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In this paper we present an analysis of the magnetic toroidal moment and its relation to the
various structural modes in R3c-distorted perovskites with magnetic cations on either the perovskite
A or B site. We evaluate the toroidal moment in the limit of localized magnetic moments and
show that the full magnetic symmetry can be taken into account by considering small induced

magnetic moments on the oxygen sites.

Our results give a transparent picture of the possible

coupling between magnetization, electric polarization, and toroidal moment, thereby highlighting
the different roles played by the various structural distortions in multiferroic BiFeOs and in the
recently discussed isostructural material FeTiO3, which has been predicted to exhibit electric field-

induced magnetization switching.

The concept of magnetic toroidal moments in solids
has recently received increased attention due to its po-
tential relevance in the context of multiferroic mate-
rials and magneto-electric coupling. 2242 A magnetic
toroidal moment represents a vector-like electromagnetic
multipole moment which breaks both space and time re-
versal symmetries simultaneously. It can be represented
by a current flowing through a solenoid bent into a torus,
or alternatively, by a ring-like arrangement of magnetic
dipoles.® The toroidal moment has been proposed as the
primary order parameter for the low-temperature phase
transition from a ferroelectric into a simultaneously ferro-
electric and weakly ferromagnetic, i.e. multiferroic, phase
in boracites.” In addition, the observation of toroidal do-
mains in LiCoPOQy has recently been reported.?2 This sug-
gests that ferrotoroidicity is a fundamental form of ferroic
order, equivalent to ferromagnetism, ferroelectricity, and
ferroelasticity.®

The practical relevance of ferrotoroidic order stems
from the fact that the presence of a magnetic toroidal
moment also leads to the appearance of an antisymmet-
ric magneto-electric effect.”2 This is particularly inter-
esting considering the extensive current research efforts
aimed at finding novel multiferroic materials which ex-
hibit strong coupling between magnetization and elec-
tric polarization 19111213 Ag suggested in Ref. 13, the
toroidal moment concept can offer useful guidance in or-
der to identify possible new candidate systems and to
analyze the specific nature of the magneto-electric cou-
pling. At the moment, however, it is not fully clear how
this has to be done in practice. It is therefore the pur-
pose of this work to present an instructive analysis of the
toroidal moment for an important class of multiferroics,
and to illustrate how such an analysis can provide insights
into possible coupling between the various order param-
eters. Specifically, here we evaluate the toroidal moment
for the case of the R3c-distorted perovskite BiFeOs and
the recently proposed isostructural system FeTiOgs (see
Ref. [14).

BiFeO3 is probably the most studied multiferroic to
date, whereas R3c FeTiOs has only recently been pro-
posed as a material that exhibits ferroelectrically-induced

weak ferromagnetism, and thus offers the possibility
of electric-field controlled magnetization switching.14:15
First principles calculations show weak ferromagnetism
for both BiFeO3; and R3c FeTiO3.1%16 The net mag-
netization in these systems is due to a slight cant-
ing of the mainly antiferromagnetically ordered Fe
spins. This canting is induced by the Dzyaloshinskii-
Moriya interaction1?1® A small magnetization has in-
deed been observed experimentally in thin film samples
of BiFeO3,2220 whereas in bulk BiFeOs this effect is can-
celed out by the presence of an additional cycloidal ro-
tation of the antiferromagnetic order parameter.2! As
was shown by both symmetry analysis and explicit first
principles calculations, the weak magnetization is lin-
early coupled to the spontaneous electric polarization in
FeTiO3, but not in BiFeQ3.141516 The analysis of the
toroidal moment presented in the following confirms this
fact while in addition providing a complementary per-
spective.

The toroidal moment # of a system of localized mag-

netic moments 1m; at sites 7; can be written as:*2:8

o1
t:§Zﬂxfr’Li . (1)

As described in Ref. 4, the presence of the position vector
in Eq. () together with the periodic boundary conditions
encountered in bulk systems lead to a multivaluedness of
the toroidal moment, in close analogy to the case of the
electric polarization.2223 As a result only differences in
the toroidal moment (induced for example by a structural
distortion) are well defined quantities, and the multival-
uedness has to be taken into account when evaluating
such toroidal moment differences. A toroidal state is
represented by a spontaneous toroidal moment t, # 0,
where t; is evaluated as the change in toroidal moment
with respect to a non-toroidal reference configuration.
On the other hand, a non-toroidal state corresponds to a
“centrosymmetric” ensemble of toroidal moment values,
but does not necessarily imply that the straightforward
evaluation of Eq. () for one unit cell leads to £ = 0.4
As already discussed in Ref. 4, the toroidal moment of
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TABLE I: Coordinates of all ions ¢ within the rhombohedral unit cell of the R3¢ ABO3 structure, ¥; = a1d1 + az2dz2 + asds.
Without loss of generality we define the origin to coincide with the position of the first A cation.

