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The infinite hierarchy of differential-recurrence relations for ensemble averages of the spherical harmonics
pertaining to the noninertial rotational Brownian motion of an ensemble of polar and anisotropically polariz-
able molecules in a strong external dc electric field is derived by averaging the underlying Langevin equation.
This procedure avoids recourse to the Fokker-Planck equation, the solution of which involves complicated
mathematical manipulations. Exact analytic solutions for the spectra of the relaxation functions and relaxation
times for nonlinear dielectric relaxation and dynamic Kerr effect of symmetric top molecules are calculated for
two limiting cases, namely, pure induced dipole moments and pure permanent moments, using the continued
fraction method. The general case where both types of moment are taken into account is then considered by
using matrix continued fractions. Exact expressions for the dielectric and Kerr effect relaxation times are also
derived as functions of the parametersj ands characterizing the field-off and the induced dipole moments.
Plots of these relaxation times are presented for various values ofj ands. The nonlinear relaxation behavior
is emphasized in figures showing how the real and imaginary parts of the spectra of the relaxation functions
deviate from the Lorentzian profiles.@S1063-651X~96!12512-5#

PACS number~s!: 42.70.Df, 05.40.1j, 78.20.Fm, 78.20.Jq

I. INTRODUCTION

Dielectric and Kerr effect relaxation of polar fluids
springs from the rotational motion of molecules in the pres-
ence of external electric fields and thermal agitation~see,
e.g., @1–3#!. Interpretation of these phenomena is usually
based on the rotational diffusion model in the noninertial
limit which relies on the solution of the appropriate Fokker-
Planck equation and has usually been confined to the linear
response or the nonlinear response in low order of perturba-
tion theory@4#, where the energy of a molecule in the electric
field is far less than the thermal energy. This restricts con-
siderably the range of the applicability of the theory.

The theoretical approach to the analysis of nonlinear di-
electric and Kerr effect relaxation experiments when inertial
effects are neglected usually starts with the underlying
Langevin equation whence the Fokker-Planck equation for
the probability distribution functionW~$u%,t! of orientations
of a unit vectoru fixed in the particle in configuration space
@5# is derived with the aid of the continuity equation

]

]t
W1div~ u̇W!50,

which is the probability conservation law. The Fokker-
Planck equation can then be solved by expanding the distri-

bution functionW~$u%,t! as a series of spherical harmonics.
This yields an infinite hierarchy of linear differential-
recurrence equations for averaged spherical harmonics. The
general method of solution of this hierarchy is effected by
successively increasing the number of equations until con-
vergence is attained. An alternative solution may be formu-
lated by using continued fractions@5–7#. Numerical and ap-
proximate methods for solving the Fokker-Planck equation
have been discussed elsewhere~see, for example, Refs.
@5–10#!.

The goal of the present paper is to derive exact analytic
equations for the dielectric and Kerr effect response func-
tions and relaxation times when a strong static electric field
is suddenly applied to an assembly of noninteracting polar
and anisotropically polarizable molecules. For this purpose
we shall apply an analytical method recently developed for
the calculation of the linear response of systems of particles
compelled to rotate in three-dimensional space@7,10–14#.
The essence of this method is the exact analytical solution of
the infinite hierarchy of differential-recurrence relations gov-
erning the relaxation dynamics of a Brownian particle in the
presence of an external potential by means of ordinary or
matrix continued fractions. The method also constitutes a
particularly simple way of deriving the hierarchy of linear
differential-recurrence relations for desired averages for any
particular external potential from the vector nonlinear Euler-
Langevin equation for a polar molecule. It is often very dif-
ficult to obtain such a hierarchy from the Fokker-Planck
equation because of the problems involved in separating the*Author to whom correspondence should be addressed.
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variables. This eliminates the excessive step in the theory of
constructing and solving the corresponding Fokker-Planck
equation entirely. In Refs.@7,9–14# we have demonstrated
using several physical examples the applicability of the
method to the calculation of generalized complex suscepti-
bilities and correlation times for dynamic variables governed
by nonlinear Langevin equations in the linear response case.
In the present paper we apply this method to evaluate the
nonlinear response for dielectric and Kerr effect relaxation.
Our method just as that of Watanabe and Morita@6# is based
on continued fractions. However, in contrast to the approach
of Ref. @6#, it allows us to obtain solutions of inhomogeneous
recurrence equations~which are necessary for calculating the
relaxation times!. Furthermore, it can be applied to the gen-
eral case of polar and polarizable molecules, rather than to
the particular cases of nonpolar and/or nonpolarizable mol-
ecules. De´jardin, Blaise, and Coffey@15# have demonstrated
recently the applicability of the method to the calculation of
the transient birefringence due to the induced dipole Kerr
effect only. Here we consider the general case of polar and
anisotropically polarizable molecules, the nonlinear dielec-
tric and Kerr effect relaxation being considered simulta-
neously. We remark that these problems, unlike the ones
considered in Refs.@7,9–14#, are truly nonlinear; therefore,
there is no longer any connection between the step-on re-
sponse and the ac response and so the concept of relaxation
functions and relaxation times should be used rather than
correlation functions and correlation times.

II. ROTATIONAL DIFFUSION IN A STRONG
ELECTRIC FIELD AND RELATED

RELAXATION FUNCTIONS

We study the three-dimensional rotational Brownian mo-
tion of a particle in an external electric field. The particle
contains a rigid electric dipolem. We take a unit vectoru(t)
through the center of mass of the particle in the direction of
m. Then the rate of change ofu(t) is

du~ t !

dt
5v~ t !3u~ t !, ~2.1!

wherev(t) is the angular velocity of the particle. It should
be noted that Eq.~2.1! is a purely kinematic relation with no
particular reference either to the Brownian movement or to
the shape of the particle. For simplicity we specialize it to
the rotational Brownian motion of a symmetrical top mol-
ecule by supposing that the angular velocityv(t) obeys the
Euler-Langevin equation@7#

Î
dv~ t !

dt
1zv~ t !5m~ t !3E~ t !1l~ t !, ~2.2!

where Î is the inertia tensor of the molecule,m is the total
dipole moment which we represent as

m~ t !5m~ t !1â~ t !•E~ t !,

â is the molecular polarizability tensor~thus effects due to
the hyperpolarizability are neglected!, zv(t) is the damping
torque due to Brownian movement, andl(t) is the white-

noise-driving torque, again due to Brownian movement so
thatl(t) has the following properties:

l i~ t !50,

l i~ t1!l j~ t2!52kTzd i jd~ t12t2!. ~2.3!

