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Effective-eigenvalue approach to the nonlinear Langevin equation for the Brownian motion
in a tilted periodic potential. II. Application to the ring-laser gyroscope
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The effective-eigenvalue method is used to obtain an approximate solution for the mean beat-signal
spectrum for the ring-laser gyroscope in the presence of quantum noise. The accuracy of the effective-
eigenvalue method is demonstrated by comparing the exact and approximate calculations. It shows
clearly that the effective-eigenvalue method yields a simple and concise analytical description of the solu-

tion of the problem under consideration.
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I. INTRODUCTION

One of the most remarkable devices which laser light
has made possible is the ring-laser gyroscope. The most
important advantage of the ring-laser gyroscope as a ro-
tation sensor over its mechanical counterpart is that it
has no moving parts [1] so that it has a longer lifetime.
However, its accuracy and sensitivity suffer from the
well-known lock-in effect [2], i.e., at low rotation rates,
the backscattering couples the counterpropagating waves
and the beat note disappears. In recent times the prob-
lem of the lock-in effect has been avoided by adding an
external controlled rotation rate [2] so that for the most
part the laser operates outside the dead band. Thus vir-
tually the only limitation which remains on the sensitivity
of the ring-laser gyroscope is the quantum fluctuations
[2,3]. It is therefore important to have a clear under-
standing of the effects of such noise on the action of the
gyroscope.

Several investigators have studied the effects of the
quantum noise on the mean beat frequency and spectrum
[2-5]. Cresser, et al. [4] suggested a numerical algorithm
for the exact solution of the spectrum of the beat signal in
terms of an infinite continued fraction by solving the
Fokker-Planck equation for the probability density func-
tion of the phase variable. However, this numerical ap-
proach to the problem has the disadvantage that it does
not yield a closed-form solution. Thus the qualitative
behavior of the system is not at all obvious.

A number of investigators (see, e.g., [3,5]) have at-
tempted to overcome this problem by deriving approxi-
mate analytical expressions for various ranges of the
gyroscope parameters. However, a general equation
which would be valid for all the parameter ranges of in-
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terest has not yet been derived. It is obviously valuable
to have a general analytical expression for the spectrum.
Such an expression will be obtained in the present paper.

As is well known, the underlying Langevin equation
for the ring-laser gyroscope is similar to that for the
Brownian motion of a particle in a tilted periodic poten-
tial [1]. Such a Langevin equation also arises in a number
of other physical situations: Josephson junctions [6],
self-locking in a laser [7], the laser with injected signal
[8], and the theory of phase-locking techniques in radio
engineering [9], etc. In Ref. [10] the Josephson junction
has been considered as an example of the Brownian
motion in a tilted-cosine potential. We have shown [10]
that the effective-eigenvalue method (described in detail
in Ref. [11]) allows us to obtain a simple analytical ex-
pression for the impedance of the junction for an exter-
nally applied small-signal alternating current in the pres-
ence of noise. However, this approach can also be ap-
plied to the ring-laser gyroscope [1,3-5], where we re-
mark that there the quantity of interest is the beat-signal
spectrum.

It is the purpose of this paper to show how the
effective-eigenvalue method can also be applied to the
ring-laser gyroscope to obtain a simple and concise
analytical description of the beat-signal spectrum. The
method constitutes a truncation procedure which allows
one to obtain a closed-form approximation to the solution
of the infinite hierarchy of differential-difference equa-
tions obtained directly from the nonlinear Langevin equa-
tion without recourse to the Fokker-Planck equation.
These equations govern the time behavior of the statisti-
cal averages characterizing the dynamics of the ring-laser
gyroscope operating in the presence of quantum noise.
We show that the effective-eigenvalue method is a valu-
able and extremely powerful tool for the purpose of ob-
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taining a simple analytical solution for the beat-signal
spectrum. The solution obtained from the effective-
eigenvalue method is shown to agree closely with the ex-
act solution for a wide range of frequencies as demon-
strated by the plots of the mean beat signal as a function
of frequency in all regimes of interest. We remark that
our form of the exact solution for the beat-signal spec-
trum also has the merit of being considerably more con-
venient for numerical calculations while constituting a
simpler algorithm than that obtained in [4]. Our exact
results agree with those of Cresser et al. [4].

