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Ab initio treatment of noncollinear spin systems within the atomic-sphere approximation
and beyond
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Max-Planck-Institut fu¨r Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 21 December 1999; revised manuscript received 18 February 2000!

The properties of noncollinear magnets are often calculated within the framework of density-functional
theory in local-spin-density approximation with the additional use of the atomic-sphere approximation for the
spin directions. Thereby the intra-atomic noncollinearity is neglected for the calculation of the exchange-
correlation energy by taking into account only those components of the spin density which are parallel to spin
quantization axes~SQAs! defined for the whole atomic spheres. When the magnetic moment directions are
calculated in a self-consistent manner, e.g., for systems with intrinsic noncollinearity or when calculating the
response of the system to a weak external field with components perpendicular to the moment directions, the
SQAs are conventionally chosen to be parallel to the magnetic moments. We present both theoretical argu-
ments and test calculations showing that this choice of SQAs is not the best and may in certain situations lead
to wrong results. As a consequence of our arguments we can suggest a better choice of SQAs. Furthermore, a
version of the linear-muffin-tin-orbital method is presented where the atomic-sphere approximation for the spin
directions and the introduction of local SQAs are not required so that the intraatomic noncollinearity appears
already in the basis functions.
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I. ATOMIC-SPHERE APPROXIMATION
FOR THE SPIN DIRECTIONS

The investigation of noncollinear spin systems by t
electron theory has attracted considerable interest in the
years, for instance, the determination of the ground state
noncollinear spin systems, the calculations of the excha
interactions and of magnon spectra, finite-temperature m
netism, andab initio spin dynamics~for a review see Ref. 1!.
The calculational techniques encompass semiempirical ti
binding models2 with a Hubbard term in the Hamiltonian t
generate the spin polarization andab initio methods based on
the density-functional theory in local-spin-densi
approximation3 ~LSDA! like the Korringa-Kohn-Rostocke
method,4 the augmented-spherical-wave method,1,5 the full-
potential linearized-augmented-plane-wave method,6 and the
linear-muffin-tin-orbital method7–10 ~LMTO!.

In noncollinear spin systems the direction of the spin d
sity m(r ) varies from site to site. There are systems~Fe, e.g.!
wherem(r ) is strongly localized deep in the interior of th
atomic spheres and wherem(r ) is essentially parallel to the
average spin density in the sphere except for regions clos
the sphere boundary wherem(r ) is already small. Neverthe
less, the directions of the average spin density may be d
tically different for different spheres~interatomic noncol-
linearity!. We call such systems magnets with weak int
atomic noncollinearity. On the other hand, there are syst
with a more delocalized spin density where the intraatom
noncollinearity may be very important~e.g., U compounds!
and systems in between~presumably Ni, e.g.!.

Calculations for noncollinear spin systems are perform
on various levels of sophistication. The noncollinearity
related to a nondiagonal exchange-correlation potential
trix Vxc5dExc /dr, where r(r )5 1

2 (n(r )11m(r )s) is the
density matrix with the charge densityn(r ), the vector of
PRB 620163-1829/2000/62~9!/5601~8!/$15.00
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Pauli matricess, and Exc@r# is the exchange-correlatio
functional which in the LSDA may be written as

Exc5E n~r !exc„n~r !,um~r !u…d3r , ~1!

with the modulusum(r )u of the spin density. Since the eigen
values of the density matrix are@n(r )6um(r )u#/2, Eq.~1! is
equivalent to the more customary form using these eigen
ues as variables, e.g., Eq.~3.5! in Ref. 3. In all of the above
quoted ab initio methods~except for Ref. 6! the atomic-
sphere approximation~ASA! is applied wheren(r ), m(r ),
and hencer(r ) are spherically averaged in each atom
spherea beforeExc is approximated by

Exc5(
a

E
Va

n~r !exc„n~r !,um~r !u…d3r , ~2!

whereVa is the volume of the atomic spherea. ~We denote
this asASA for the structure.! Note that in this approximation
Vxc is still nondiagonal and hence there is both inter- a
intra-atomic noncollinearity. The various methods quot
above are distinguished by the way the intra-atomic nonc
linearity is accounted for inExc . In most methods it is ne-
glected by approximatingExc of Eq. ~2! further by theASA
for the spin direction. To do this, local spin quantization axe
~SQAs! described by unit vectorsea are defined for each
atomic sphere, andexc is approximated by taking into ac
count only the projectionsea•m(r ) of the spin density onto
these axes, i.e.,

Exc
ASA5(

a
E

Va

n~r !exc„n~r !,ea•m~r !…d3r . ~3!
5601 ©2000 The American Physical Society
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The projection formalism usingea•m(r ) is equivalent to re-
placing the eigenvalues ofr(r ) by its diagonal elements i
r(r ) is represented in the local spin coordinate system
fined by the SQAs.