The overbar means a statistical average over an ensemble of
molecules which all start at timet with the same angular
velocity v and orientationu ~sharp initial conditions! @5,7#,
di j is Kronecker’s delta,i , j51,2,3, which correspond to the
Cartesian axesx,y,z of the fixed coordinate system,d(t) is
the Dirac delta function. The termm(t)3E(t) in Eq. ~2.2!, is
the torque due to the total electric field acting on the mol-
ecule. This torque can be expressed in terms of the potential
functionV~$u%! as a function of the components of the vector
u,

m3E52u3
]

]u
V~$u%!, ~2.4!

where

]

]u
5 i

]

]ux
1 j

]

]uy
1k

]

]uz
.

i, j , andk are the unit vectors along the Cartesian axesx, y,
andz, respectively;ux , uy , anduz are the Cartesian compo-
nents of the unit vectoru(t). These components are ex-
pressed in terms of the polar~q! and azimuthal~w! angles as
follows:

ux5sinq cosw, uy5sinq sinw, uz5cosq.

In the simplest case of a symmetric top molecule with the
field E(t) applied along thez axis the potential function
V~$u%! is given by@6#

V~$u%,t !52mE~ t !cosq2 1
2 ~a12a2!E

2~ t !cos2q,
~2.5!

wherea1 anda2 are the components of the electric polariz-
ability parallel and perpendicular to the axis of symmetry of
the molecule.

Equation~2.2! includes the inertia of the molecule. The
noninertial or low-frequency response~the Debye approxi-
mation! occurs when we neglect the inertia term in Eq.~2.2!.
In this limit the angular velocity vector may be immediately
obtained from Eq.~2.2! as

v~ t !5@m~ t !3E~ t !1l~ t !#z21.

On combining this equation with the kinematic relation Eq.
~2.1! one obtains

du~ t !

dt
52z21Fu~ t !3

]

]u
VG3u~ t !1z21l~ t !3u~ t !,

which, using the properties of the triple vector product, be-
comes
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du~ t !

dt
52z21F ]

]u
V2u~ t !S u~ t !•

]

]u
VD G1z21l~ t !3u~ t !.

~2.6!

This is the vector Langevin equation for the motion of the
vectoru in the noninertial limit. Equation~2.6! is equivalent
to three equations for the Cartesian components ofu

d

dt
ux~ t !5z21Fly~ t !uz~ t !2lz~ t !uy~ t !2

]

]ux
V

1uxS u~ t !•
]

]u
VD G , ~2.7!

d

dt
uy~ t !5z21Flz~ t !ux~ t !2lx~ t !uz~ t !2

]

]uy
V

1uyS u~ t !•
]

]u
VD G , ~2.8!

d

dt
uz~ t !5z21Flx~ t !uy~ t !2ly~ t !ux~ t !2

]

]uz
V

1uzS u~ t !•
]

]u
VD G . ~2.9!

The stochastic differential equations~2.7!–~2.9! contain
multiplicative noise termsli(t)uj (t). This poses an interpre-
tation problem for these equations as has been discussed in
Refs. @5, 7#. We recall, taking the Langevin equation forN
stochastic variables$j(t)%5$j1(t),j2(t),...,jN(t)%:

dj i~ t !

dt
5hi„$j~ t !%,t…1gi j „$j~ t !%,t…G j~ t ! ~2.10!

with

G i~ t !50,

G i~ t1!G j~ t2!52Dd i jd~ t12t2! ~2.11!

and interpreting it as a Stratonovich equation, that the aver-
aged equation for the sharp valuesji(t)5xi at timet is @5,7#

dxi
dt

5 lim
t→0

j i~ t1t!2xi
t

5hi~$x%,t !1Dgk j~$x%,t !
]

]xk
gi j ~$x%,t !, ~2.12!

whereji(t1t) ~t.0! is the solution of Eq.~2.10! with the
initial conditions ji(t)5xi . In Eqs. ~2.10! and ~2.12! the
summation overj andk is understood~Einstein’s notation!.
The last term in Eq.~2.12! is called the noise-induced or
spurious drift@7#. The proof of Eq.~2.12! can be found else-
where~see Ref.@5#, pp. 54, 55!.

In the same manner we can prove that the averaged equa-
tion for an arbitrary differentiable functionf ~$j%! has the
following form ~see the Appendix!:

d f~$x%!

dt
5hi~$x%,t !

]

]xi
f ~$x%!1Dgk j~$x%,t !

3
]

]xk
Fgi j ~$x%,t ! ]

]xi
f ~$x%!G , ~2.13!

where summation overi , j , andk is also understood.
We remark that we shall always use the Stratonovich defi-

nition @5,7# of the average of the multiplicative noise term
here as that definition always constitutes the mathematical
idealization of the physical stochastic process of orienta-
tional relaxation in the noninertial limit. Thus, it is unneces-
sary to transform the Langevin equations~2.7!–~2.9! to Itô
equations~e.g., @18#!. Moreover, we can apply the methods
of ordinary analysis@5,18#.

In the study of orientation relaxation the quantities of in-
terest are the spherical harmonicsXnm defined as

Xn6m5e6 imwPn
m~cosq!

5e6 imw~12cos2q!m/2
dmPn~cosq!

d cosqm , ~2.14!

wherePn(x) andPn
m(x) are the Legendre polynomials and

the associated Legendre functions, respectively@19#. The
Xn6m are expressed in terms ofux ,uy ,uz as follows:

Xn6m5~ux6 iuy!
m
dmPn~uz!

duz
m .

Noting that according to the Stratonovich definition the con-
ventional rules of transformation of a stochastic variable can
be used@18# and that

d

dt
Xnm5m~ux1 iuy!

m21
dmPn~uz!

duz
m

d

dt
ux

1 im~ux1 iuy!
m21

dmPn~uz!

duz
m

d

dt
uy

1~ux1 iuy!
m
dm11Pn~uz!

duz
m11

d

dt
uz ~2.15!

we can obtain the equation of motion of the spherical har-
monicsXnm by cross-multiplying Eqs.~2.7!–~2.9! by

m~ux1 iuy!
m21

dmPn~uz!

duz
m ,

im~ux1 iuy!
m21

dmPn~uz!

duz
m ,

~ux1 iuy!
m
dm11Pn~uz!

duz
m11 ,

respectively, and then summing them. Thus,

6464 54COFFEY, DÉJARDIN, KALMYKOV, AND TITOV



d

dt
Xnm„$u~ t !%…5

1

z H @ux~ t !1 iuy~ t !#
m
dm11Pn@uz~ t !#

duz
m11~ t ! F2

]

]uz
V1uz~ t !S u~ t !•

]

]u
VD G

1m@ux~ t !1 iuy~ t !#
m21

dmPn@uz~ t !#

duz
m~ t ! F2

]

]ux
V2 i

]

]uy
V1@ux~ t !1 iuy~ t !#S u~ t !•

]

]u
VD G J

1Hm@ux~ t !1 iuy~ t !#
m21

dmPn~uz~ t !!

duz
m~ t !