i At A9 Bl B2 | o1 02 03 04 05 06
a1l 0 % (%4—5}3) (%4—5}3) (%—b—u) w v (%—Fw) (%—t-v) U
a2 0 i (3 +68) (2 +6B) v (3 +uw) w (3 +v) U (34w
as 0 3 (3 +d8)  (§+3B) w v (3 +u) u (5 +w) (5 +v)

BiFeO3 evaluated in the limit of localized magnetic mo-
ments vanishes if one takes into account magnetic mo-
ments only on the nominally magnetic Fe sites. This is
due to the fact that the antiferromagnetically ordered
Fe cation sublattice in BiFeOg3 represents a simple rhom-
bohedral lattice, with inversion centers located on each
cation site, and thus #; = 0. The same holds true for R3¢
FeTiO3. The symmetry-breaking required for a nonva-
nishing toroidal moment in these systems is due to the
structural distortions exhibited by the oxygen network
surrounding the magnetic cations. In the following we
will therefore assume that small induced magnetic mo-
ments are located on the anion sites in both BiFeO3 and
FeTiOg3, and we will evaluate the toroidal moment cor-
responding to these induced magnetic moments on the
oxygen sites. Note that if the full magnetization den-
sity would be taken into account when evaluating the
toroidal moment, then the full magnetic symmetry of the
system would automatically be included in the calcula-
tion. A formalism for calculating the toroidal moment
directly from the quantum mechanical wavefunction has
been suggested recently.24

In this work, we are considering perovskite-derived sys-
tems with structural R3c symmetry,2® i.e. the crystal

structure found experimentally for BiFeO3 at ambient
conditions.2%27 R3c FeTiO3 (and MnTiO3) can be syn-

a) ° b)

FIG. 1: a) Unit cell definition used in this work. To better
visualize the orientation of the coordinate system and rhom-
bohedral basis vectors d;, the rhombohedral unit cell is in-
scribed into two cubes of the underlying perovskite structure.
Only ions within one rhombohedral unit cell are shown. The
depicted atomic positions correspond to the undistorted case.
b) Orientation of the three glide planes c1,2,3, and of the 12
equivalent directions for the antiferromagnetic order parame-
ter L (arrows) in the z-y plane.

thesized at high pressure, and remains metastable at
ambient conditions, even though the equilibrium crys-
tal structure in this case is the illmenite structure (space
group R3).28:29

We use a rhombohedral setup with lattice vectors de-

fined as: d; = (@a,%a,%c), as = (—ﬁa La lc),

@3 = (0,—a, 3c) (see Fig.dh). With this choice of coor-
dinate system, the electric polarization is oriented along
the z direction, whereas the magnetic order parameters
will be oriented within the z-y plane.

The positions of all ions within the unit cell are listed
in Table[ll The oxygen anions occupy Wyckoff positions
6b of the R3c space group. It can easily be seen that u =
v =w = dg = 0 corresponds to the undistorted “ideal
perovskite” case (but in our case with R3m symmetry,
due to the rhombohedral distortion of the lattice vectors
for ¢/a # 3+/2). In the following it will be convenient to
express the oxygen coordinates in a somewhat different
form using u = do + %e, v =00 — %e—l— %qﬁ, and w =

0o — %6 — %qﬁ. In this notation, the oxygen positions

are:

1 ‘/Tgae — %agf)
To1 = 551 + %ae—k ‘/Tgad) ) (2a)
500
1 —@ae — %a(b
FOQ = 562 + %CLE — @CLQI) ’ (2b)
500
1 a¢
To3 = 5673 + | —ae ; (2¢)
doc
1 —e¢
To4 = 5(51 +d2) + | —ae ) (2d)
doc
1 \/Tgae + %agf)
TO5 = 5(61 +ds) + %ae + @aqﬁ ) (2e)
doc
1 @ae—i— %a(b
To6 = 5(52 +d3) + | Lae— @aq& . (2f)
doc

It can be seen that ¢, ¢, and dp define three distinct
distortions of the oxygen network: §o represents the dis-
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FIG. 2: (Color online) Displacement vectors corresponding to
¢ (blue/dark grey) and e (green/light grey) for the six oxygen
anions in the R3c unit cell, viewed along the z direction.

placement of the oxygen anions along the polar axis rel-
ative to the A site cations, ¢ represents the counter-
rotation of the oxygen octahedra around this axis (in-
cluding a breathing, i.e. an overall volume change of the
octahedra), and e represents an additional deformation
of the octahedra, which compresses one side of the octa-
hedron while expanding the opposing side (see Fig. 2)).

