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The properties of noncollinear magnets are often calculated within the framework of density-functional
theory in local-spin-density approximation with the additional use of the atomic-sphere approximation for the
spin directions. Thereby the intra-atomic noncollinearity is neglected for the calculation of the exchange-
correlation energy by taking into account only those components of the spin density which are parallel to spin
guantization axe$SQAS defined for the whole atomic spheres. When the magnetic moment directions are
calculated in a self-consistent manner, e.g., for systems with intrinsic noncollinearity or when calculating the
response of the system to a weak external field with components perpendicular to the moment directions, the
SQAs are conventionally chosen to be parallel to the magnetic moments. We present both theoretical argu-
ments and test calculations showing that this choice of SQAs is not the best and may in certain situations lead
to wrong results. As a consequence of our arguments we can suggest a better choice of SQAs. Furthermore, a
version of the linear-muffin-tin-orbital method is presented where the atomic-sphere approximation for the spin
directions and the introduction of local SQAs are not required so that the intraatomic noncollinearity appears
already in the basis functions.

|. ATOMIC-SPHERE APPROXIMATION Pauli matriceso, and E,Jp] is the exchange-correlation
FOR THE SPIN DIRECTIONS functional which in the LSDA may be written as

The investigation of noncollinear spin systems by the
electron theory has attracted considerable interest in the past EXC:f n(r) e (n(r),Jm(r))dr, (1)
years, for instance, the determination of the ground states of
noncollinear spin systems, the calculations of the exchange. . . . .
interactions and of magnon spectra, finite-temperature ma vith the modulus#m_(r)| of t_he spin dfnsny. Since the eigen-
netism, andab initio spin dynamicgfor a review see Ref.)1 alu_es of the density matrix afe(r) * |m(r)_|]/2, Eq.(l)_ IS
The calculational techniques encompass semiempirical tighfﬁiqUIValent o the more customary form using these eigenval-
binding model$ with a Hubbard term in the Hamiltonian to ues as variables, e.g., E@.5 in Ref. 3. In all of the above

) o I guoted ab initio methods(except for Ref. § the atomic-

generate th_e spin p_olarlzatlon aad |n|ft|o methods pased on sphere approximatiofASA) is applied wheren(r), m(r),
the  density-functional ~ theory in local-spin-density o4 hencep(r) are spherically averaged in each atomic
approximatiori (LSDA) like the Korringa-Kohn-Rostocker spherea beforeE, . is approximated by
method’ the augmented-spherical-wave metfidahe full- X
potential linearized-augmented-plane-wave methadg the
Iinear—muffin.—tin-orbit'al metho 10(LI\/!TO).. . EXCZE f n(r)exc(n(r),|m(r)|)d3r, ©)

In noncollinear spin systems the direction of the spin den- a Ja,
sity m(r) varies from site to site. There are syste(s, e.g)
wherem(r) is strongly localized deep in the interior of the where(},, is the volume of the atomic sphece (We denote
atomic spheres and whene(r) is essentially parallel to the this asASA for the structurg Note that in this approximation
average spin density in the sphere except for regions close ¥, is still nondiagonal and hence there is both inter- and
the sphere boundary whene(r) is already small. Neverthe- intra-atomic noncollinearity. The various methods quoted
less, the directions of the average spin density may be dragbove are distinguished by the way the intra-atomic noncol-
tically different for different sphereginteratomic noncol- linearity is accounted for irE,;. In most methods it is ne-
linearity). We call such systems magnets with weak intra-glected by approximating,. of Eq. (2) further by theASA
atomic noncollinearity. On the other hand, there are systemfr the spin directionTo do this, local spin quantization axes
with a more delocalized spin density where the intraatomidSQA9 described by unit vectors, are defined for each
noncollinearity may be very importarié.g., U compounds atomic sphere, and,. is approximated by taking into ac-
and systems in betwedpresumably Ni, e.g. count only the projections,- m(r) of the spin density onto