ˆgx j„$u~ t !%…1 igy j@$u~ t !%#‰

1@ux~ t !1 iuy~ t !#
m
dm11Pn@uz~ t !#

duz
m11~ t !

gz j~$u~ t !%!J l j~ t !, ~2.16!

where the components of the tensorg are

gxx50, gxy5uz /z, gxz52uy /z,

gyx52uz /z, gyy50, gyz5ux /z, ~2.17!

gzx5uy /z, gzy52ux /z, gzz50.

On averaging the stochastic equation~2.16! noting Eq.~2.13!, we have

2tD
d

dt
Xnm5

1

kT Hm~ux1 iuy!
m21

dmPn~uz!

duz
m F2

]

]ux
V2 i

]

]uy
V1~ux1 iuy!S u• ]

]u
VD G

1~ux1 iuy!
m
dm11Pn~uz!

duz
m11 F2

]

]uz
V1uzS u• ]

]u
VD G J

1z2gk j
]

]uk
Fm~ux1 iuy!

m21
dmPn~uz!

duz
m ~gx j1 igy j!1~ux1 iuy!

m
dm11Pn~uz!

duz
m11 gz jG , ~2.18!

where

tD5
z

2kT
~2.19!

is the Debye relaxation time. We remark thatux ,uy ,uz in Eq. ~2.18! andux(t),uy(t),uz(t) in Eqs.~2.7!–~2.9! have different
meanings, namely,ux(t),uy(t),uz(t) in Eqs. ~2.7!–~2.9! are stochastic variables whileux ,uy ,uz in Eq. ~2.18! are the sharp
~definite! valuesuk(t)5uk at time t. Instead of using different symbols for the two quantities we have distinguished sharp
values at timet from stochastic variables by deleting the time argument, as in Ref.@7#. The right-hand side of Eq.~2.18!
consists of two terms, namely, thedeterministicdrift and thenoise-induced~or spurious! drift. These terms have been
evaluated elsewhere@7,16#.

The quantitiesXnm in Eq. ~2.18! are in general functions ofuk , which are themselves random variables with probability
density functionW such thatWduk is the probability of findinguk in the interval (uk ,uk1duk). Therefore in order to obtain
equations for the moments which govern the relaxation dynamics of the system we must also average Eq.~2.18! over the
probability density functionW @8#. We have

2tD
d

dt
^Xnm&1n~n11!^Xnm&5

1

2kT~2n11! FnKXn11m11S ]

]ux
V2 i

]

]uy
VD L 1~n11!KXn21m11S ]

]ux
V2 i

]

]uy
VD L G

2
1

2kT~2n11! Fn~n2m11!~n2m12!KXn11m21S ]

]ux
V1 i

]

]uy
VD L

1~n11!~n1m21!~n1m!KXn21m21S ]

]ux
V1 i

]

]uy
VD L G

1
1

kT~2n11! Fn~n2m11!KXn11m

]

]uz
VL 2~n11!~n1m!KXn21m

]

]uz
VL G , ~2.20!
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where the angular brackets designate the averages overW.
Now, let us suppose that a strong constant electric fieldE0

applied along thez axis is suddenly switched on at timet50.
Our aim is to calculate the exact analytic solutions for the
nonlinear response of relaxation processes customarily mea-
sured by experiment and arising from an assembly of nonin-
teracting molecules. Equation~2.20! can be considerably
simplified on noting that the vector~]/m]u!V has only az
component, if the geometric axes of the molecule are chosen
to be coincident with those of the molecular polarizability
tensor, namely,

]

m]u
V52SE01

~a12a2!

m
E0
2uzD k. ~2.21!

Using the recurrence relation between associated Legendre
functions@19#

~2n11!xPn
m~x!5~n2m11!Pn11

m ~x!1~n1m!Pn21
m ~x!,

and substituting Eq.~2.21! into Eq. ~2.20!, we obtain a five-
term recurrence equation

2tD
d

dt
^Xnm&1Fn~n11!22s

n~n11!23m2

~2n21!~2n13!G^Xnm&

5jF ~n11!~n1m!

2n11
^Xn21m&2

n~n2m11!

2n11
^Xn11m&G

12sF ~n11!~n1m!~n1m21!

~2n21!~2n11!
^Xn22m&

2
n~n2m11!~n2m12!

~2n11!~2n13!
^Xn12m&G , ~2.22!

where

j5
mE0

kT
, s5

~a12a2!E0
2

2kT
. ~2.23!

The time-dependent quantities appropriate to dielectric
and Kerr effect relaxation are the electric polarization

P~ t !5mN0^P1~cosq!&~ t !5mN0@^P1~cosq!&~`!2 f 1~ t !#
~2.24!

and the electric birefringence function

K~ t !5
2pN0~a1

o2a2
o!

n̄
^P2~cosq!&~ t !

5
2pN0~a1

o2a2
o!

n̄
@^P2~cosq!&~`!2 f 2~ t !#,

~2.25!

whereN0 is the concentration of molecules,a 1
o anda 2

o are
the components of the optical polarizability due to the elec-
tric field of the light beam,n̄ is the mean refractive index,
and

f n~ t !5^Pn~cosq!&~`!2^Pn~cosq!&~ t !

3^Pn~cosq!&~`!••• ~2.26!

is the relaxation function of ordern. Moreover, another
quantity which can be measured experimentally is the relax-
ation timetn defined as the area under the normalized relax-
ation function, namely,

tn5E
0

` f n~ t !

f n~0!
dt. ~2.27!

Having switched on the constant electric fieldE0 the sys-
tem will tend ast→` to a new equilibrium state with the
Boltzmann distribution function

W0~q!5C expS 2
V

kTD5C exp~j cosq1s cos2q!,

~2.28!

whereC is the normalizing constant. The equilibrium aver-
ages of the spherical harmonics satisfy the recurrence rela-
tions ~stationary state!

F122s
123m2/n~n11!