As stated above, for the completely undistorted struc-
ture with do = dg = ¢ = ¢ = 0 the crystallographic
symmetry of the system is R3m. In this case (and if
we for now do not consider magnetic order) two primi-
tive cells are included in our unit cell definition. On the
other hand, for ¢ # 0 (but otherwise e = 6o = dp = 0)
the resulting symmetry is R3c, with doubled primitive
cell compared to ¢ = 0, whereas either € # 0, 0o # 0 or
dp # 0 (while all other distortion parameters are zero)
leads to polar R3m symmetry (again with two primitive
cells contained in our unit cell definition if we neglect
magnetic order).

Thus, only ¢ # 0 leads to a crystallographic unit cell
doubling compared to the undistorted case (and unre-
lated to the magnetic order), whereas both do and e
break space inversion symmetry and therefore represent
polar distortions. In the case of dp this is intuitively
clear, whereas € is perhaps not immediately recognized
as polar. However, € does indeed destroy the inversion
symmetry of the system, and it can easily be verified that
€ also creates an electric polarization P = 3, ZF AT if
the full Born effective charge tensor (see Ref. 130) is used
for Z¥. (Here, A¥; is the change in the position of oxygen
ion ¢ due to € #0.)

It has been correctly pointed out in Ref. 31 that three
independent parameters are required to describe the com-
plete distortion of the oxygen network within R3c sym-
metry. In our notation these three parameters are €, w,
and 6p. However, in Ref. 131 the distortion € was in-
correctly classified as non-polar, which leads to incorrect
conclusions about possible magneto-electric coupling in
BiFeOs3, as will become clear in the following. In fact, as
pointed out in Ref.[32, the two displacement patterns rep-
resented by € and do (and ép as well) correspond to the

same irreducible representation I'; of the original Pm3m
space group, i.e. they have the same symmetry proper-
ties, and can therefore be viewed as two components of
the same polar distortion.

We now evaluate the toroidal moment resulting from
induced magnetic moments on the oxygen positions listed
in Eqs. 2al)-@f). For this we first have to discuss the
symmetry of the magnetically ordered state. First prin-
ciples calculations suggest that for both BiFeOs and R3c
FeTiOg3 the preferred orientation of the Fe magnetic mo-
ments, and thus the weak magnetization, is perpendicu-
lar to P.2416 This results in 12 energetically equivalent
orientations for the antiferromagnetic order parameter
L= MEel — MEe2 Within the z-y plane, either parallel or
perpendicular to any of the three c-type glide planes of
the underlying R3c structure (see Fig. [Ib). (Here, Mipe1
and Mipe2 are the magnetic moments of the two Fe cations
within the crystallographic unit cell.) The magnetic or-
der thus breaks the threefold symmetry around the polar
z axis and reduces the crystallographic R3¢ symmetry to
the magnetic symmetry groups Cc or C¢’, depending on
whether the Fe magnetic moments are parallel or per-
pendicular to the remaining c-type glide plane. (Here, C
indicates a base-centered monoclinic Bravais lattice and
¢ a glide plane combined with time reversal.) In the fol-
lowing we will consider the two representative cases with
L aligned either along the z direction (C'¢’ symmetry) or
along the y direction (C'c symmetry).

If the antiferromagnetic order parameter defined by
the Fe magnetic moments is directed along the x direc-
tion, i.e. the magnetic symmetry is Cc’, then the y-z
plane is a c-type glide plane combined with time reversal.
This symmetry operation poses the following restrictions

on the magnetic moments m; (i = 1,...,6) at the oxy-
gen sites: Mgy = —May, Mey/z = May/z, M5 = —Mig,
M5y/z = Mly/z; Mdz = —M3z, M4y/z = M3y /z- Evaluat-

ing Eq. () using these relations together with the oxygen
positions (2a)-(2f), and considering the multivaluedness
according to Ref. |4, results in the following x component
of the spontaneous toroidal moment:

HG = Z{ V36 (maz — ma.) + 3¢ (i, +ma.) |

3)
Here, we have imposed the additional constraint that
ms, = —Mi, — Ma,, to ensure that ZZ m;, = 0. This
corresponds to a decomposition of the full moment con-
figuration into compensated and uncompensated parts to
ensure independence of the calculated toroidal moment
from the choice of origin (see Ref.|4). We note that both
ty and t, are vanishing if appropriate multiples of lattice
vectors are added to the atomic positions of the oxygen
anions. This means that the components of the spon-

taneous toroidal moment along these directions are zero
(see Ref. |4).