Calculations for noncollinear spin systems are performedhese axes, i.e.,
on various levels of sophistication. The noncollinearity is
related to a nondiagonal exchange-correlation potential ma-
trix V.= 6E,c/8p, where p(r)=3(n(r)1+m(r)o) is the EASA= J N(r) e (n(r),e,-m(r))dr. 3
density matrix with the charge densityr), the vector of a JQ,
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The projection formalism using,- m(r) is equivalent to re- consistent calculation of the SQAs according to Ef.but
placing the eigenvalues gi(r) by its diagonal elements if prescribe fixed SQAs. The density matgxs calculated as
p(r) is represented in the local spin coordinate system dethe self-consistent solution of the Kohn-Sham equatfons
fined by the SQAs. and thus minimizes the functional of total energy for given
As aresult of the ASA, the exchange-correlation potentialsSQAs. Since the SQAs are fixed, the solution will in general

matrix V(1) = 6Ec/ p(r) is diagonal when represented in not be consistent with Eq4). Thus we call this calculation
the local spin coordinate systems wittaxes parallel to the  schemeweakly self-consistent

e,, and the exchange-correlation fiel,, defined via When using the ASA approximation for the spin direc-
V(1) =Vy(r) 1= ugB,(r)- o is parallel to the SQAs in tions the exchange-correlation fiel@s. are parallel to the
each atomic sphere. e,, and therefore the magnetic momeMs, obtained from

In order to use Eqg. 3, we need to specify how the SQA%(r) are almost parallel to the, provided we deal with
should be chosen for a given input spin densityThe con-  strongly localized spin densitign(r). Thus, this scheme is

ventional choice is given by often used as an approximate method of incorporating con-
straints for the magnetic moment directidfis(To ensure
€ =M./|M], (4)  that the magnetic moments are completely parallel taethe

one had to minimize the density functional total energy sub-
ject to corresponding constrairlty.One possible example of
the application of this scheme is tlag initio calculation of
Ma:f m(r)dqr. (5) spin-wave frequencies via the total enétggr via the
Q, torques®*>18 of various frozen magnon configurations de-
_ ~ fined by prescribing the SQAs according to a spin spiral.
It is generally assumed that the ASA for the spin direc-since the directions of the prescribed axes and the resulting
tions works well for systems with strongly localized(r)  moments are almost parallel, they are often not clearly dis-
and hence for systems with weak intra-atomic noncollineartinguished.
ity (e.g., Fe. The first objective of the present paper is to A second calculation scheme is necessary when we con-
demonstrate that even in such systems the atomic-sphere afjder systems with intrinsic noncollinearitg.g., due to com-
proximation may be critical when calculating in a self- peting exchange interactiohsr systems for which the non-
consistent manner the linear response of the spin system oncg|linearity is generated by an inhomogeneous external field,
small external magnetic fielBey, i.e., when calculating the e g. which has the form of a spiral in order to calculate the
linear SUSCGptibi"tW(Q) as a function of the wave vectqr linear response((q) and from X(q) again the Spin_wave
and that another choice of the SQAs is more appropriatefrequencies®*® In this situation the directions of the mag-
This is demonstrated in Sec. Il both by theoretical argumentgetic moments and of the SQAs have to be determined self-
and by test calculations using our recently developed LMTQ:onsistently. This is typically done by using E@). Note
code for noncollinear spin systems which is based on thénat this equation gives the SQAs as a function of the spin
ASA for the spin directiongsee, e.g., Refs. 7 and JLO density. Since the spin density through the Kohn-Sham equa-
In order to shed more light on the problems arising fromtions depends on the SQAs, both the density matrix and the
the atomic-sphere approximation for the spin direction, EqsQAs have to be calculated self-consistently. This is typi-
(3), one has to develop methods which calculate thesally done simultaneously in the same iteration cycle. We
exchange-correlation energy from Eg). We will do thisin il refer to a calculation of this type astrongly self-
two steps. In the first step we have written an LMTO codecgonsistent
where total energy, effective potential, and the Hamiltonian \when using this calculation scheme, we can, e.g., start
matrix elements are all calculated from E8). Yet the mini-  with a ferromagnetic configuration, calculate by use of Eq.
mal basis set for the representation of the crystal wave funcs) the spin densityn(r) which is noncollinear in the con-
tions is still the conventional basis set of the LMTO methOdsidered systems, construct the new SQAS according to Eq
for noncollinear spin systems and thus by its constructions), and repeat this procedure until in self-consistency the
still depends on the choice of SQAs. It will be shown in Sec.gjrections ofM, ande, coincide. Thus, in a calculation of
Il that the results of such a meth(ﬁd similar code has been this type, the directions of the magnetic moments and of the
written for the augmented-spherical-wave metipehay in  respective SQAs will be slightly different in the course of the
special situations again depend critically on the choice of theration cycle, but they will coincide in the converged result.
SQAs. In a second step we therefore outline in Sec. IV a |t must be noted, however, that there is no compelling
version of the LMTO method which takes into account thereason Why one should use Hq_) when using the ASA for
intra-atomic noncollinearity in the construction of the basisthe spin direction, Eq(3). Clearly, Eq.(4) looks like a very
set in such a manner that the introduction of local SQAs igjausible choice. It is also the conventional choice. Yet there

with the magnetic moments

not required at all. is no proof that Eq(4) is the optimum choice in some well-
defined sense. We therefore want to find a criterion that al-
Il. OPTIMUM CHOICE FOR THE SPIN-QUANTIZATION lows a comparison of different choices for the SQAs and
AXES ultimately the construction of the optimum SQAs.