~2n21!~2n13! G^Xnm&0

5jF ~n1m!

n~2n11!
^Xn21m&02

~n2m11!

~n11!~2n11!
^Xn11m&0G

12sF ~n1m!~n1m21!

n~2n21!~2n11!
^Xn22m&0

2
~n2m11!~n2m12!

~n11!~2n11!~2n13!
^Xn12m&0G , ~2.29!

where ^ &0 designates the equilibrium values averaged over
the distribution function~2.28!.

On settingm50, we obtain from Eqs.~2.20! and ~2.22!
the hierarchy of differential-recurrence relations for the re-
laxation functions, namely,

2tD
n~n11!

d

dt
f n~ t !1F12

2s

~2n21!~2n13!G f n~ t !
5

j

2n11
@ f n21~ t !2 f n11~ t !#

12sF ~n21!

~2n21!~2n11!
f n22~ t !

2
~n12!

~2n11!~2n13!
f n12~ t !G , n51,2,...,

~2.30!

where f n(t) is given by Eq.~2.26!.
An equivalent system of equations has been derived in

Refs. @3,5,6# starting from the underlying Fokker-Planck
equation. It should be noted that similar equations appear in
the theory of dielectric relaxation of nematic liquid crystals
@7,11,20# and magnetic relaxation of single domain ferro-
magnetic particles@10,14,21–25#. In Refs. @7,10–14# we
have developed an analytical method of evaluating the dy-
namic characteristics of the linear response of various physi-
cal systems governed by Eq.~2.30! and the particular cases
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j50 ands50. Here we shall apply this approach to evaluate
the corresponding nonlinear responses.

III. EVALUATION OF THE RELAXATION TIME
FOR j50

This is a nonlinear problem concerning the rise transient
and relaxation time of the induced dipole Kerr effect, which
was recently investigated in detail by De´jardin, Blaise, and
Coffey @15#. However, below we reexamine this problem
and present a solution which has the merit of being consid-
erably simpler than that previously derived. Here the quan-
tity of interest is the induced dipole relaxation time. Equation
~2.30! can be considerably simplified and reduced to a three-
term recurrence relation as follows. We have

2tD
n~n11!

d

dt
f n~ t !1F122s

1

~2n21!~2n13!G f n~ t !
52sF ~n21!

~2n21!~2n11!
f n22~ t !

2
~n12!

~2n11!~2n13!
f n12~ t !G ~3.1!

with

f 0~ t !50. ~3.2!

Since the reduced potential is of the forms cos2q, only the
even Legendre polynomials will contribute to the initial con-
ditions. These are

f 2n~0!5^P2n~cosq!&~`!

5
*0

pP2n~cosq!es cos2q sinqdq

*0
pescos2qsinqdq

5
snG~n1 1

2 !M ~n1 1
2 ,2n1 3

2 ,s!

2G~2n1 3
2 !M ~ 1

2 ,
3
2 ,s!

, ~3.3!

f 2n21~0!50, ~3.4!

where G(z) is the gamma function@19#, M (a,b,z) is the
confluent hypergeometric~Kummer! function defined as@19#

M ~a,b,z!511
a

b

z

1!
1
a~a11!

b~b11!

z2

2!
1
a~a11!~a12!

b~b11!~b12!

z3

3!

1••• . ~3.5!

Here ^P2n~cosq!&~0!50 because at timet50 no field is
present.

On applying the Laplace transform to Eq.~3.1! we obtain
the algebraic equation

f̃ n~s!

f̃ n22~s!
F 2tDs

n~n11!
112

2s

~2n21!~2n13!

1
2s~n12!

~2n11!~2n13!

f̃ n12~s!

f̃ n~s!
G

5
2tD

n~n11!

f n~0!

f̃ n22~s!
1
2s~n21!

4n221
, ~3.6!

where

f̃ n~s!5E
0

`

f n~ t !e
2stdt. ~3.7!

Following Refs.@7,10,11#, we seek the solution of Eq.~3.6!
in the form

f̃ n~s!5 f̃ n22Sn~s!1qn~s!, ~3.8!

where the continued fractionSn(s), defined as

Sn~s!5

2s~n21!

4n221

2tDs

n~n11!
112

2s

~2n21!~2n13!
1

2s~n12!

~2n11!~2n13!
Sn12~s!

, ~3.9!

is the solution of the homogeneous Eq.~3.6! @with f n~0!50#.
As demonstrated in Ref.@6#, the solution of the homoge-

neous equation~3.6! allows one to evaluate the Laplace
transform of^P2~cosq!&(t), which is

E
0

`

^P2~cosq!&~ t !e2stdt5
S2~s!

s
.

However in order to obtain the Kerr effect relaxation time
from Eq. ~2.27! we must obtain a solution of the inhomoge-
neous Eq.~2.30!.

On substituting Eq.~3.8! into Eq. ~3.6! and using Eq.
~3.9!, we have

qn5FtDs anf n~0!2bnqn12GSn~s!, ~3.10!

where

an5
4n221

n~n221!
, bn5

~n12!~2n21!

~n21!~2n13!
. ~3.11!
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Thus,

f̃ n~s!5H f̃ n22~s!1
tD
s

anf n~0!2bnqn12JSn~s!.

~3.12!

Since all the relaxation functions with odd indices are
equal to zero@see Eq.~3.4!#, we can solve Eq.~3.1! for even
n only. In particular forn52 we have

f̃ 2~s!5H 5tD
2s

f 2~0!2
12

7
q4JS2~s!. ~3.13!

We obtain by iterating Eq.~3.10! for n54,6 and so on in Eq.
~3.13!,

f̃ 2~s!5
3tD
2s (

n51

`

~21!n11f 2n~0!a2n)
k51

n

b2k22S2k~s!

5
3AptD
8s (

n51

`

~21!n11
~4n11!G~n!

G~n13/2!
f 2n~0!

3)
k51

n

S2k~s!. ~3.14!

The Kerr effect relaxation timet2, defined from Eq.~2.27!
for n52 is

t25
*0

` f 2~ t !dt

f 2~0!
5
f̃ 2~0!

f 2~0!
,

so that from Eq.~3.14! we have

t25
3AptD
8s f 2~0!

3 (
n51

`

~21!n11
~4n11!G~n!

G~n13/2!
f 2n~0!)

k51

n

S2k~0!,

~3.15!

whereS̃n~0! is given by Eq.~3.9! at s50.
Noting that the equilibrium averages^Pn~cosq!&~`! sat-

isfy Eq. ~2.29! for m50 with j50, we have

Sn~0!5
^Pn~cosq!&~`!