II. THE AVERAGED LANGEVIN EQUATION
FOR THE RING-LASER GYROSCOPE

The dynamical behavior of the ring-laser gyroscope
operating in the steady state is described by the Langevin
equation [1,3]

() —b sing(t)=a +T(2), (0

where ¢ is the relative phase between the clockwise and
counterclockwise modes of the laser, the gyroscope rota-
tion rate coefficient a is given by

_ 87
AL

| A| is the area covered by the optical path of length L
along the ring cavity, Q is the rotation rate of the gyro-
scope, and A is the wavelength of the laser; b is the back-
scattering coefficient, I'(¢) is the noise source which is as-
sumed to be Gaussian with

I(t)=0, T(O)I'(2)=2D8(¢), (3)

a= (A-Q), (2)

where D =(v/2Qn) is the diffusion coefficient due to ran-
dom noise (v is the frequency of the light field, 7 is the
averaged number of photons in the field at steady state, Q
is the quality factor of the cavity, and the overbar denotes
“statistical average of”’).

In order to proceed we change the variable in the
Langevin equation (1) by means of the transformation

ri=e "% (p=...,—1,0,1,...)
so that
d

“ n =n_b n+1 __.n—1 )
i (2) > [F" ") —r" )] —inr"()a+T(2)] .

4)

The multiplicative noise term »"(¢#)I'(¢) in Eq. (4) contrib-
utes a noise-induced drift term to the average [12]. This
term poses an interpretation problem in averaging Eq.
(4). We recall that, taking the Langevin equation for a
stochastic variable £(¢) as [12]

%g(t)=h(§(t),t)+g(§(t),t)F(t) , (5)
with
T()=0, T()(¢')=28(t—1t"),

and interpreting it as a Stratonovich stochastic equation
[12], we have

%=lim tl[é‘(t +T)_x]]
0| T

&) =x
—h(x,t)rgx 2 g(xt) (6)
ox

where £(¢ +7), 7> 0 is a solution of Eq. (5) which at time
t has the sharp value £(z)=x. It should be noted that the
quantity x in Eq. (6) is itself a random variable with prob-
ability density function W(x,t) defined such that
W(x,t)dx is the probability of finding x in the interval
(x,x +dx). Thus on averaging Eq. (6) over W(x,t) we
obtain

d _ 9o
dt(x)—-(h(x,t)>+<g(x,t)axg(x,t)> , )

where the angular brackets mean the relevant quantity
averaged over W(x,t).

We may use the above results to evaluate the average
of the multiplicative noise term in Eq. (4). We have

gr")y=—inr",
gr")y—g(r"=—n’r", (8)
or
and
d o_nb a1 a1y 1y, 2.n
dtr 5 (r r )—inar"—Dn*r" . 9)

Thus we obtain the hierarchy of differential-difference
equations for averages

d, oy, 1
dt<r )+7'

p2g inxy
0 2

(r")

=2V ((pr=ly—(rnt1)y],  (10)

47,

xX=—— (11)

is the ratio of the rotation rate to the backscattering
coefficient,

Y=o (12)
is the ratio of the backscattering coefficient to the
diffusion coefficient, and

1
=7 (13)

is the characteristic relaxation time.

We remark that "(¢) in Eq. (4) and »” in Egs. (9) and
(10) have different meanings. Namely, »"(¢) in Eq. (4) is a
stochastic variable while in Egs. (9) and (10) 7" is the
sharp (definite) value »"(¢)=r" at time ¢. (Instead of us-
ing different symbols for the two quantities we have dis-
tinguished the sharp values at time ¢ from stochastic vari-
ables by deleting the time argument as in Ref. [12].) The
quantity r” above is itself a random variable which must
be averaged over an ensemble of gyroscopes. The symbol
{ ) means such an ensemble average.
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It should be noted that Eq. (10) is a well-known result
which may be obtained from the relevant Fokker-Planck
equation [1-5].