As a result of the ASA, the exchange-correlation poten
matrix Vxc(r )5dExc /dr(r ) is diagonal when represented
the local spin coordinate systems withz axes parallel to the
ea , and the exchange-correlation fieldBxc defined via
Vxc(r )5V̄xc(r )12mBBxc(r )•s is parallel to the SQAs in
each atomic sphere.

In order to use Eq. 3, we need to specify how the SQ
should be chosen for a given input spin densitym. The con-
ventional choice is given by

ea5Ma /uMau, ~4!

with the magnetic moments

Ma5E
Va

m~r !d3r . ~5!

It is generally assumed that the ASA for the spin dire
tions works well for systems with strongly localizedm(r )
and hence for systems with weak intra-atomic noncolline
ity ~e.g., Fe!. The first objective of the present paper is
demonstrate that even in such systems the atomic-spher
proximation may be critical when calculating in a se
consistent manner the linear response of the spin system
small external magnetic fieldBext, i.e., when calculating the
linear susceptibilityx(q) as a function of the wave vectorq,
and that another choice of the SQAs is more appropri
This is demonstrated in Sec. II both by theoretical argume
and by test calculations using our recently developed LM
code for noncollinear spin systems which is based on
ASA for the spin directions~see, e.g., Refs. 7 and 10!.

In order to shed more light on the problems arising fro
the atomic-sphere approximation for the spin direction,
~3!, one has to develop methods which calculate
exchange-correlation energy from Eq.~2!. We will do this in
two steps. In the first step we have written an LMTO co
where total energy, effective potential, and the Hamilton
matrix elements are all calculated from Eq.~2!. Yet the mini-
mal basis set for the representation of the crystal wave fu
tions is still the conventional basis set of the LMTO meth
for noncollinear spin systems and thus by its construct
still depends on the choice of SQAs. It will be shown in S
III that the results of such a method~a similar code has bee
written for the augmented-spherical-wave method11! may in
special situations again depend critically on the choice of
SQAs. In a second step we therefore outline in Sec. IV
version of the LMTO method which takes into account t
intra-atomic noncollinearity in the construction of the ba
set in such a manner that the introduction of local SQAs
not required at all.

II. OPTIMUM CHOICE FOR THE SPIN-QUANTIZATION
AXES

A. Criterion for the optimum choice

In the following we distinguish between three differe
situations. In the first situation we refrain from the se
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consistent calculation of the SQAs according to Eq.~4! but
prescribe fixed SQAs. The density matrixr is calculated as
the self-consistent solution of the Kohn-Sham equation12

and thus minimizes the functional of total energy for giv
SQAs. Since the SQAs are fixed, the solution will in gene
not be consistent with Eq.~4!. Thus we call this calculation
schemeweakly self-consistent.

When using the ASA approximation for the spin dire
tions the exchange-correlation fieldsBxc are parallel to the
ea , and therefore the magnetic momentsMa obtained from
r(r ) are almost parallel to theea provided we deal with
strongly localized spin densitiesm(r ). Thus, this scheme is
often used as an approximate method of incorporating c
straints for the magnetic moment directions.13 ~To ensure
that the magnetic moments are completely parallel to theea ,
one had to minimize the density functional total energy s
ject to corresponding constraints.14! One possible example o
the application of this scheme is theab initio calculation of
spin-wave frequencies via the total energy9 or via the
torques10,15,16 of various frozen magnon configurations d
fined by prescribing the SQAs according to a spin spir
Since the directions of the prescribed axes and the resu
moments are almost parallel, they are often not clearly d
tinguished.

A second calculation scheme is necessary when we c
sider systems with intrinsic noncollinearity~e.g., due to com-
peting exchange interactions7! or systems for which the non
collinearity is generated by an inhomogeneous external fi
e.g., which has the form of a spiral in order to calculate
linear responsex(q) and from x(q) again the spin-wave
frequencies.15,16 In this situation the directions of the mag
netic moments and of the SQAs have to be determined s
consistently. This is typically done by using Eq.~4!. Note
that this equation gives the SQAs as a function of the s
density. Since the spin density through the Kohn-Sham eq
tions depends on the SQAs, both the density matrix and
SQAs have to be calculated self-consistently. This is ty
cally done simultaneously in the same iteration cycle. W
will refer to a calculation of this type asstrongly self-
consistent.