^Pn22~cosq!&~`!
. ~3.16!

Taking into account Eq.~3.17!, the initial conditionsf 2n~0!
are

f 2n~0!5S2n~0!S2n22~0!...S2~0!5)
k51

n

S2k~0!. ~3.17!

Thus on using Eqs.~3.3! and ~3.17!, we obtain from Eq.
~3.15! the exact analytical solution for the relaxation time,
namely,

t25
45ptD

64M ~1/2,3/2,s!M ~3/2,7/2,s! (
n51

` S 2
s2

4 D n21

3
~4n11!G~2n!M2~n11/2,2n13/2,s!

~2n11!G2~2n13/2!
~3.18!

We remark that Eq.~35! of Ref. @15# differs in form from Eq.
~3.18!, however, it can be reduced to Eq.~3.18!. We also
remark that all the confluent hypergeometric functions ap-
pearing in Eq.~3.18! may be expressed in terms of the more
familiar error function of imaginary argument, viz.,

erf i ~x!5
2

Ap
E
0

x

et
2
dt.

In particular~@26#, pp. 580 and 581!

M ~ 1
2 ,

3
2 ,z!5

1

2 S p

z D 1/2erf i ~Az!,

M ~ 3
2 ,

7
2 ,z!5

15

8z2 F3ez2 312z

2 S p

z D 1/2erf i ~Az!G .
Equations for the otherM functions occurring in Eq.~3.18!
may be obtained from Table 7.11.2 of Ref.@26# and the
recurrence relations for the confluent hypergeometric func-
tion.

In the limit s→0, on using the Taylor expansion~3.5!, we
obtain

t2
tD

'
1

3
1

2

63
s2

212

33 075
s21O~s3!. ~3.19!

In the opposite limitss→6`, on using the asymptotic ex-
pansion of the confluent hypergeometric function@19#

M ~a,b,z!;
eipaz2aG~b!

G~b2a! F11OS 1

2zD G
1
ezza2bG~b!

G~a! F11OS 1zD G , ~3.20!

we have

t2
tD

;
3Ap

8s F4(
n50

`

~21!n
G~n12!

G~n1 5
2 !

1 (
n50

`

~21!n
G~n11!

G~n1 5
2 !

G
5

1

2s
@42F1~1,2;

5
2 ;21!12F1~1,1;

5
2 ;21!#

5
3

2s
, for s.0 ~3.21!

and

t2
tD

;
3

Apusu
F (
n50

`

~21!n
G~n1 3

2 !

~2n13!G~n12!

1 (
n50

`

~21!n
G~n1 3

2 !

~2n12!G~n12!
G

5
3

4usu F23 3F2~1,
3
2 ,

3
2 ;2,

5
2 ;21!13F2~1,1,

3
2 ;2,2;21!G

5
3~12 ln 2!

usu
for s,0. ~3.22!
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Here we have used the following equations for the hypergeo-
metric functionsqFp(a1 ,...aq ;b1 ,...bp ;z) @26#:

2F1~1,1;
5
2 ;z!5

3

z F12S 12z

z D 1/2 arcsinAzG ,
2F1~1,2;

5
2 ;z!5

3

2z F arcsinAzAz~12z!
21G , ~3.23!

3F2~1,1,
3
2 ;2,2;z!5

4

z
ln
2~12A12z!

z
,

3F2~1,
3
2 ,

3
2 ;2,

5
2 ;z!5

6

z FarcsinAzAz
21G . ~3.24!

The behavior of the relaxation timet2 as a function ofs is
shown in Fig. 1 fors values in the range220,s,20. For
positive s values this positive Kerr-effect relaxation time
passes through a maximum at a certain value ofs before
decreasing monotonically to zero with increasings as a re-
sult already obtained by Watanabe and Morita@6# and Dé-
jardin, Blaise, and Coffey@15#. For negatives values, thet2
decays monotonically to zero with increasingusu. Moreover,
one can see that the asymptotic Eqs.~3.21! and~3.22! closely
fit the exact solution fors.6 ands,210. The surprising
increase int2 at intermediate electric fields was also pre-
dicted from a numerical solution of Eq.~3.1! and observed
experimentally by Tolles@27#.

IV. EVALUATION OF THE RELAXATION TIMES
FOR s50

If the contribution of the induced dipole moment is neg-
ligible in comparison with that of the permanent dipole mo-
ment we have, on puttings50 in Eq. ~2.30!,

2tD
d

dt
f n~ t !1n~n11! f n~ t !

5
jn~n11!

~2n11!
@ f n21~ t !2 f n11~ t !#. ~4.1!

The initial conditions are therefore given by

f n~0!5E
0

p

Pn~cosq!W0~q!sinq dq5
I n11/2~j!

I 1/2~j!
, ~4.2!

whereW0~q! is the equilibrium Boltzmann distribution func-
tion

W0~q!5C expS ~m•E0!

kT D5
j

4psh~j!
exp~j cosq!,

~4.3!

and I n(z) is the modified Bessel function of the first kind
@19#.

On applying the Laplace transform to Eq.~4.1!, we obtain

@2tDs1n~n11!# f̃ n~s!5
jn~n11!

~2n11!
@ f̃ n21~s!2 f̃ n11~s!#

12tDf n~0!. ~4.4!

The exact analytic solution of Eq.~4.4! is in like manner
~see also@7,12#!:

f̃ n~s!5 f̃ n21~s!Sn~s!1
2tD

j (
k51

`

~21!k11

3
~2n12k21!

~n1k21!~n1k!
f n1k21~0! )

m5n

n1k21

Sm~s!.

~4.5!

In particular forn51 andn52 we have

f̃ 1~s!5
2tD

j (
n51

`

~21!n11
~2n11!

n~n11!
f n~0!)

k51

n

Sk~s!,

~4.6!

f̃ 2~s!5 f̃ 1~s!S2~s!1
2tD

j (
n52

`

~21!n
~2n11!

n~n11!

3 f n~0!)
k52

n

Sk~s!

5
3tD

j
f 1~0!S1~s!S2~s!1

2tD
j

@12S1~s!S2~s!#

3 (
n52

`

~21!n
~2n11!

n~n11!
f n~0!(

k52

n

Sk~s!, ~4.7!

where the continued fractionSn(s) is given by

Sn~s!5
j

2tDs~2n11!

n~n11!
12n111jSn11~s!

. ~4.8!