III. CALCULATION
OF THE BEAT-SIGNAL SPECTRUM
OF THE RING-LASER GYROSCOPE

For the ring-laser gyroscope operating at steady state
the quantity of interest is the spectrum of the beat signal
[4] defined as

alw)= fﬁw (cosp(0)cosd(t))ge 'dt

=2Re

fowC(I)ei"”dt] , (14)

_ (0) ,
(1—e U(¢(0))/kT)f0¢ e U/KT g g

where
C(t)={cos¢(0)cosd(t)), (15)

is the stationary beat-signal autocorrelation function
cos¢(t) which is a measure of the total detected intensity
[1,3]. The appearance of the cosine term in Eq. (14)
arises from the heterodyning of the counter-rotating
waves [3].

A numerical method for the exact calculation of a(w)
has been given in Ref. [4]. Another representation of the
exact solution can be obtained in the manner described
below.

On multiplying both sides of Eq. (9) by cos¢(0) and
averaging over the stationary distribution function [12]

Wo(h(0))=cqe ~ UHOVKT g

we obtain just as in Eq. (10) the differential-difference
equation for the stationary averages:

n2+ inx[
2

d 1
dr Y, (1) + T ¥, (1)

= 0= 4, 0], (7

where
¥, (£)={cosd(0)r"(2)), . (18)
It is obvious that C(¢) from Eq. (15) is related to ¥,(¢) by
C(t)=Re{y, (1)} . (19)

Let us introduce instead of #,(¢) the true correlation
functions C,(¢) defined as

C,(t)=1v,()—¢,(x)
={cosp(0)r"(£))o— {cosp(0) ) {r™(0)), . (20)

Then we obtain from Eq. (17)

n2+ Py (o)=L [y, (o) = 1i(e)]  (21)

2 _ . >
f e (¢ )/de¢:
0

U(¢)=~1’2‘—T—(cos¢+x¢) (16)
[
and
4o+ 2+ X (e
dt To 2

=i’-j§[cn_1(z>—cn+l(t>]. (22)
With the help of the one-sided Fourier transform
C,(w)= fo“’e*"wtc,,(t)dt (23)

we may now obtain from Eq. (22) the usual three-term re-
currence relation

—iarro—l-nz-f—ﬂ%}/— C,(w)

=3;—”[6,,_l(w)—é,,ﬂ(w)]ﬂoc,,(O). (24)

Equation (24) has the same form as Eq. (21) of Ref. [10]
and hence has a solution of similar form, viz.,

C‘l(a))=%Z(gl(co)Cl(0)—%§1(w)§2(w)C2(0)+%§1(w)§2(w)§3(w)c3(0)+ “.- +%(—-1)"+1C,,(O)H§,~(w)+ S
0 i=1
4’7’0 ~ gz((l))Cz(O) fS:;((O)C:;(O) 3§4(0))C4(0)
y Sil@GOnl==—770 3C,(0) 4cy0 ) ’ @9
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where the continued fraction S, () is defined as

0.5
—2iwry/yn+2n/y+ix+0.58, (@)

S,(0)=

The quantity C,(0)/C, _,(0) appearing in Eq. (25) can be
expressed in terms of S;=S,(0) and S,=S,(0) as fol-
lows. We have from Eq. (20)

C,(0)={cos$(0)r™(0))o— {cosd(0)y) {r™(0)),
=L{r"*10)+r"710))o—Re(S;){r"(0)),
:%SISZ .