When using this calculation scheme, we can, e.g., s
with a ferromagnetic configuration, calculate by use of E
~3! the spin densitym(r ) which is noncollinear in the con
sidered systems, construct the new SQAs according to
~4!, and repeat this procedure until in self-consistency
directions ofMa and ea coincide. Thus, in a calculation o
this type, the directions of the magnetic moments and of
respective SQAs will be slightly different in the course of t
iteration cycle, but they will coincide in the converged resu

It must be noted, however, that there is no compell
reason why one should use Eq.~4! when using the ASA for
the spin direction, Eq.~3!. Clearly, Eq.~4! looks like a very
plausible choice. It is also the conventional choice. Yet th
is no proof that Eq.~4! is the optimum choice in some well
defined sense. We therefore want to find a criterion that
lows a comparison of different choices for the SQAs a
ultimately the construction of the optimum SQAs.

When using the ASA for the spin direction the total e
ergy depends both explicitly and implicitly@via r($ea%)# on
the chosen set$ea% of SQAs,EASA5EASA

„$ea%,r($ea%)…. As
a criterion for comparing different sets of SQAs we sugg
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that the total energy as calculated using the ASA for the s
directions@Exc given by Eq.~3!# should deviate as little a
possible from the true LSDA total energyELSDA that one
would get withExc given by Eq.~2!. Thereby, the optimum
choice for the SQAs is given by requiring that

d~EASA2ELSDA!

dea
50 ~6!

for all ea . BecauseELSDA does not contain theea , Eq. ~6!
reduces to the demand thatEASA be variational not only with
respect tor but also with respect to theea . Since minimi-
zation of the total energy is the guiding principle of densi
functional theory, this result is also aesthetically very ple
ing.

The quantitydEASA/dea is related10 to the torqueTa act-
ing on the magnetic moments of spherea via

Ta5
dE

dea
3ea , ~7!

and therefore Eq.~6! is fulfilled when choosing the SQAs in
such a way that the torques are zero when self-consiste
for the moment directions is obtained@see the Appendix for
a discussion on the interpretation of the torque defined
Eq. ~7!#. Assuming that the density matrixr exactly mini-
mizes the functionalEASA($ea%), we obtain

05
dE

dea
5

]E

]ea
1

dE

dr

]r

]ea
5

]E

]ea
~8!

because of the variational propertydE/dr50. @Equation~8!
is the well-known Hellmann-Feynman theorem.# It has been
shown in Ref. 10 that then]E/]ea may be written in the
form

]E

]ea
5Na5

1

2EVa

@Vxc↑~r !2Vxc↓~r !#m~r !d3r . ~9!

By the way, the derivation of Eq.~9! remains valid if in
the presence of an external fieldBext(r ) the Zeemann term

EZ@m#52mBE m~r !•Bext~r !d3r ~10!

is added to the total energy. This becomes obvious fr
noting thatEZ from Eq. ~10! does not explicitly depend on
the SQAs. Thus all contributions of an external field to t
torque ~7! are implicitly hidden in the spin densitym(r )
entering in Eq.~9!.

Self-consistency according to Eq.~6! thus is obtained by
calculating after each iteration step from the actual spin d
sity m(r ) the new set of SQAs for the next iteration st
from the equation

ea5Na /uNau. ~11!

This choice, Eq.~11! with Eq. ~9!, implies that the SQAs
again are calculated as weighted averages over the direc
of the spin density, as was the case for the conventio
choice ~4!, the only difference being that the weights a
chosen differently. Thereby, when working with strongly l
calized spin densitiesm(r ), and starting from the same inpu
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density, one would obtain very similiar SQAs and cons
quently very similiar directions for the output magnetic m
ments with either choice. This is no longer true, however
we consider the converged self-consistent results. These
be drastically different. This will be shown below by explic
calculations with our LMTO code with the ASA for the spi
directions, but can also be understood qualitatively: Reme
ber that angle differences between the directions of the in
and output magnetic moments are small, anyhow,
strongly localized spin densities, regardless which choice
the SQAs is adopted and even if the input directions are
from the self-consistent directions. To obtain se
consistency, input and output spin densities must coinc
i.e., the angle differences must vanish. Since the angle
ferences are small anyway, small changes of the ou
angles as induced by going from one definition of the SQ
to another may significantly alter the self-consistent soluti

In the specific case of calculating the susceptibilityx(q)
one can also think about the importance of the choice
SQAs in this way: Changing the SQAs by a small angleDq
essentially rotates the exchange-correlation field by t
angle. This changes the exchange-correlation field by
proximately^Bxc&Dq. Since we have to choose a small e
ternal field Bext!Bxc , in order to calculate thelinear re-
sponse, small changes in the SQAs can cause effects w
are of the same magnitude as the response to the ext
field.