FIG. 1. Relaxation timet2 as a function ofs ~solid line! at
tD51. The dashed lines are the asymptotic dependences given by
Eqs.~3.21! and ~3.22!.
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The present problem has also been considered by
Watanabe and Morita@6#. However, they did not give exact
expressions for the relaxation times, nor did they solve the
three-term recurrence relations for the polarization and rise
transient in continued fraction form. As shown in Ref.@6#,
the solution of the homogeneous equation~4.4! allows one to
evaluate the Laplace transform of̂P1~cosq!&(t) and
^P2~cosq!&(t), which is in our notation

E
0

`

^P1~cosq!&~ t !e2stdt5
S1~s!

s
, ~4.9!

E
0

`

^P2~cosq!&~ t !e2stdt5
1

s F12
3

j
~11stD!S1~s!G .

~4.10!

Using the definition of the relaxation time, namely,

tn5
f̃ n~0!

f n~0!
~n51,2!, ~4.11!

we have from Eqs.~4.6! and ~4.7!

t15
2tD

j (
n51

`

~21!n11
~2n11! f n~0!

n~n11! f 1~0! )
k51

n

Sn~0!,

~4.12!

t25t11
2tD

j (
n52

`

~21!n
~2n11! f n~0!

n~n11! f 2~0! )
k52

n

Sk~0!,

~4.13!

where

Sn~0!5
j

2n111jSn11~0!
5
I n11/2~j!

I n21/2~j!
, ~4.14!

since the modified Bessel functionsI n(z) satisfy the recur-
rence relation@19#

I n21~z!2I n11~z!5
2n

z
I n~z!,

which can be represented as the continued fraction

I n~z!

I n21~z!
5

z

2n1z
I n11~z!

I n~z!

.

We remark that the modified Bessel functions of the second
kind Kn(z) will also satisfy this recurrence relation. How-
ever, they must be discarded as a solution of Eq.~4.8! as they
are infinite atz50.

On substituting Eq.~4.14! into Eqs.~4.12! and~4.13!, we
obtain

t15
2tD

jI 1/2~j!I 3/2~j! (
n51

`

~21!n11
~2n11!

n~n11!
I n11/2
2 ~j!,

~4.15!

t25t11
2tD

jI 3/2~j!I 5/2~j! (
n52

`

~21!n
~2n11!

n~n11!
I n11/2
2 ~j!.

~4.16!

In the limit j→0 on using the Taylor expansion@19#

I n~z!5S z2D
n

(
k50

`
~z/2!2k

k!G~k1n11!
,

we have

t1
tD

'12
4

45
j21

89

9450
j41O~j6!,

t2
tD

'
4

3
2

13

126
j21

673

66150
j41O~j6!. ~4.17!

In the opposite limitj→`, on using the asymptotic expan-
sion

I n~z!;
ez

A2zp
F11OS 1zD G , ~4.18!

we find

t1
tD

;
2

j
, ~4.19!

t2
tD

;
3

j
. ~4.20!

The behavior of the relaxation timest1 andt2 as functions
of j is shown in Fig. 2. Botht1 and t2 decrease monotoni-
cally to zero with increasingj. One can see in this figure that
the asymptotic Eqs.~4.19! and ~4.20! closely fit the exact
solution forj.5.

FIG. 2. Relaxation timest1 ~curve 1! and t2 ~curve 2! as a
function of j at tD51. The dashed lines are the asymptotic depen-
dences given by Eqs.~4.19! and ~4.20!.
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V. EVALUATION OF THE RELAXATION FUNCTIONS AND RELAXATION TIMES IN THE GENERAL CASE

Equation~2.30! can be transformed into the matrix three-term differential-recurrence equation

tD
d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1Qn
1Cn11~ t !, ~5.1!

if we arrange it as follows@7,14#:

tD
d

dt S f 2n21~ t !
f 2n~ t !

D5S 4sn~n21!~2n21!

~4n21!~4n23!

0

jn~2n21!

~4n21!

2sn~2n21!~2n11!

~4n21!~4n11!

D S f 2n23~ t !
f 2n22~ t !

D

1S n~2n21!F 2s

~4n23!~4n11!
21G

jn~2n11!

~4n11!

2
jn~2n21!

~4n21!

n~2n11!F 2s

~4n21!~4n13!
21G D S f 2n21~ t !

f 2n~ t !
D

1S 2
2sn~2n21!~2n11!

~4n21!~4n11!

2
jn~2n11!

~4n11!

0

2
4sn~n11!~2n11!

~4n11!~4n13!
D S f 2n11~ t !

f 2n12~ t !
D . ~5.2!

On applying the general method of solution of the matrix three-term recurrence equation~5.1!, suggested in Refs.@7, 13##, we
obtain a solution for the Laplace transformC̃1(s) in terms of matrix continued fractions

S f̃ 1~s!

f̃ 2~s!D 5tD@tDsI2Q12Q1
1S2~s!#21HC1~0!1 (

n52

`

)
k52

n

Qk21
1 Sk~s!~Qk

2!21Cn~0!J , ~5.3!

whereI is the 232 identity matrix,Qn ,Q n
6 are the 232 matrices given in Eq.~5.2!, the matrix continued fractionSn(s) is

defined as

Sn~s!5@tDsI2Qn2Qn
1Sn11~s!#21Qn

2 . ~5.4!

The initial value vectors

Cn~0!5S f 2n21~0!

f 2n~0! D5S ^P2n21~cosq!&0
^P2n~cosq!&0

D ~5.5!

may be evaluated from the recurrence relation

F12
2s

~2n21!~2n13!G^Pn&05
j

2n11
@^Pn21&02^Pn11&0#1F 2s~n21!

~2n21!~2n11!
^Pn22&02

2s~n12!

~2n11!~2n13!
^Pn12&0G ,

~5.6!

where the three first members of the hierarchy are@7,13#

^P0&051,

^P1&05
1

AsF ~cothj11!DS As1
j

2As
D 1~cothj21!DS As2

j

2As
D G2

j

2s
,

^P2&05

3

2 S cothj2
j

2s D
AsF ~cothj11!DS As1

j

2As
D 1~cothj21!DS As2

j

2As
D G 1

3j2

8s22
3

4s
2
1

2
.
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Here

D~x!5
Ap

2
e2x2erfi ~x!5e2x2E

0

x

et
2
dt.

Equation~5.6! follows from Eq.~2.29! atm50. It should be
noted however that this upward iteration is unstable and one
should use it with caution.