When using the ASA for the spin direction the total en-
ergy depends both explicitly and implicitfvia p({e,})] on

In the following we distinguish between three different the chosen sdie,} of SQAs,EASA=EAA({e,},p({e,})). As
situations. In the first situation we refrain from the self- a criterion for comparing different sets of SQAs we suggest

A. Criterion for the optimum choice
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that the total energy as calculated using the ASA for the spimlensity, one would obtain very similiar SQAs and conse-
directions| E,. given by Eq.(3)] should deviate as little as quently very similiar directions for the output magnetic mo-
possible from the true LSDA total enerdy-SP” that one  ments with either choice. This is no longer true, however, if
would get withE,. given by Eq.(2). Thereby, the optimum we consider the converged self-consistent results. These can
choice for the SQAs is given by requiring that be drastically different. This will be shown below by explicit
calculations with our LMTO code with the ASA for the spin
directions, but can also be understood qualitatively: Remem-
ber that angle differences between the directions of the input
LSDA ) and output magnetic moments are small, anyhow, for
for all e, . Becauses dogAs not contain the,, Eq.(6)  girongly localized spin densities, regardless which choice for
reduces to the demand trat>” be variational not only with - the SQAs is adopted and even if the input directions are far
respect top but also with respect to the,. Since minimi-  fom  the  self-consistent directions. To obtain  self-
zation of the total energy is the guiding principle of density-consjstency, input and output spin densities must coincide;
functlonal theory, this result is also aesthetically very pleasi_e_, the angle differences must vanish. Since the angle dif-

d( EASA_ ELSDA) B
de B

(¢3

0 (6)

Ing. A o ferences are small anyway, small changes of the output
_ The quantitydE™"/de, is related” to the torqueT, act-  gngles as induced by going from one definition of the SQAs
ing on the magnetic moments of spherevia to another may significantly alter the self-consistent solution.
dE In the specific case of calculating the susceptibijg)
T,=— Xe,, (7)  one can also think about the importance of the choice of
de, SQAs in this way: Changing the SQAs by a small any&

and therefore Eq) is fulfilled when choosing the SQAs in essentially rotates the exchange-correlation field by that
such a way that the torques are zero when self-consisten@nd/e- This changes the exchange-correlation field by ap-
for the moment directions is obtaingsee the Appendix for Proximately(B,;)A§. Since we have to choose a small ex-

a discussion on the interpretation of the torque defined vidermnal field Be,<B,c, in order to calculate thdinear re-

Eq. (7)]. Assuming that the density matrjx exactly mini- ~ SPONSe, small changes_ln the SQAs can cause effects which

mizes the functionaE”SA({e,}), we obtain are of the same magnitude as the response to the external
o y

field.
dE J9E OE dp OE It should be noted that in reality the situation is slightly
=7 Pyt (8 more complicated as compared to E). because due to the
use of an incomplete basis set the calculated density matrix
because of the variational proped/ p= 0. [Equation(8) does not exactly minimize the energy functional. In this case
is the well-known Hellmann-Feynman theorérit.has been  incomplete-basis-set corrections must be introdd@efield-
shown in Ref. 10 that thedE/de, may be written in the ingdE/de,=N,+N, gsc. HenceN, in Eq. (11) should be
form replaced by the surN,+ N, gsc. Because in most systems
the N, gsc are very small, this is not a serious problem in
N =3f [Vye (1) =V, (r)]m(r)d3. (9  Practice.
“ 2o, xel ' We will refer to a calculation using Eq11) instead of the
usual equatior(4) as strongly self-consistent with modified
By the way, the derivation of Eq9) remains valid if in  SQAs
the presence of an external fidhd,(r) the Zeemann term