—Re(S,)S,S, S, . (26)

'Sn~‘1(1+snsn+l)

Hence we have for n =2
C,(0) _S,,_1(1+S,,S,,+1)—ZS,,WISnRe(Sl)
C,_(0) 1+S, _1S,—2S, _Re(S))

(27)

Taking account of the stationary solution of Eq. (4), i.e.,
[12],
)

C_(0)=C}(—w)
$3(—w)C1(0)

47'0 ~

283 (—w)C¥(0)

S, |p2+ LR | = 2L (1-5,5, ), (28)
with
_ <rp)0
’ (rp‘1>0 ’
we have

C,(0) _ 1—S,(ix+2n/y)—S,Re(S;)

C. (0 S, tixtan—1)/y—Re(s,)’ "%
(29)
We also note that
C,(0)=1(5,8,+1)—8Re(S,)
=1—8,(ix+2/7)—SRe(S;) . (30)

We can show in the same way that

S*(—w)CH(0){1—
y STe)d 2C*(0)

where the symbol % means the complex conjugate. Thus
on using Egs. (19), (20), (25), and (31) we obtain the beat-
signal spectrum as

a(0)=2mY,(»)8(w)+Re{Ci(0)+C_,(w)}
=27 Re*(S1)8(w)+Re{C (0)+CF(—w)} .  (32)

Equations (25) and (29-32) are very convenient for nu-
merical calculations and constitute a simpler algorithm
than that used in Ref. [4] in order to evaluate a(w).
They allow us to calculate a(w) exactly.

We shall now show how the effective-eigenvalue
method [11] can be applied in order to evaluate a(w). In
order to implement it and to determine the effective ei-
genvalue for the quantity of interest we need to keep the
equations for C,(¢) and C,(t) of Eq. (22). Thus the
effective-eigenvalue method requires that C,(¢) and C,(z)
obey the coupled equations

da s =

ar Ci(t)+AC (1) + 4, C,(t)=0, (33)

d ef, Y =

a C,(t)+A5C,(1) 210 C,(t)=0, (34)
where

A=1+ixy/2 (35)

and A{' is the effective eigenvalue to be determined.
According to the effective-eigenvalue approach [11],

ASfis determined as
C,(0) ’

A§f=— (36)

3C%(0)

3§:(—w)c:(o)(l )
4C%(0)

. o

I .
where C,(0) is determined by Eq. (22) for n =2, namely,

C,(0)=— L (4+ixy)C,(0)— L[ C4(0)— C,(0)] .
To 27y

(37)
C,(0) and C,4(0) are given by Eq. (26).
Substitution of Eq. (37) into Eq. (36) yields
Sef— (1/1o0(4+ixy)C,(0)+(y /273)C;5(0)
2 C,(0)
=— + :
TO(4+lx7/) 27 G, (0) (38)

100 5 ™~ T —r T T 3

103 o
10! 100 10!

To w

FIG. 1. Comparison of the exact (solid lines) and approxi-
mate (stars) solutions for “incoherent” part of the beat-signal
spectrum a vs Tow at Y= —2. Curves 1: x =—0.5 (the locked
region), 2: x = —0.9(]a| <b) and 3: x =—2.0 (the unlocked re-
gion).
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FIG. 2. Same as Fig. 1 for y = —20.

On substituting C;(0)/C,(0) from Eq. (27) for n =3 into
Eq. (38) we thus obtain

1—8,(ix +6/y)—S;Re(S,)
S, +ix+4/y —Re(S,)

1
kef —_
2 o

4+ixy+3;—

(39)

The solution of Egs. (33) and (34) is easily found using the
one-sided Fourier transform. The result is (where we em-
phasize that A, and ASf are complex)

_ C,(0)AS—iw)—yC,(0) /41,

()= , 40
) S — i)+ 72 /872 “0

where
Cilw)= [ e i*C ()dr . 4
(@)= [ “eTi"C, (1) (41)
A similar calculation for C_,(w) yields
CH(0)(AS™* —iw)—y C2(0) /47,

C_(w)= . 42
) T —iw) 412 /872 “2)

Thus we may now calculate from Egs. (14), (15), (40), and
(42) the beat-signal spectrum in the simple analytic form

alw)=27ReXS,)8(w)
C(0)AS—iw)—yC,(0) /41,
(A —i0)AS—iw)+y2/873

€

N CHOYAYL —iw)—yC2(0)/4r,
(A —i) AL —iw)+y2 /872

(43)

where A, and A are given by Egs. (35) and (39), respec-
tively.