However the initial value vectorsCn~0! can be evaluated
more efficiently with the aid of matrix continued fractions.
Thus, let us transform Eq.~5.6! to the matrix form

Qn
2S ^P2n23~cosq!&0

^P2n22~cosq!&0
D1QnS ^P2n21~cosq!&0

^P2n~cosq!&0
D

1Qn
1S ^P2n11~cosq!&0

^P2n12~cosq!&0
D50

or

Qn
2Cn21~0!1QnCn~0!1Qn

1Cn11~0!50. ~5.7!

The solution of Eq.~5.7! is then given by

Cn~0!5@2Qn2Qn
1Sn11~0!#21Qn

2Cn21~0!

5Sn~0!Cn21~0!

5Sn~0!Sn21~0!...S1~0!S 01D ~n51,2...!.

~5.8!

In particular, forn51 we have

C1~0!5S f 1~0!

f 2~0! D5S ^P1~cosq!&0
^P2~cosq!&0

D5S1~0!S 01D . ~5.9!

We can now evaluate the relaxation timest1 andt2 from
Eqs.~5.3! and ~5.9! ~see Figs. 3 and 4!. We remark that the
solution in the form of Eq.~5.3! is mainly needed for the

calculation of the relaxation times. The Laplace transforms
of ^P1~cosq!&(t) and ^P2~cosq!&(t) have a simpler repre-
sentation as

S E
0

`

^P1~cosq!&~ t !e2stdt

E
0

`

^P2~cosq!&~ t !e2stdt
D 5s21S1~s!S 01D . ~5.10!

On taking into account Eqs.~2.26!, ~5.10!, and~5.9!, we
can simplify Eq.~5.3! as follows:

S f̃ 1~s!

f̃ 2~s!
D 5s21@S1~0!2S1~s!#S 01D . ~5.11!

Thus, in order to calculate the nonlinear dielectric and dy-
namic Kerr effect step-on responses we simply need to
evaluate the matrix continued fractionS1(s).

VI. RESULTS AND DISCUSSION

The behavior of the real and imaginary parts of the one-
sided Fourier transforms of the normalized relaxation func-
tions, defined as

xn~v!5
f̃ n~ iv!

tDf n~0!
, ~6.1!

is shown in Figs. 5–8. Here the spectra evaluated from the
exact solutions given by Eqs.~3.14!, ~4.7!, and ~4.8!, are
compared with the Lorentz spectrum

xDn~v!5
tn /tD
11 ivtn

, ~6.2!

wheretn are the relaxation times calculated from Eqs.~3.18!,
~4.1!, and~4.15!. Equation~6.2! corresponds to the represen-
tation of the relaxation functionsf n(t) by a purely exponen-
tial term

f n~ t !5 f n~0!e2t/tn. ~6.3!

It is apparent from Figs. 5–8 that Lorentzian behavior is
obtained for the spectrax1~v! for arbitraryj and ats'0 and

FIG. 3. Relaxation timet1 as a function ofj ands at 0.01,j,5
and 0.01,s,5 and attD51.

FIG. 4. Relaxation timet2 as a function ofj ands at 0.01,j,8
and 0.01,s,8 and attD51.
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x2~v! for arbitrarys andj50 ~cf. Ref. @15#!. Thus, in these
cases alone the relaxation functionsf 1(t) and f 2(t) can be
approximated by a single exponential. In all other cases the
decay of the relaxation functionsf n(t) has a more compli-
cated behavior. This may be explained as follows. The relax-
ation dynamics in the potential given by Eq.~2.5! ~which has
in general two potential wells! is determined by two relax-
ation processes. One relaxation~activation! process governs
the crossing of the potential barrier between positions of
equilibrium by a current of molecules. Another process de-
scribes orientational relaxation inside the wells. In the case
of nonpolarizable molecules, when the potential~2.5! trans-
forms to a single well, we observe one relaxation process
only. As is apparent from Figs. 3 and 4 the permanent dipole
contribution suppresses the activation process. A similar re-
sult has been obtained for the linear response in magnetic
relaxation of single domain ferromagnetic particles with high
anisotropy barriers in the presence of a strong constant mag-
netic field following an infinitesimal change in that field
@14#.

Thus, in the context of the rotational diffusion model the
switch-on nonlinear dielectric relaxation and dynamic Kerr
effect responses of an ensemble of noninteracting polar mol-
ecules can be evaluated from exact analytic equations. The
range of applicability of the results obtained isvtn'1, as
inertial effects are ignored in our model. In order to take into
account inertial effects in the theory one should consider the
inertial term in Eq.~2.2!. However, the calculation will now
become very much more complicated@7#.

The analytical treatment of the nonlinear dielectric relax-
ation and the transient electric birefrigence presented in the
paper can also be applied to other problems considered by
Watanabe and Morita@6#. In particular, our approach can be
extended to a homogeneous electric field suddenly applied to
a system in which a Maxwell-Boltzmann distribution of par-
ticle orientation has been established by another homoge-
neous electric field, and to a homogeneous electric field sud-
denly reversed or rapidly rotating. For all these problems the
hierarchy of differential-recurrence relations for averaged

FIG. 5. Real~curves 1,2,3! and imaginary~curves 18,28,38! parts
of the spectrumx1~v! of the normalized relaxation function ats55.
Curves 1,18, 2,28, and 3,38 correspond toj50.01, 1, and 5, respec-
tively.

FIG. 6. Real~curves 1,2,3! and imaginary~curves 18,28,38! parts
of the spectrumx2~v! of the normalized relaxation function at
s510. Curves 1,18, 2,28, and 3,38 correspond toj50.01, 1, and 5,
respectively. Filled circles and squares are the real and imaginary
parts of the spectrumxD2~v! of the normalized exponential relax-
ation function with the relaxation timet2 from Eq. ~3.18!.

FIG. 7. Real~curves 1,2,3! and imaginary~curves 18,28,38! parts
of the spectrumx1~v! of the normalized relaxation function atj52.
Curves 1,18, 2,28, and 3,38 correspond tos50.01, 5, and 10, re-
spectively. Filled circles and squares are the real and imaginary
parts of the spectrumxD1~v! of the normalized exponential relax-
ation function with the relaxation timet1 from Eq. ~4.14!.