It should be noted that in reality the situation is slight
more complicated as compared to Eq.~9! because due to the
use of an incomplete basis set the calculated density matrr
does not exactly minimize the energy functional. In this ca
incomplete-basis-set corrections must be introduced,10 yield-
ing dE/dea5Na1Na,IBSC. Hence,Na in Eq. ~11! should be
replaced by the sumNa1Na,IBSC. Because in most system
the Na,IBSC are very small, this is not a serious problem
practice.

We will refer to a calculation using Eq.~11! instead of the
usual equation~4! as strongly self-consistent with modifie
SQAs.

B. Test calculations

In our test calculations we considered bcc Fe with
ferromagnetic ground state magnetization parallel to thz
axis. We then applied a small transverse external field in
form of a spiral,

Bext
T 5BextS cos~q•T!

sin~q•T!

0
D , ~12!

where T represents a translation vector andq denotes the
spiral wave vector. We insertedmBBext5250mRy @whereas
mB^Bxc(r )& equals about 85 mRy for Fe#.

We then chose the SQAs according to

eT5S sinq cos~q•T!

sinq sin~q•T!

cosq
D ~13!
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and determined the magnetic momentsMT and the total en-
ergy for fixedeT in a weakly self-consistent calculation. W
then performed the calculation for various values ofq. For
each calculation we obtained a direction ofMT which devi-
ates fromeT by a small angleDq ~see Fig. 1!. Figure 2
represents for three different wave vectorsq the results for
the total energy and the deviationDq. It becomes obvious
thatDq is always very small; i.e., theMT are almost paralle
to theeT . For the calculation of the total energy in the pre
ence of the external field, the Zeeman termEZ from Eq.~10!
was added to the usual functional of the total energy.

The shape of the total energy curve can be understoo

FIG. 1. Geometry of our test calculation~see text!. For the sake
of clarity the anglesq andDq are strongly enlarged.

FIG. 2. The total energyE ~diamonds! and the angle deviation
Dq ~squares! as functions ofq ~see text! for bcc Fe at various
values of the spiral wave vectorq. For the meaning of the variou
other symbols on the total energy curve see text.
-

by

some simple considerations: IfBext were 0, the total energy
would be an even function ofq, i.e.,

E~q,Bext50!5E01
1

2
J~q!q21O~q4!. ~14!

When we switch on the magnetic field, the Zeeman term
added to the functional of the total energy. Assuming that
magnetic moment is parallel to the prescribed SQAs a
remains unchanged in modulus, the Zeeman term may
approximated asEZ'2BextuM usinq. Thus the Zeeman term
adds a linear term inq and shifts the minimum of tota
energy to some nonzero value ofq.

If we use the strongly self-consistent calculation sche
with the conventional choice of SQAs the calculation co
verges@as prescribed by Eq.~4!# to a state witheaiMa . This
corresponds toDq50. The respective solution„q,E(q)… is
marked by a plus symbol in Fig. 2. As can be seen from F
2, this solution does not minimize the total energy. The
spective angle is indeed too large by a factor of 2–3
compared to the angle that actually minimizesE(q). The
latter solution is reached by a strongly self-consistent ca
lation scheme if our choice, Eq.~11!, is employed; this result
is marked by the bold circle on the energy curve. Con
quently, the respective susceptibilitiesx(q) deduced from
the two calculation schemes differ by the same factor of 2

The crosses near the minima of the energy curve of Fig
have the following meaning: By using weakly self-consiste
calculations withqÞ0 but Bext50 we can easily obtain
J(q). Using the simple approximationEZ52MBextq, we
may write E(q)5E02MBextq1 1

2 J(q)q2, resulting in a
minimum at q5MBext/J(q) with Emin5E0
2(MBext)

2/@2J(q)#. Thus by using results from calculation
with Bext50, we can predict the location of the minimum o
total energy whenBext is switched on. These predicte
minima are marked by crosses in Fig. 2. The fact that th
correspond well to the actual minima indicates that the c
for the evaluation of the Zeeman energy is correct. It is p
haps interesting to note that the valueJ(q) is closely related
to the frequency of a magnon as calculated in a frozen m
non scheme.9

Figure 3 shows the same results for the case of Ni,
which the spin densitym(r ) is less localized than in Fe
Again, the angleq for which Dq is zero differs considerably
from the angle for which the energy is minimum. In contra
to Fe, here the predicted minimum—again marked by
plus symbol—is quite different from the actual minimum

FIG. 3. As Fig. 2, but for fcc Ni.
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PRB 62 5605AB INITIO TREATMENT OF NONCOLLINEAR SPIN . . .
E(q). Since the magnetic moment and therefore
exchange-correlation field which is parallel to the SQA a
much smaller for Ni than for Fe, the SQA has a mu
smaller influence on the resulting direction of the magne
momentMa as is evidenced by the large values ofDq in
Fig. 3. Thus the SQA cannot be used as an approxim
constraint for the direction of the magnetic moment in t
case, and the model used to predict the minimum posi
breaks down.