IV. RESULTS AND DISCUSSION

As seen from Egs. (32) and (43) the spectrum a(w) con-
tains two parts, a “coherent” §-function spectrum and an

102

10t 102 103

FIG. 3. Same as Fig. 1 for y = —200 (the noise-free limit).

“incoherent” broad spectrum [4]. The “incoherent” part
of the laser-gyroscope beat-signal spectrum is presented
in Figs. 1-3 for different values of the parameters a /b
and y /b. Our exact results coincide with those given in
Ref. [4]. One can see by inspection of these figures that
the effective-eigenvalue method gives a good quantitative
description of the main features of the spectrum a(w) in
all regions of interest [1,3—5]: |a| <b (the so-called locked
region), |a| Sb and |a| > b (the unlocked region). As ex-
pected at the noise-free (or strong-backscattering) limit
(ly|>>1), the approximate solution in the unlocked re-
gion gives only a qualitative description of the second-
harmonic contribution to a(w) and does not describe
higher harmonics at all (see Fig. 3). This is due to our
truncation of the hierarchy (22) at the second level, which
leads to the appearance of two harmonics in the spectrum
only while the noise-free spectrum of the gyroscope con-
sists of an infinite number of harmonics [1,3]. The
effective-eigenvalue method may, however, be applied in
this instance as well if we truncate the hierarchy (22) at a
higher level. In particular, in order to give a quantitative
description of the second-harmonic band and explain
qualitatively the third harmonic, one would have to trun-
cate the hierarchy at the third level and calculate the
effective eigenvalue AS for C4(1).

V. CONCLUSIONS

The purpose of this paper is to apply the effective-
eigenvalue method to the ring-laser gyroscope. We find
that it yields an analytical expression (43) which describes
the main features of the beat-signal spectrum in all re-
gions of interest (with the exception of the second- and
higher-harmonic contributions to the spectrum for large
v) and agrees closely with the exact solution. We also
present an alternative form of the exact solution of the
problem which is much simpler for numerical calcula-
tions in comparison with the previously reported algo-
rithm [4].



704 W. T. COFFEY, YU. P. KALMYKOV, AND E. S. MASSAWE 48

* Author to whom correspondence should be addressed.

[1] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E.
Sanders, W. Schleich, and M. O. Scully, Rev. Mod. Phys.
57, 61 (1985).

[2] W. Schleich, C. S. Cha, and J. D. Cresser, Phys. Rev. A
29, 230 (1984).

[3]J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich,
and M. O. Scully, Phys. Rev. A 25,2214 (1982).

[4] J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre,
and H. Risken, Phys. Rev. A 25, 2226 (1982).

[5]J. D. Cresser, Phys. Rev. A 26, 398 (1982).

[6] G. Barone and P. Paterno, Physics and Applications of the
Josephson Effect (Wiley-Interscience, New York, 1982).

[7] H. Haken, H. Sauermann, Ch. Schmid, and H. D. Voll-
mer, Z. Phys. 206, 369 (1967).

[8] W. W. Chow, M. O. Scully, and E. W. Van Stryland, Opt.
Commun. 15, 6 (1975).

[9] A. J. Viterbi, Proc. IEEE 51, 1737 (1963).

[10] W. T. Coffey, Yu. P. Kalmykov, and E. S. Massawe, Phys.
Rev. E 48, 77 (1993).

[11] W. T. Coffey, Yu. P. Kalmykov, and E. S. Massawe, in
Modern Nonlinear Optics, Advances in Chemical Physics
Vol. 85B, edited by I. Prigogine, S. A. Rice, and M. W.
Evans (Wiley-Interscience, New York, in press).

[12] H. Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1984).