_+_ —_——
de, de, opde, de,

JE
de,

B. Test calculations

e . 3 . . -
Ezlm]= '“Bj m(r)- Bex(r)dr (10 In our test calculations we considered bcc Fe with the

ferromagnetic ground state magnetization parallel to zhe

is added to the total energy. This becomes obvious fromyis e then applied a small transverse external field in the
noting thatE; from Eq. (10) does not explicitly depend on 5. of a spiral

the SQAs. Thus all contributions of an external field to the
torque (7) are implicitly hidden in the spin densitgn(r)

entering in Eq.(9). coqq-T)
Self-consistency according to E@) thus is obtained by let: Bexl SINQ-T) |, (12
calculating after each iteration step from the actual spin den- 0

sity m(r) the new set of SQAs for the next iteration step

from the equation where T represents a translation vector agddenotes the

e,=N,/|N,|. (12) spiral wave vector. We insertedgB.,= 250uRy [whereas
1e(By(r)) equals about 85 mRy for e
This choice, Eq(11) with Eq. (9), implies that the SQAs ~ We then chose the SQAs according to
again are calculated as weighted averages over the directions

of the spin density, as was the case for the conventional sind cogq-T)
choice (4), the only difference being that the weights are N9 si T
chosen differently. Thereby, when working with strongly lo- er=| sindsin(q-T) (13

calized spin densities(r), and starting from the same input cost
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FIG. 1. Geometry of our test calculatigsee text For the sake & frad]

of clarity the anglesy andAJ are strongly enlarged.
FIG. 3. As Fig. 2, but for fcc Ni.

and determined the magnetic momekts and the total en-
ergy for fixeder in a weakly self-consistent calculation. We some simple considerations: B, were 0, the total energy
then performed the calculation for various valuesdofFor  would be an even function af, i.e.,
each calculation we obtained a directionMf which devi-
ates fromer by a small angleAd (see Fig. 1L Figure 2 1 ) 4
represents for three different wave vectgrshe results for E(9,Bex=0)=Eo+ EJ(QW +0O(97). (14)
the total energy and the deviatiaw). It becomes obvious
thatA ¢ is always very small; i.e., thil are almost parallel When we switch on the magnetic field, the Zeeman term is
to theer. For the calculation of the total energy in the pres-added to the functional of the total energy. Assuming that the
ence of the external field, the Zeeman tedEmfrom Eq.(10) magnetic moment is parallel to the prescribed SQAs and
was added to the usual functional of the total energy. remains unchanged in modulus, the Zeeman term may be
The shape of the total energy curve can be understood bypproximated a&,~ — B,,{M|sind. Thus the Zeeman term
adds a linear term iny and shifts the minimum of total
30 : : 3 energy to some nonzero value 0f
M If we use the strongly self-consistent calculation scheme
20 - 32 with the conventional choice of SQAs the calculation con-
verged as prescribed by E@4)] to a state witre,||M . This
corresponds tdA 9=0. The respective solutioQ,E(9)) is
marked by a plus symbol in Fig. 2. As can be seen from Fig.
2, this solution does not minimize the total energy. The re-
spective angle is indeed too large by a factor of 2—-3 as
-20 | 4-2 compared to the angle that actually minimiZeé9). The
latter solution is reached by a strongly self-consistent calcu-
lation scheme if our choice, E¢L1), is employed; this result
is marked by the bold circle on the energy curve. Conse-
quently, the respective susceptibilitiggq) deduced from
the two calculation schemes differ by the same factor of 2—3.
The crosses near the minima of the energy curve of Fig. 2
have the following meaning: By using weakly self-consistent
calculations withd#0 but B,,,=0 we can easily obtain
1 -1 J(q). Using the simple approximatioR,= —MBgJ, we
may write E(9)=Ey—MBg9+ 2J(q) 92, resulting in a
—20 ‘ = -2 minimum at 9=MBg/J(q) with Emin=Eo
—(MBgy)?/[2J3(0)]. Thus by using results from calculations
12 with B,,;=0, we can predict the location of the minimum of
total energy whenB,,; is switched on. These predicted
minima are marked by crosses in Fig. 2. The fact that they
correspond well to the actual minima indicates that the code
for the evaluation of the Zeeman energy is correct. It is per-
0 haps interesting to note that the vali(g) is closely related
to the frequency of a magnon as calculated in a frozen mag-
w N non schemé.
g‘imrad] 100 Figure 3 shows the same results for the case of Ni, for
which the spin densityn(r) is less localized than in Fe.
FIG. 2. The total energf (diamond$ and the angle deviation Again, the angle} for which A9 is zero differs considerably
A9 (squares as functions ofd (see text for bcc Fe at various from the angle for which the energy is minimum. In contrast
values of the spiral wave vector For the meaning of the various to Fe, here the predicted minimum—again marked by the
other symbols on the total energy curve see text. plus symbol—is quite different from the actual minimum of