FIG. 8. Real~curves 1,2,3! and imaginary~curves 18,28,38! parts
of the spectrumx2~v! of the normalized relaxation function atj52.
Curves 1,18, 2,28, and 3,38 correspond tos50.01, 5, and 10, re-
spectively. Filled circles and squares are the real and imaginary
parts of the spectrumxD2~v! of the normalized exponential relax-
ation function with the relaxation timet2 from Eq. ~4.15!.
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spherical harmonics~2.22! can always be reduced to the
three-term matrix equation~5.1! the solution of which is
given by Eq.~5.3!. All that remains is to evaluate the initial
value vectorsCn~0!.

Our approach can be used for the evaluation of the non-
linear response of analogous physical systems. In particular,
the results presented in Sec. V can also be applied with a
small modification to the calculation of the nonlinear dielec-
tric response of nematic liquid crystals and to the appropriate
nonlinear magnetic response of an assembly of single do-
main ferromagnetic particles. In the both cases the longitu-
dinal relaxation~dielectric and magnetic, respectively! of
these systems is governed by Eq.~5.2! with a different inter-
pretation for the parametersj ands ~for details see Refs.@7,
14,20,22,25#!. Again, the solution for the Laplace transforms
of appropriate relaxation functions describing the nonlinear
response of these systems is given by Eq.~5.3! with the
appropriate initial value vectorsCn~0!.
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APPENDIX: DERIVATION OF EQ. „2.13…

Noting that the rule for changing of variables in Stra-
tonovich differential equations is the same as in ordinary
analysis@18#, we obtain from Eq.~2.10! a stochastic equa-
tion for an arbitrary differentiable functionf „$j(t)%…:

d

dt
f „$j~ t !%…5hi„$j~ t !%,t…

]

]j i
f „$j~ t !%…

1gi j „$j~ t !%,t…
]

]j i
f „$j~ t !%…G j~ t !. ~A1!

We remark that from the mathematical point of view the
stochastic differential equation~A1! @just as Eq.~2.10!# with
the d-correlated Langevin forcesGi(t) is not completely de-
fined @7,18#. The most satisfactory interpretation of Eq.
~2.10! and ~A1! is as the stochastic integral equation@5,7#

j i~ t1t!5xi1E
0

t

hi„$j~ t1t8!%,t1t8…dt8

1ADE
0

t

gi j „$j~ t1t8!%,t1t8…dwj~ t8! ~A2!

f ~$j~ t1t!%!5 f ~$x%!1E
0

t

hi„$j~ t1t8!%,t1t8…

3
]

]j i
f „$j~ t1t8!%…dt8

1ADE
0

t

gi j „$j~ t1t8!%,t1t8…

3
]

]j i
f „$j~ t1t8!%)dwj~ t8…, ~A3!

where

wj~t!5
1

AD
E
t

t1t

G j~ t8!dt8,

the Stratonovich stochastic integral of a functionF is defined
as @5#

E
t

t1t

F~$j~ t8!%,t8!dwj~ t8!

5 lim
D→0

(
i50

n21

FS H j~ t i !1j~ t i11!

2 J , t i1t i11

2 D
3@wj~ t i11!2wj~ t i !#,

D5max~ t i112t i !, t5t0,t1,...,tn5t1t, ~A4!

$w(t)%5$w1(t),w2(t),...,wN(t)% is the Wiener process in
RN with the following properties:

wj~ t !50, E
0

t

wi~ t !dwj~ t !5td i j . ~A.5!

On supposing that the integrands in Eqs.~A2! and ~A3! can
be expanded in Taylor series, we obtain

j i~ t1t!5xi1E
0

t

hi~$x%,t1t8!dt8

1E
0

t

@jk~ t1t8!2xk#
]

]xk
hi~$x%,t1t8!dt8

1ADE
0

t

gi j ~$x%,t1t8!dwj~ t8!

1ADE
0

t

@jk~ t1t8!2xk#

3
]

]xk
gi j ~$x%,t1t8!dwj~ t8!, ~A6!
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f „$j~ t1t!%…5 f ~$x%!1E
0

t

hi~$x%,t1t8!
]

]xi
f ~$x%!dt8

1E
0

t

@jk~ t1t8!2xk#
]

]xk
Fhi~$x%,t1t8!

3
]

]xi
f ~$x%!Gdt81ADE

0

t

gi j ~$x%,t1t8!

3
]

]xi
f ~$x%!dwj~ t8!

1ADE
0

t

@jk~ t1t8!2xk#

3
]

]xk
Fgi j ~$x%,t1t8!

]

]xi
f ~$x%!Gdwj~ t8!

1••• . ~A7!

Following ~@5#, pp. 51–53! @namely, substitutingji(t1t8)
from Eq. ~A6! into Eq. ~A7!, then integrating and averaging

the equation so obtained taking account of the properties
~A5! and retaining only the terms proportional tot#, we ob-
tain

f „$j~ t1t!%…2 f ~$x%!

t
5hi~$x%,t1tQ i i i

~1!!
]

]xi
f ~$x%!

1Dgk j~$x%,t1tQ i jk
~2!Q i jk

~3!!
]

]xk

3Fgi j ~$x%,t1tQ i jk
~3!!

]

]xi
f ~$x%!G

1O~t!, ~A8!

where Q i jk
(n) are constants~0<Q i jk

(n)<1!. Taking the limit
t→0 in Eq. ~A8!, we have Eq.~2.13!.
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@2# J-L. Déjardin, Dynamic Kerr Effect~World Scientific, Sin-
gapore, 1995!.

@3# H. Benoit, Ann. Phys.~N.Y.! 6, 561 ~1951!.
@4# A. Morita, Phys. Rev. A34, 1499~1986!.
@5# H. Risken, The Fokker-Planck Equation~Springer, Berlin,

1984!.
@6# H. Watanabe and A. Morita, Adv. Chem. Phys.56, 255~1984!.
@7# W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron,The

Langevin Equation~World Scientific, Singapore, 1996!.
@8# M. S. Beevers, J. Crossley, D. C. Garrington, G. Williams, J.

Chem. Soc. Faraday Trans. 2,72, 1482~1976!.
@9# W. T. Coffey, Yu. P. Kalmykov, E. S. Massawe, and J. T.

Waldron, J. Chem. Phys.99, 4011~1993!.
@10# W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, E. S. Mas-

sawe, and J. T. Waldron, Phys. Rev. E49, 1869~1994!.
@11# W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, and J. T.

Waldron, Physica A213, 551 ~1994!.
@12# J. T. Waldron, Yu. P. Kalmykov, and W. T. Coffey, Phys. Rev.

E 49, 3976~1994!.
@13# W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, Physica A

208, 462 ~1994!.
@14# W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, and J. T.

Waldron, Phys. Rev. B51, 15 947~1995!.
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