The corresponding expression for C'c symmetry, i.e. for
orientation of the antiferromagnetic vector L along the y



direction, is:

tg,c‘;f) = % {¢ (mlz + ma, — 2m3z) - \/56 (mlz - m2z)}
(4)
In this case the symmetry restrictions for the oxygen
magnetic moments are: mg, = Moy, Mgy /2 = —M2y/z,
M5z = Mix, Mpsy/z = —Miy/zy, Mg = M3z, Myy/, =
—mg,/., and there is also a nontrivial z component of
the toroidal moment. However, since this component of
the toroidal moment does not contribute to the coupling
between P and M (see below), we only consider Ly.

It can be seen that in general the toroidal moment
in R3c BiFeO3 and FeTiOgs is nonzero for both possi-
ble magnetic symmetries, and that it is related to the
structural distortions of the oxygen network (tﬂS = 0 for
e = ¢ = 0). However, the full functional dependence
of t, on ¢, €, and do can not be seen from Eqs. (3)
and (@), since in general the values of the oxygen mag-
netic moments will also depend on these structural pa-
rameters (including also ép). To gain further insight
into possible magneto-electric coupling we now consider
the case ¢ = 0, ¢ # 0, i.e. the paraelectric reference
phase with crystallographic R3¢ symmetry. As has been
pointed out in Refs. 33,14, and [15, the presence of a lin-
ear magneto-electric effect in the paraelectric reference
phase will lead to a linear coupling between the sponta-
neous order parameters MS and 165. In contrast, a linear
magneto-electric effect in the multiferroic phase describes
the coupling of an additional induced component of po-
larization or magnetization to the corresponding recipro-
cal fields (e.g. M(E) = M, + aE). Tt is therefore very
important to clearly distinguish between the presence of
a linear magneto-electric effect in the para-phase (where

—

M, = P, = 0) and in the multiferroic phase (M, # 0 and
P, #0).
We first consider the case L || z. For BiFeOs this re-

sults in magnetic C2'/¢’ symmetry, which leads to the
additional constraint ms, = mj, and thus vanishing

toroidal moment téﬁz’/ ) _ 0. For FeTiOg3 the resulting

symmetry is C2/¢, which requires msy, = —m1, and thus
tg_?/ ) — V/3a¢mi,. The difference between BiFeOs3 and
FeTiOg3 in this case results from the different site sym-
metries of the magnetic Fe sites within R3¢ symmetry.
In R3c BiFeOs5 the Fe cation is located on a site with in-
version symmetry, whereas in R3c FeTiO3 the inversion
centers are located in between the magnetic cations (see
also Ref. [15). For the case L || y the resulting symme-
try is C2/c (BiFeOgs) or C2'/c (FeTiO3). The additional
constraints on the oxygen magnetic moments are mg, =
—my, and ms, = 0 for C2/c symmetry and mi, = ma,
for C2'/c symmetry, leading to toroidal moment compo-
nents tﬁif/c) =0 and tﬁﬁf"/c) = a¢p(my, — mgs,), respec-
tively. The calculated spontaneous toroidal moments for
the various cases are summarized in Table [1l

It can be seen that in the paraelectric R3c phase (i.e.
for e = 0) only FeTiOs, but not BiFeOs, has a nonva-

TABLE II: Calculated values of the spontaneous toroidal
moment and corresponding magnetic symmetry groups for
BiFeO3; and FeTiOj in the paraelectric R3c structure (e = 0)
for different orientation of the antiferromagnetic order param-

| BiFeO; | FeTiOs
Lz C2/d 1,=0 C2/d tsw=+3admi.
E H g 02/0 ts =0 CQ’/C ts,y = ad}(mlz — m3z)

nishing toroidal moment, and that the toroidal moment
in paraelectric FeTiOg is related to the counter-rotations
of the oxygen octahedra represented by ¢. The presence
of this toroidal moment causes a linear magneto-electric
effect M = oF with a o £ via the free-energy invariant

Erpy o< t- (16 X M) (see e.g. Ref. 4). This means that

once the polarization in R3¢ FeTiO3 becomes nonzero
(which of course reduces the crystallographic symmetry
to R3c), it will induce a weak magnetization via the linear
magneto-electric effect, consistent with the design crite-
ria outlined in Ref. [14. Such “ferroelectrically-induced
ferromagnetism” via the linear magneto-electric effect
has been originally suggested in Ref. |33.