C. Summary

We have thus demonstrated that the conventional ch
of SQAs does not always lead to the minimum of the to
energy. In contrast to this, our choice of SQAs by its ve
construction guarantees that the minimum of the total ene
is reached. When one calculates the self-consistent resp
to a small external field, i.e., the susceptibilityx(q), the two
calculation schemes lead to significantly different resu
demonstrating that the proper choice of SQAs is essentia
least for this problem.

The preceding discussion should in principle be ap
cable to any self-consistent calculation of noncollinear s
systems involving the ASA for the spin directions~3!. Yet
there may well be problems for which the results do n
depend strongly on the choice of the SQAs. The differen
between the results for the two different choices of the SQ
should be much less important when considering syst
with strong intrinsic noncollinearity, e.g., due to competi
exchange interactions.7 In these systems the errors associa
with the use of the ASA for the spin directions depend on
ratio DBxc /Bxc where DBxc is the ASA error for Bxc ,
whereas for the calculation ofx(q) the errors depend on th
much larger ratioDBxc /Bext as discussed above.

Finally, there are situations for which the choice of t
SQAs is dictated by the symmetry of the problem. In th
case the choices~4! and~11! coincide. A prominent example
is spin spirals according to Eq.~13! with q5p/2 as studied,
e.g., in Ref. 1 and references therein.

III. CALCULATIONS BEYOND THE ASA BUT WITH
BASIS FUNCTIONS DEPENDING ON THE SQAS

In the preceding Sec. II we have discussed problems a
ing from the application of the ASA for the spin directio
which are related to the choice of the SQAs. The natu
consequence is to develop methods for which the choic
the SQAs is less relevant or for which the introduction
SQAs is not required at all.

In a first step we have written an LMTO code15,17 where
we refrain from the ASA for the spin direction by calculatin
Exc from Eq. ~2!. Wanting to construct basis functions th
are as similar as possible to the conventional ones, we
ertheless introduce in this code local SQAsea . The
exchange-correlation matrix, which now also contains o
diagonal elements, is split into two parts, i.e.,Vxc(r )
5Vxc

i (r )1Vxc
' (r ), whereVxc

i contains the diagonal andVxc
'

contains the off-diagonal elements with respect to the co
dinate systems withz axes parallel to theea . The basis func-
tions for the representation of the crystal wave functions t
are constructed from the atomic functionsf and ḟ of the
e
e

c

te

n
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nse

,
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-
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t
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s
s

d
e
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l
of
f

v-
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LMTO method18,19which are calculated from the spherical
averaged effective Hamiltonian in each atomic sphere wh
the componentsVxc

' are neglected. With the so-obtained b
sis functions the Hamiltonian matrix elements are calcula
with the full Vxc(r ). Thus the errors arising from the ap
proximation, Eq.~3!, for the calculation of the exchange
correlation potential are avoided. It is of course artificial
split the exchange-correlation matrix into two parts. This a
proach was dictated by our wish to obtain basis functio
constructed in a way that is as close as possible to the
ventional LMTO basis functions for noncollinear magne
Since the splitVxc5Vxc

i 1Vxc
' depends on the choice of th

SQAs, so will the basis set obtained in this way.
It will be shown in this section that numerical errors ari

because this set of basis functions is not complete so tha
results depend on the choice of the SQAs used for their c
struction. To demonstrate this we perform the following te
calculation. We start with the ferromagnetic ground state
bcc Fe with magnetization parallel to thez direction. Then
we assign fixed SQAs according to Eq.~13! to the atomic
spheres withq5(2p/a)(0.25,0,0) andq5100 mrad. In a
first weakly self-consistent calculation we determine the
sulting magnetic momentsMT by our LMTO method based
on the ASA for the spin directions7,10 by use of Eqs.~3! and
~4!. The resultingMT are almost parallel to the SQAseT ;
i.e., we find a frozen magnon configuration with an amp
tude of 98.9 mrad. The second calculation is performed w
our LMTO method based on the true LSDA according to E
~2! but with basis functions which depend on the SQAs,
explained above. If the set of basis functions was compl
then the ferromagnetic ground state should be preserved
dependent of the choice of the SQAs because in the sec
calculation the SQAs enter only into the construction of t
basis functions. However, it turns out that the resulting m
netic moments are canted by 67 mrad with respect to thz
axis, an effect which is totally due to the incompleteness
the basis set. A very similar result~86 mrad! was obtained20

by a totally analogous test calculation with the augment
spherical-wave method based on the true LSDA and ag
with basis functions which depend on the choice of t
SQAs.