10 F g=(02500) 11

ETpRy]
o
o
AV [mrad]

q=(0.500)

E[uRy]

AV [mrad]

E[uRy]
b=
AV [mrad]

q=(100)
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E(9). Since the magnetic moment and therefore the MTO method®°which are calculated from the spherically
exchange-correlation field which is parallel to the SQA areaveraged effective Hamiltonian in each atomic sphere where
much smaller for Ni than for Fe, the SQA has a muchthe component¥,. are neglected. With the so-obtained ba-
smaller influence on the resulting direction of the magneticsis functions the Hamiltonian matrix elements are calculated
momentM, as is evidenced by the large values®8 in  with the full V,4(r). Thus the errors arising from the ap-
Fig. 3. Thus the SQA cannot be used as an approximatgroximation, Eq.(3), for the calculation of the exchange-
constraint for the direction of the magnetic moment in thiscorrelation potential are avoided. It is of course artificial to
case, and the model used to predict the minimum positiosplit the exchange-correlation matrix into two parts. This ap-
breaks down. proach was dictated by our wish to obtain basis functions
constructed in a way that is as close as possible to the con-
C. Summary ventional LMTO basis functions for noncollinear magnets.

) _ Since the splitv,.= VU<C+ V. depends on the choice of the
We have thus demonstrated that the conventional chomgQAS so will the basis set obtained in this way.

of SQAs does not always lead to the minimum of the total 4 \yij| he shown in this section that numerical errors arise

energy. In contrast to this, our choice of SQAs by its Verypecayse this set of basis functions is not complete so that the
construction guarantees that the minimum of the total energyugits depend on the choice of the SQAs used for their con-
is reached. When one calculates the self-consistent responsgy,ction. To demonstrate this we perform the following test
to a small external field, i.e., the susceptibilifq), the two  cajcylation. We start with the ferromagnetic ground state for
calculation schemes lead to significantly different resultsy-. Fe with magnetization parallel to tizedirection. Then
demonstrating that the proper choice of SQAs is essential g} assign fixed SQAs according to E@.3) to the atomic
least for this problem. o _spheres withg=(27/a)(0.25,0,0) and¥=100 mrad. In a
The preceding discussion should in principle be appliist weakly self-consistent calculation we determine the re-
cable to any self-consistent calculation of noncollinear SPINsylting magnetic momentsl; by our LMTO method based
systems involving the ASA for the spin directiof®). Yet . the ASA for the spin directioA<® by use of Eqs(3) and
there may well be problems for which the results do NOt4) The resultingM ; are almost parallel to the SQAs ;
depend strongly on the choice of the SQAs. The differencepg e find a frozen magnon configuration with an ampli-
between the results for the two different choices of the SQAYye of 98.9 mrad. The second calculation is performed with

should be much less important when considering systemg,,- | \iTO method based on the true LSDA according to Eq.
with strong intrinsic noncollinearity, e.g., due to competing 2) but with basis functions which depend on the SQAs, as
exchange interactiorfsin these systems the errors associate xplained above. If the set of basis functions was complete,
with the use of the ASA for the spin directions depend on thgpen, the ferromagnetic ground state should be preserved in-
ratio AB,c/By; where A_BXC is the ASA error for B, dependent of the choice of the SQAs because in the second
whereas for the calculation af(q) the errors depend on the c4|cyjation the SQAs enter only into the construction of the
much larger raticAB,/Be, as discussed above. basis functions. However, it turns out that the resulting mag-

Finally, there are situations for which the choice of the atic moments are canted by 67 mrad with respect tazthe
SQAs is dictated by the symmetry of the problem. In thisayis an effect which is totally due to the incompleteness of

case the choice@) and(11) coincide. A prominent example e hasis set. A very similar res6 mrad was obtaine®
is spin spirals according to E(L3) with #= /2 as studied, py 5 totally analogous test calculation with the augmented-
e.g., in Ref. 1 and references therein. spherical-wave method based on the true LSDA and again
with basis functions which depend on the choice of the
ll. CALCULATIONS BEYOND THE ASA BUT WITH SQAs.
BASIS FUNCTIONS DEPENDING ON THE SQAS The dependence of the basis functions on the choice of
the SQAs again may have a considerable influence on the
In the preceding Sec. Il we have discussed problems aristetermination of the linear response to an external field,

ing from the application of the ASA for the spin direction whereas for systems with strong intrinsic noncollinearity it
which are related to the choice of the SQAs. The naturakhould not constitute a serious problem.

