme 15 of [8]. By [17],if y € Bps, then yl, has
a point of ¢ (F*, F)-continuity for each ¢(F*, F)-compact subset Lof F*
=E**/F 1 It follows that if M is a ¢ (E**, E*)-compact subset of E**, then
yly has a point of ¢(E**, E*)-continuity. Thus By is a “*-admissible”
subset of E* [8, Definition 13]. Now (ii) follows by Proposition 17 of [8].
Finally, (iii) is part of Théoréme 16 of [8].

ProOF OF THEOREM 2.1. Let E be a JB*-triple and a dual space. Let E,, be
any predual of E. By Theorem 1.4, E** is a JBW*-triple (with respect to the
w*-topology on E** induced by E*). Let fe E***\ E*. By Lemma 2.3
there is an orthogonal family of tripotents (e,), in E** with f(e)
*lim, . 4 f (e4), where the notation is that used in the proof of Lemma 2.2.

Let K be the closed unit ball of the norm closed span,
Span {e,e,| a € o#}. K is a bounded subset of E** and flg is not w*-
continuous.
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We claim that K contains no /,-sequences. Assuming this, then Lemma
2.5 implies in turn that E* is well-framed, E, is well-framed, and thus E  is
the unique predual of E. Applying Lemma 2.4 completes the proof.

To prove the claim we proceed as follows. Let A € # and let (4,),c4
satisfy max |4,/ =1. Choose ay € 4 with |4, |=1. Then

{eao: (% z laea}
A

le,, O eyl = lleg 12 = 1.

b

1= ligel =

cfpon
A

since

Also, since every element of the unit ball of I, (=C" with the max norm)
can be expressed as a convex combination of extreme points (i.e., points

with [A,l=...=I4,/=1), Lemma 2.2 (i) implies I}, e,/ <1.
We have shown that
| Y A, = maxli] VvAe®.
A aeA .

It follows that the closed linear span of any countable subset of (e,),, is
isometrically isomorphic to ¢,.

Suppose K contains an [;-sequence. Then there is a countable subset of
{e,e,|a € o} whose closed linear span F contains a subspace isomorphic to
l,. But F is isomorphic to

Ce®,, span{e,| e, € (e)y Yn} = Ce®,Co

IR

Co »

and ¢, contains no subspace isomorphic to /,. This contradiction concludes
the proof of the claim.

3. Ideals and factor representations of a JB*-triple.

The results in this section were motivated by the articles of Smith and
Ward [18] and Paya et al. [16], where the M-ideal structure in Banach
algebras and non-commutative JB*-algebras, respectively, was
investigated.

Throughout this section, the o (E**, E*)-closure of a set AcE will be
denoted by A4, and the unique predual of a JBW*-triple E will be written E,,.
The triple product in the JB*-triple E and in E** will be written without
distinguishing affixes where no confusion seems likely to occur.
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A contractive projection P on a Banach space E is an L-projection if
Ixll = IPxl +Ix—Pxll forallxeE,

and the image of an L-projection is called an L-summand of E. An M-ideal
of E is a subspace M of E such that M is an L-summand in E*. A
contractive projection P on E is an M-projection if

Ixll = max (IPxll,Ix—Pxll) forallxeE,

and the image of an M-projection is called an M-summand. We make
explicit use of the following facts. If T'is a hermitian operator on E and M is
an M-ideal in E, then T(M)E M (Paya et. al. [16]). An M-projection on a
dual space is the adjoint of an L-projection (Cunningham et. al. [2]). Also,
a straightforward verification shows that an M-projection is a hermitian
operator. We refer to Alfsen and Effros [1] and Hirsberg [10] for further
background on M-ideals.

A closed ideal in a JB*-triple E is a complex subspace F satisfying {xyF}
€F and {xFy}SF for all x,y € E. Observe that by polarization it is
enough to take x=y in this definition. We shall make frequent use of the
following result.

LemMA 3.1. (Horn [11]). Let E be a JBW*-triple and JE E a w*-closed
ideal. Then J is an M-summand of E.

THEOREM 3.2. The closed ideals in a JB*-triple E are precisely the M-
ideals of E.

PRrOOF, Let M be an M-ideal in E. Since x[J x is a hermitian operator,
{xxM}E M for every x € E.

M=M"!"!jsan M-summand in E**, so there is an M-projection P: E**
— M.Fixx € Eanda € M. Write {xax} =y +z, wherey € M and P(z)=0.
Using Kaup [12, Proposition 5.5] and the fact that P is hermitian, we
obtain

y = P{xax} = 2{P(x)ax}—{xax}
= 2{P(x)ax}—(y+2).

Thus z=2{P(x)ax} —2y € M, since {P(x)ax} € M by the first part of the
proof (and polarization). Consequently z=0. Hence {xax} e M NE=M,

so M is an ideal in E.
Conversely, let J be a closed ideal in E. Then J is a w*-closed ideal in

E** By Lemma 3.1, J is an M-summand of E**. Let P: E** - J be an
M-projection. P is the adjoint of an L-projection Q:E* — F, where
E*=J' @, F. Thus J is an M-ideal.
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REeMARK. If E is a C*-algebra, it follows immediately from Theorem 3.2,
[16], and [18] that the closed two-sided ideals (with respect to the
associative product), the closed Jordan ideals (with respect to the Jordan
product a°b =4(ab + ba)), and the closed JB*-triple ideals (with respect to
the triple product {abc} =4(ab*c +cb*a)) all agree. If E is a JB*-algebra,
then the closed Jordan ideals concide with the closed ideals with respect to
the triple product {abc} = (ab*)c — (ca)b* + (b*c)a.