The dependence of the basis functions on the choice
the SQAs again may have a considerable influence on
determination of the linear response to an external fie
whereas for systems with strong intrinsic noncollinearity
should not constitute a serious problem.

IV. MODIFIED VERSION OF THE LMTO METHOD
FOR NONCOLLINEAR SPIN SYSTEMS

We describe a version of the LMTO method which do
not use the ASA for the spin direction and which does n
require local SQAs at all. In contrast to the code described
Sec. III, the basis functions now are constructed from ato
functions which correspond to the spherically averaged
otherwise complete nondiagonal effective Hamiltonian
each atomic sphere; i.e., these atomic functions take
account from the very beginning the intra-atomic nonc
linearity and are therefore well adapted to the situation in
crystal.

The two remaining approximations are~a! the use of a
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5606 PRB 62O. GROTHEER, C. EDERER, AND M. FA¨ HNLE
finite set of basis functions and~b! the ASA approximation
for the structure, where for the calculation ofExc andVxc the
density matrixr(r ) is spherically averaged in each atom
sphere.

For the construction of the basis functions therefore o
that part of the intra-atomic noncollinearity is taken into a
count which survives this spherical averaging. However
should be noted that the output density matrix obtained a
each iteration step is not spherically symmetric. What is
glected in this type of calculation is the asphericity of t
input potential for the next iteration step originating from t
aspherical part of the output spin density matrix, but t
problem holds for all currently used computer codes for n
collinear spin systems~except for Ref. 6!. The general idea
of our method can of course also be used within the fram
work of other linear band structure methods.

To elucidate the difference between the former vers
and the present version of the LMTO method, we first d
scribe the former version based on the ASA for the s
direction where the basis functions are constructed v
much on the line introduced by Ku¨bler et al.5 for the
augmented-spherical-wave method, consisting basically
the following three steps.

~i! Local spin coordinate systems for all spheresa with z
parallel to the directionea of the local spin quantization axe
are introduced. For these systems the respective pote
matrix Vxc

ASA5dExc
ASA/dr is diagonal. Within each atomic

sphere the atomic functions

ufa lms&5uzas&Ylm~r2Râ!fa ls~ ur2Rau! ~15!

are defined, where theuzas& with s51,2 are the spin eigen
functions of the Pauli operatorŝz for the localz axis, and
these eigenfunctions may be represented in a fixed exte
coordinate system. TheYlm are spherical harmonics, and th
fa ls are solutions of the radial Schro¨dinger equation in the
local coordinate system, for which the effective ASA
Hamiltonian is diagonal so that we can write

Ĥeff,ssfa ls5ea lsfa ls , ~16!

where ea ls is a given energy parameter. From the rad
functionsufa lms& the energy derivatives

uḟa lms&5
]

]ea ls
ufa lms& ~17!

are obtained which are orthogonal toufa lms&,

^fa lmsuḟa lms&50, ~18!

if ufa lms& is normalized for eachea ls .
~ii ! The LMTO-ASA basis functions are Bloch function

composed of linear-muffin-tin orbitals which are construc
by a generalization of the procedure introduced
Andersen18 for collinear systems. First, a basis set of env
lope spinors

uKR1T,lms~r !&5KR1T,l
0 ~ ur2R2Tu!Ylm~r2R2̂T!uzR1T,s&,

~19!

is introduced where the translation vectorT and the basis
vector R describe the position of the atomic sphere in t
y
-
it
er
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s
-

-

n
-
n
ry

of

tial

al

l

d
y
-

crystal @i.e., a5(R,T)# to which the functionKR1T,l
0 (ur

2R2Tu) is attached. ForKR1T,l
0 the spherical Hankel func

tion is used or appropriately defined and better localized
ear combinations of spherical Hankel functions when wo
ing with the tight-binding version of the LMTO method.19

The LMTOs then are defined via

uxR1T,lms&5f̃R1T,lms
H uzR1T,s&

2 (
R8,T8,l 8m8s8

f̃R81T8,l 8m8s8
T uzR81T8,s8&

3SR81T8,l 8m8s8,R1T,lms, ~20!

with

f̃R1T,lms
H 5~ARlsfR1T,ls1BRlsḟR1T,ls!Ylm , ~21!

f̃R1T,lms
T 5~DRlsfR1Tls1CRlsḟR1T,ls!Ylm , ~22!