consequence is to develop methods for which the choice of

the SQAs is less relevant or for which the introduction of
SQAs is not required at all. IV. MODIFIED VERSION OF THE LMTO METHOD

In a first step we have written an LMTO cddé’ where FOR NONCOLLINEAR SPIN SYSTEMS

we refrain from the ASA for the spin direction by calculating  \ye describe a version of the LMTO method which does
Ec from Eq.(2). Wanting to construct basis functions that ¢ ;se the ASA for the spin direction and which does not

are as similar as possible to the conventional ones, we néYgqyire local SQAs at all. In contrast to the code described in
ertheless introduce in this code local SQA5. The  gec ||, the basis functions now are constructed from atomic
exchange-correlation matrix, which now also contains off-fnctions which correspond to the spherically averaged but
dia lonal elements, is spiit Info two parts, 1.8/x(1)  otherwise complete nondiagonal effective Hamiltonian in

=V3(r) + Vi(r), whereV,, contains the diagonal and,.  each atomic sphere; i.e., these atomic functions take into
contains the Oﬁ'diagonal elements with respect to the Cooraccount from the Very beginning the intra_atomic noncol_

dinate systems witk axes parallel to the, . The basis func- |inearity and are therefore well adapted to the situation in the
tions for the representation of the crystal wave functions thegrystal.

are constructed from the atomic functiogsand ¢ of the The two remaining approximations afe) the use of a
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finite set of basis functions an®) the ASA approximation crystal [i.e., «=(R,T)] to which the functioan+T’|(|r

for th_e structyre, where for t_he calculationl:‘a;f_C andV, the ~ —R-T]|) is attached. FOK%+T,I the spherical Hankel func-
density matrixp(r) is spherically averaged in each atomic tjon is used or appropriately defined and better localized lin-
sphere. ear combinations of spherical Hankel functions when work-

For the construction of the basis functions therefore onlying with the tight-binding version of the LMTO methdg.
that part of the intra-atomic noncollinearity is taken into ac-The LMTOs then are defined via

count which survives this spherical averaging. However, it
should be noted that the output density matrix obtained after
each iteration step is not spherically symmetric. What is ne-
glected in this type of calculation is the asphericity of the

|XR+T,|mo>::ﬁg+T,|ma| {RiT0)

~T
input potential for the next iteration step originating from the - E L ¢R'+T’,I’m’a’|§R'+T',0”>
aspherical part of the output spin density matrix, but this RETLmTe
problem holds for all currently used computer codes for non- X SR/ 4T/ 1'm’ o7 R+T.Imo (20)

collinear spin systemé&xcept for Ref. & The general idea
of our method can of course also be used within the frameWith
work of other linear band structure methods.

To elucidate the difference between the former version DR Time= (ARIe PR+ T 10T BRrig®R+T10) Yim,  (21)
and the present version of the LMTO method, we first de-
scribe the former version based on the ASA for the spin bt ime=DRrie®r: ot CRIoPR:T10) Yim, (22

direction where the basis functions are constructed very
much on the line introduced by Iler etal® for the
augmented-spherical-wave method, consisting basically o
the following three steps.

(i) Local spin coordinate systems for all spherewith z
parallel to the directior, of the local spin quantization axes Where Sgiit/ /py re7m IS the matrix of structure

are introduced. For these systems the respective potentigPnstants® _ S
matrix VA = 6E4>"/ 5p is diagonal. Within each atomic ~ The coefficientsA,B,D,C are uniquely determined in
sphere the atomic functions such a way thafxg.T,ms) Matches continuously and with
continuous derivative to the envelope spinfi& 1 mq) at
- R _ each atomic site.