On the other hand, paraelectric R3¢ BiFeOs is non-
toroidal and does not exhibit a linear magneto-electric
effect. Therefore, the weak magnetization in BiFeOg
is not ferroelectrically-induced and there is no linear
coupling between MS and 165 in the multiferroic phase.
This is also consistent with first principles calculations,
where for BiFeOs weak ferromagnetism occurs in both
the ferroelectric R3c and the paraelectric R3¢ structures,
whereas for FeTiOg it occurs only in the ferroelectric R3¢
structure.14:16

Note that in the multiferroic R3c phase both FeTiO3
and BiFeOj3 exhibit a toroidal moment (according to Egs.
@) and @) and thus a linear magneto-electric effect.
This means that an external electric field will induce
changes in both polarization and magnetization, linear
in the external field, but only in FeTiO3 the correspond-
ing spontaneous order parameters M, and P, are linearly
coupled. Such linear coupling between 165 and MS is re-
quired to achieve full electric-field control of the weak
magnetization. As outlined in Refs. [14 and |15 a rever-
sal of P, in FeTiO3 induced by an external electric field
will result in a corresponding reversal of MS provided
the antiferromagnetic order parameter (or equivalently
the toroidal moment) is fixed by a large enough mag-
netic anisotropy. On the other hand, such electric field
controlled switching of the weak magnetization is not ex-
pected to occur in BiFeOs.

The evaluation of the toroidal moment presented above
allows to clearly identify which structural modes, in com-
bination with the antiferromagnetic order, lead to the
appearance of a toroidal moment and a linear magneto-
electric effect. In contrast to the antiferromagnetic order
parameter, which generally depends only on the orienta-



tion of the individual magnetic moments, it follows from
Eq. () that the toroidal moment contains information
about where the magnetic moments are located as well
as on how they are oriented. Furthermore, the toroidal
moment is a macroscopic multipole moment that is re-
lated to the (magnetic) point group symmetry, whereas
a proper symmetry analysis of antiferromagnetic order
requires a treatment based on the full space group sym-
metry. In particular, antiferromagnetic order is not con-
nected to any particular macroscopic symmetry break-
ing, i.e. all 90 magnetic point groups are compatible
with the existence of antiferromagnetic order. On a mi-
croscopic space group level, antiferromagnetic order of
course always breaks time reversal symmetry. However,
for systems where the magnetic unit cell is a multiple
of the crystallographic unit cell, a primitive translation
of the original nonmagnetic lattice can be combined with
time reversal, and as a result the corresponding magnetic
point group still contains time reversal as a symmetry
element.2? In contrast, a toroidal moment always breaks
space and time reversal symmetries on the macroscopic
level, i.e. the corresponding magnetic point group does
not contain neither space inversion 1 nor time reversal 1’
(whereas the combined operation 1’ can still be a symme-
try element). Since all macroscopic properties of a partic-
ular crystal are determined by its point group rather than
space group symmetry,24 the toroidal moment appears
to be a more appropriate quantity to classify macro-
scopic symmetry properties compared to the antiferro-
magnetic order parameter. In particular, the toroidal
moment is ideally suited to discuss magneto-structural
or magneto-electric coupling. For a given structural and
magnetic configuration the toroidal moment can be eval-
uated straightforwardly, applying the procedure outlined
in Ref.|4. Using the relation between the toroidal moment
and the magneto-electric tensor «, this allows to correctly
identify which quantities determine the magneto-electric

properties of the system. The same can of course also
be achieved by a group theoretical analysis of the sym-
metry properties of the various structural modes and of
the antiferromagnetic order parameter. The straightfor-
ward evaluation of the toroidal moment should therefore
be considered as an alternative (or complementary) way
to discuss magneto-electric symmetry that does not nec-
essarily require the application of group theoretical con-
cepts.

Finally, we point out that the toroidal moment is only
related to the antisymmetric part of the linear magneto-
electric tensor «, whereas the symmetric part of « is
connected to other electromagnetic multipole moments
(see Ref. |5). However, for the present case where weak
ferromagnetism is caused by the Dzyaloshinskii-Moriya
interaction, the antisymmetric component related to the
toroidal moment is indeed the crucial part of a.

In summary, we have shown that by evaluating the
toroidal moment in the limit of localized magnetic mo-
ments, a clear picture of the different roles played by
the various structural distortions for the magneto-electric
properties in BiFeO3 and R3c FeTiOs can be achieved.
The toroidal moment can be used to characterize the
magneto-electric properties in antiferromagnetic systems.
Its usefulness stems from the fact that is depends on both
position and orientation of the magnetic moments and
from its well-defined macroscopic symmetry properties,
which allow to use point groups instead of space groups,
in contrast to a discussion based on the antiferromagnetic
order parameter.
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