SR81T8,l 8m8s8,R1T,lms

5^zR81T8,s8uzR1T,s&SR81T8,l 8m8,R1T,lm , ~23!

where SR81T8,l 8m8,R1T,lm is the matrix of structure
constants.18

The coefficientsA,B,D,C are uniquely determined in
such a way thatuxR1T,lms& matches continuously and wit
continuous derivative to the envelope spinorsuKR1T,lms& at
each atomic site.

~iii ! For the effective Hamiltonian of the whole crystal th
same ASA for the spin directions is used as for the constr
tion of the basis set. Then the Hamiltonian matrix eleme
are easily calculated, whereby only radial integrals of
type

^ḟR1TlsuḟR1Tls&5pRls ~24!

have to be evaluated numerically.
In the new version of the LMTO method we refrain fro

the ASA for the spin direction, and therefore there is no ne
for the introduction of local spin coordinate systems. Th
all functions may be represented in a fixed external coo
nate system. Again a set of envelope functions is c
structed,

uKR1T,lms~r !&5KR1T,l
0 ~ ur2R2Tu!Ylm~r2R2̂T!uzs&,

~25!

where theuzs& are the eigenfunctions (0
1) and (1

0) of ŝz in the
external system. The new type of LMTO is defined as

uxR1T,lms&5uf̃R1T,lms
H &

2 (
R8T8

(
l 8m8

uf̃R81T8,l 8m8s
T &SR81T8,l 8m8,R1T,lm .

~26!

Please note that only spinors with the same indexs occur in
Eq. ~26! @in contrast to Eq.~20!#. Furthermore, the functions
f̃H,T from Eq. ~20! are replaced by spinorsuf̃& defined via



it

o

m
o
t

in

-
low

re

ng

rs

r
fo

E
tio

ch
n
he
tia
r-

fo
ra

her
for
he
ase

by

an-
-

be
to

c-

ult.
lo-
the
the

n-

to
tal

ond,

ve
ues
l

to

is
the

ty
vi-

PRB 62 5607AB INITIO TREATMENT OF NONCOLLINEAR SPIN . . .
uf̃R1T,lms
H &5ARls

I ufR1T,lm
I &1BRls

I uḟR1T,lm
I &

1ARls
II ufR1T,lm

II &1BRls
II uḟR1T,lm

II &, ~27!

uf̃R1T,lms
T &5DRls

I ufR1T,lm
I &1CRls

I uḟR1T,lm
I &

1DRls
II ufR1T,lm

II &1CRls
II uḟR1T,lm

II &. ~28!

The spinorsufR1T,lm
I,II & are solutions of the Schro¨dinger equa-

tion

Ĥeff ufR1T,lm
I,II &5eRl ufR1T,lm

I,II &, ~29!

with the effective HamiltonianĤeff which is spherically av-
eraged in each atomic spherea but nondiagonal because
contains the nondiagonal partVxc5dExc /dr with Exc given
by Eq. ~2!.

As a result, the spinors exhibit neither pure spin-up n
pure spin-down character; i.e., both of their componentsf1

I,II

andf2
I,II are nonzero. Equation~29! thus represents a syste

of two coupled ordinary differential equations for the tw
components which has to be solved numerically subject
e.g., the following four boundary conditions:

~1! f1(r→0);r l 11.
~2! f2(r→0);r l 11.
~3! Normalization ofuf&.
~4! For the spinoruf I&: f2

I (r 5SR)50, whereSR denotes
the radius of the respective atomic sphere. For the sp
uf II&: f1

II(r 5SR)50.
Other choices for the boundary condition~4! are possible

and would lead to solutionsuf I,II& that are linear combina
tions of the ones used here. However, it will be shown be
that this would not change the basis set.

Because of the boundary condition~4!, the spinorsuf I&
and uf II& exhibit pure spin-up and spin-down character,
spectively, at the boundary of each atomic sphere~whereas
their radial derivatives are spinors with two nonvanishi
components at the sphere boundaries!. The spinors
uḟR1T,lm

I,II &5(]/]eRl)ufR1T,lm
I,II & are again orthogonal to

ufR1T,lm
I,II & because of the normalization of the latter spino

Finally, the coefficients AI,AII ,BI,BII ,D I,D II ,CI,CII are
uniquely obtained by demanding that the LMTOsuxR1T,lms&
match the envelope functionsuKR1T,lms& continuously and
with continuous derivatives at each sphere bounda
Thereby, if we had chosen different boundary conditions
the construction of the functionsf1 , f2 , ḟ1, and ḟ2, we
would be led to correspondingly modified coefficientsA, B,
C, andD, yielding unchanged functionsuf̃H,T& in Eqs.~27!
and~28! and consequently unchanged basis functions in
~26!. Thus we need not be much concerned with the ques
as to how to choose the boundary conditions best.