) | @aimo) Igw)Ym,(r- Re) bato(I7=Rel) ) (_15) (iii ) For the effective Hamiltonian of the whole crystal the
are defined, where thg,,) with o= 1,2 are the spin eigen- same ASA for the spin directions is used as for the construc-
functions of the Pauli operatar, for the localz axis, and tion of the basis set. Then the Hamiltonian matrix elements
these eigenfunctions may be represented in a fixed externate easily calculated, whereby only radial integrals of the
coordinate system. The,,, are spherical harmonics, and the type
¢, are solutions of the radial Schtimger equation in the
Iocal_ CO(_)rdirjate_ system, for which the_ effective ASA- <§¢,R+T|U| ¢R+T|a>=pR|a (24)
Hamiltonian is diagonal so that we can write

R'+T',I’'m’ ¢’ ,R+T,Imo

=({rr 41,0/l {R+T,0) SRI 4T/ 1/m R+ Tim » (23

have to be evaluated numerically.
Heft oo Palo= EaloPalo (16) In the new version of the LMTO method we refrain from
_ ) . the ASA for the spin direction, and therefore there is no need
where €, is a given energy parameter. From the radialgo, the introduction of local spin coordinate systems. Thus

functions|¢m.) the energy derivatives all functions may be represented in a fixed external coordi-
J nate system. Again a set of envelope functions is con-
| ¢a|m0'> :m| ¢a|m0'> (17) StrUCted’
are obtained which are orthogonal , IKrsTime(N) =K (Ir=R=TNYim(r=R=T)[Z,),
g almao (2 )
5
<¢a|mcr| (.ﬁalma'> = O= (18)

where thd Z,,) are the eigenfunctiong) and €) of o, in the

if |}aime) IS Normalized for eack ., . external system. The new type of LMTO is defined as
(i) The LMTO-ASA basis functions are Bloch functions

composed of linear-muffin-tin orbitals which are constructe

by a generalization of the procedure introduced b

Anderser® for collinear systems. First, a basis set of enve- ~T

lope spinors - 2 2 |¢R’+T’,I’m’a->SR’+T’,I’m’,R+T,Im-

RITI Ilml
K Tima(N))=Kor (1= R=T)Yin(r =R=T)|Zr 1 7,0), (26)
(19 Please note that only spinors with the same ingleoccur in
is introduced where the translation vectbrand the basis Ed. (26) [in contrast to Eq(20)]. Furthermore, the functions
vector R describe the position of the atomic sphere in the¢T from Eq. (20) are replaced by spinotg) defined via

S'XR+T,Imo>: |?f>g+T,|ma>
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|pH Y=Ak | o! Y+ BL | & ) etc., but this does not constitute a problem. On the other
ReTimo RlgIPRETIm RloTTR+T.Im hand, the main part of the computation time is required for
+A'F'ug|¢g”‘|m>+Bg|0|¢,g+”m , (27 the diagonalization of the Hamiltonian matrix which has the

same dimension in both versions, so that the relative increase
of computer time should be small.

|¢-|£+T,Ima'>:DIR|0'|¢|R+T,|m>+C:?|a'|¢:?+T,|m>
+Dglu|¢g+T,|m>+C::le|u|¢g+T,|m . (28 ACKNOWLEDGMENTS

We are indebted to K. Kiafle and L. M. Sandratskii for
performing the test calculation described in Sec. Il also by
their augmented-spherical-wave code.

The spinorg ¢, 1 ) are solutions of the Schdinger equa-
tion

|:|eff|¢|F’elJer,|m>:6R||¢'F'<”+T,|m ) (29)

with the effective HamiltoniaH g which is spherically av- In Sec. Il A we used the name torque to refer to the quan-
eraged in each atomic sphesiebut nondiagonal because it tity T, defined via Eq(7). This choice of name is not en-
contains the nondiagonal part.= 5Eyc/ 5p with Eyc given irely correct and deserves some discussion.

by Eqg.(2). From a physical point of view, the torque should rather be

As a result, the spinors exhibit neither pure spin-up Nofyefined via the derivative of the total energy with respect to
pure spin-down character; i.e., both of their compondﬁf the direction of the magnetic moment, i.e.

and ¢} are nonzero. Equatiof29) thus represents a system

APPENDIX: THE INTERPRETATION OF THE TORQUE

of two coupled ordinary differential equations for the two , dE

components which has to be solved numerically subject to, Tazmx M- (A1)

e.g., the following four boundary conditions: _ “ o _
(1) ¢y(r—0)~r'*1, If we deal with strongly Iocgllzed magqgtlzatlons, the direc-
(2) po(r—0)~r'*1, tions of the SQAse, used in the definition(7) and of the
(3) Normalization of| ). magnetic moment® , used in Eq(Al) are essentially par-

(4) For the spinof ¢'): ¢'2(F=5R)=0, whereSg denotes allel so that both definitions yield basically the same result.