DeriNiTION (Horn [11]). A JBW*-triple E is a triple factor if it is
irreducible, i.e., not isometric to an [ -sum of JB*-triples.

In [11] it is also shown that E is a triple factor iff it has no proper w*-
closed ideals.

The next series of results will be used to explore triple factor
representations of a JB*-triple E, i.e., linear homomorphisms preserving the
triple product which take E onto a w*-dense subset of a triple factor.

LEmMA 3.3. Let E be a JB*-triple and let F be a subspace of E* such that
D}(F)SF and Q¥(F)EF for all x € E, where D, (y)={xxy} and Q.(y)
= {xyx}. Then F* is a w*-closed ideal in E**.

PrOOF. Let x € E. Since {(D}¥*(y), x*» = ({xxy}gs+,x*) forall y € E and
x* € E*, the w*-continuity of {xx'} g« yields D}* ={xx-}gs«+. Let f € F and
ae F'. Then

(Di*(a),f> = (a,D:(f)> =0,

since D¥(f) € F, and so {xxa} € F*. By polarization, {xya} € F* for all
x,y € E. Using w*-continuity and w*-closure of F! it follows that
{xya} € F* Vx € E**, y € E, and in turn that {xya} € F1 Vx,y e E**.
Thus {xyF'} € F* forall x,y € E**.

The demonstration of {xF'y} S F'Vx,y € E** is similar.

Prorosition 3.4. If E is a JBW*-triple, then E,, is an L-summand in E*.

Proor. Consider E, as a subspace of E*. Fix x € E. D, is w*-continuous
since E is a JBW*-triple, and so D¥(E,)S E,. Similarly Q*¥(E,)SE,. By
Lemma 3.3 and Lemma 3.1, E; is an M-summand in E**. As in the proof
of Theorem 3.2, it follows that E, is an L-summand in E*.

In the next two arguments it will be necessary to distinguish between an
element x € E and its canonical image in E**. j will denote the canonical
embedding of any Banach space into its bidual. We will also employ the
following notation. If xe E*, then M, is the largest M-ideal in E contained



WEAK*-CONTINUITY OF JORDAN TRIPLE PRODUCTS ... 189

in Ker (x). In case x is an extreme point of B« (written ext (E*)), then M, is
called a primitive M-ideal.

LEmMMA 3.5. Let E be a JB*-triple and x € ext (E*). Then M, is a w*-
closed primitive M-ideal in E**. .

Proor. Since E** is a JBW*-triple, Proposition 3.4 implies that E***
=j(E*)®, L. Let y € E*** and suppose | j(x)+Aiy| <1 for all |A| <1,
_ AeR.Lety=y,+y, withy, € j(E*) and y, € L. Then

i)+ Ay I+1Aly,l <1 vidl <1.

y1=0 since xeext(E*). But llj(x)l=1, so y,=0 also. Hence
Jj(x) € ext (E***) and M, is a primitive M-ideal.

Let M be the w*-closure of M), let me M, and let (m,) , = M, with
m,—mw*. Then for every y,ze E**,

{yzmy} — {yzm} w*.

Since M ;,, is an M-ideal, it is an ideal and so {yzm,} € M,V a € /. Thus
{yzm} € M. Similarly {ymz} € M, and so M is anideal and thus an M-ideal.
Since ker(j(x)) is w*-closed, MESker(j(x)) and hence M;,,=M by

maximality of M.

THEOREM 3.6. Every JB*-triple E has a faithful family of triple factor
representations.

PrOOF. Let x € ext (E*). By Lemma 3.5, Theorem 3.2, and Lemma 3.1,
M, is an M-summand in E**. Write E**=M,, @, G and let P: E**

jx) be an M-projection.

G isitself a JBW*-triple. Suppose it has a proper w*-closed ideal M. By
Lemma 3.1 there is a w*-closed ideal M, in G with G=M, ® , M,. By
Theorem 3.2, M, and M, are also M-ideals in E**. Since M; N M, ={0}
S M, and My, is a primitive M-ideal, either M; & M,y or M, & M,
(see [1, 3.1]). Both are impossible. Hence, G is a triple factor.

Define ¢, =(id-P)°j: E —» G. Both M,y and G are ideals in E**, so

—

M](x) if a, b,c € Mj(x)
{abc} e | G ifa,b,ce G.
{0} otherwise

Then ¢, {abc} ={¢,(a), p.(b), p.(c)}. P is hermitian and E** has an unique
predual, so P and hence id-P are w* —w* continuous by Paya et. al. [16].
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Jj(E)is w*-dense in E**, so ¢,(E)is w*-densein G. Thus ¢, is a triple factor
representation.
Because

ker (p,) = M, € ker(x) and N ker(x) = {0},

xeext (E*)
{@.|x € ext (E*)} is a faithful family.

This work was begun during a visit by the second author to Memphis
State University and much of the work was done while the authors were
visiting, respectively, the University of California at Irvine and the
University of North Carolina at Chapel Hill. The authors would like to
thank all of these institutions for their hospitality.
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