The numerical effort of our version should be not mu
larger than the effort of the former versions. On the o
hand, additional work is required for the calculation of t
atomic functions: Instead of solving the separate differen
equations~16! for the spinor components in the former ve
sion, the system of coupled equations~29! has to be solved
now. Furthermore, the calculation of the matrix elements
the crystal Hamiltonian will require the evaluation of seve
additional one-dimensional integrals, e.g.,^fR,lm

I ufR,lm
II &
r

o,

or

-

.

y.
r

q.
n

e

l

r
l

etc., but this does not constitute a problem. On the ot
hand, the main part of the computation time is required
the diagonalization of the Hamiltonian matrix which has t
same dimension in both versions, so that the relative incre
of computer time should be small.

ACKNOWLEDGMENTS

We are indebted to K. Kno¨pfle and L. M. Sandratskii for
performing the test calculation described in Sec. III also
their augmented-spherical-wave code.

APPENDIX: THE INTERPRETATION OF THE TORQUE

In Sec. II A we used the name torque to refer to the qu
tity Ta defined via Eq.~7!. This choice of name is not en
tirely correct and deserves some discussion.

From a physical point of view, the torque should rather
defined via the derivative of the total energy with respect
the direction of the magnetic moment, i.e.,

Ta85
dE

dMa
3Ma . ~A1!

If we deal with strongly localized magnetizations, the dire
tions of the SQAsea used in the definition~7! and of the
magnetic momentsMa used in Eq.~A1! are essentially par-
allel so that both definitions yield basically the same res
This motivated our choice of the name torque. For less
calized magnetizations the directions of the SQAs and of
magnetic moments must be clearly distinguished and
physical interpretation of the quantityTa is not clear.

There are, however, two reasons why we prefer the ‘‘u
physical’’ definition ~7! over Eq.~A1! in the context of this
paper: First, we were looking for a criterion on how
choose the SQAs. In this context, the derivatives of the to
energy with respect to these SQAs arose naturally. Sec
we can evaluate the torques as defined by Eq.~7! with rea-
sonable numerical effort, as is seen by Eq.~9! and the dis-
cussion in Ref. 10.

In contrast to the latter point, one would have to sol
several severe problems if one wanted to calculate torq
from the definition Eq.~A1!: First, the energy is a functiona
of the spin density so that Eq.~A1! becomes

Ta85E dE

dm~r !

]m~r !

]Ma
d3r . ~A2!

Here we must note that the spin densitym(r ) cannot be
easily calculated fromMa . Thus it is not clear how
]m(r )/]Ma should be evaluated. Second, when we try
evaluate the variational derivativedE/dm(r ), we note that in
density-functional theory the functional of the total energy
expressed as a sum over several terms. Of these,
exchange-correlation energyExc from, e.g., Eq. 3 and the
Zeeman energy from Eq.~10! @provided an external field
Bext(r ) is present# obviously depend on the spin densi
m(r ) and pose no special problem. Somewhat less ob
ously, also the kinetic energy, defined as

T@n~r !,m~r !#5 min
$c i %→n,m

(
i

K c iU2 \2

2m
DUc i L , ~A3!
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where the minimum is taken over all sets of one-parti
functions $c i% giving rise to the densitiesn,m, is a func-
tional of the spin density. It is not clear how the derivati
dT/dm(r ) can be evaluated.

Note that as a consequence of the local approximation
pure LSDA exchange correlation functional from Eq.~1!
does not depend on the relative orientation of the spin
two different positions. If no external field is present, th
the only energy term that actually depends on relative s
orientations is the kinetic energy. Thus in the nomenclat
of density-functional theory the kinetic energy and not t
exchange-correlation energy is responsible for the ene
n.
d

.

:

f-
e

he

at

in
e

gy

differences associated with different relative orientations
the spin directions, i.e., what is usually denoted as the ‘‘
change energy.’’

In using definition~7! we take the derivative with respec
to the SQA ea which has the role of a parameter in th
energy functional. Thus the Hellmann-Feynman theorem
applicable and easily yields Eq.~9! ~see also Ref. 10!. In
contrast, the magnetic momentMa used in definition~A1! is
a variational quantity of the energy functional. Thus t
Hellman-Feynman theorem cannot be applied to calcu
Ta8 .
o-
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