the radius of the respective atomic sphere. For the spinofNiS motivated our choice of the name torque. For less lo-
|p"y: (ﬂ(r =S3)=0. calized magnetizations the directions of the SQAs and of the

Other choices for the boundary conditie) are possible magnetic moments must be clearly distinguished and the

and would lead to solutionsp"") that are linear combina- physical interpretation of the quantily, is not clear.
tions of the ones used here. However, it will be shown below There”are,. hqwever, two reasons'why we prefer the. un-
that this would not change the basis set. physical .def|n|t|on (7) over Eq.(Al) in thg cpntext of this
Because of the boundary conditiéd), the spinors &' paper: First, we were _Iooklng for a cr|t_er|o_n on how to
and|¢") exhibit pure spin-uyp and sgirz-down Eharjc(tﬁei re_choose th_e SQAs. In this context, the derivatives of the total
spectively, at the boundary of each atomic sphereereas energy with respect to these SQAs.arose natura}lly. Second,
their radial derivatives are spinors with two nonvanishingwe can evaluat_e the torques as defined by @nwith rea-
components at the sphere boundarieShe spinors sonable numerical effort, as is seen by E®). and the dis-

Ll _ 1l : cussion in Ref. 10.
| Rt im) = (91 d€r) | b7 m) @re again orthogonal to | contrast to the latter point, one would have to solve

11 . . . ]
| #r7.1m) because of the normalization of the latter spinors several severe problems if one wanted to calculate torques
Finally, the coefficients A,A",B',B",D',D",C',C" are  from the definition Eq(A1): First, the energy is a functional

uniquely obtained by demanding that the LMTQ&+1,ms)  of the spin density so that E¢A1) becomes
match the envelope functio&g. 1, m,) continuously and

with continuous derivatives at each sphere boundary. , oE am(r) .,
Thereby, if we had chosen different boundary conditions for Ta:f sm(r) oM, r.
the construction of the function®,, ¢,, ¢4, and ¢,, we
would be led to correspondingly modified coefficieAisB,

C, andD, yielding unchanged functiorig"™ ") in Egs.(27)
and(28) and consequently unchanged basis functions in E
(26). Thus we need not be much concerned with the questi
as to how to choose the boundary conditions best.

(A2)

Here we must note that the spin densityfr) cannot be
easily calculated fromM,. Thus it is not clear how
am(r)/dM , should be evaluated. Second, when we try to
c?évaluate the variational derivativde/ Sm(r), we note that in
Hensity—functional theory the functional of the total energy is
The numerical effort of our version should be not muchexpressed as a sum over several terms. Of these, the
X exchange-correlation enerdy,. from, e.g., Eq. 3 and the
larger than the effort of the former versions. On the oNe, .o man energy from Eq10) [provided an external field

hand, additional work is required for the calculation of the , . . .
atomic functions: Instead of solving the separate differentialaex‘(r) is present obwou_sly depend on the spin den5|ty.
m(r) and pose no special problem. Somewhat less obvi-

equationg16) for the spinor components in the former ver- ously. also the kinetic enerav. defined as
sion, the system of coupled equatidi29) has to be solved Y, 9y,

now. Furthermore, the calculation of the matrix elements for 72
the crystal Hamiltonian will require the evaluation of several T(n(r),m(r)]= min E < z,/xi‘ - Z—A‘ (/ri> , (A3)
additional one-dimensional integrals, €.4.ég ml#R.m {gi}—nm | m
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where the minimum is taken over all sets of one-particledifferences associated with different relative orientations of

functions{;} giving rise to the densities,m, is a func-

the spin directions, i.e., what is usually denoted as the “ex-

tional of the spin density. It is not clear how the derivative change energy.”

ST/ém(r) can be evaluated.

In using definition(7) we take the derivative with respect

Note that as a consequence of the local approximation, thgy the SQAe, which has the role of a parameter in the

pure LSDA exchange correlation functional from Eg)

energy functional. Thus the Hellmann-Feynman theorem is

does not depend on the relative orientation of the spins &pplicable and easily yields E¢9) (see also Ref. 10 In

two different positions. If no external field is present, then.gntrast. the magnetic momeNt, used in definitior(Al) is
the only energy term that actually depends on relative spin, \ariational quantity of the energy functional. Thus the

orientations is the kinetic energy. Thus in the nomenclatur
of density-functional theory the kinetic energy and not th

e?—|el|man-Feynman theorem cannot be applied to calculate

exchange-correlation energy is responsible for the energy®’
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