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Dynamic susceptibilities of an assembly of dipolar particles in an elastic environment
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Theoretical model to describe magnetodynamics of a ferrogel, i.e., an assembly of ferromagnetic nanopar-
ticles embedded in a gel, is proposed. The reorientations of the particles are determined by the influence of the
elastic matrix and the rotational Brownian motion. Due to the interplay between these two factors, the main
parameter characterizing the static magnetic susceptibility of the system is the ratio of the elastic modulus of
the matrix times particle volume to the thermal energy. It is shown that the main components of the dynamic
magnetic-susceptibility tensor are determined by the combinations of the reference rates of several processes
inherent to the system, namely, the elastic restoration of the particle orientation, Brownian rotary diffusion, and
viscous relaxation of the particle angular momentum. In the framework of the model, absorption of the energy
of an alternating external field by a ferrogel is studied. With allowance for the ever present interaction of elastic
and Brownian forces, the effective relaxation times for the longitudinal and transverse components of the
ferrogel magnetization are evaluated.
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I. INTRODUCTION

The properties of composites obtained by embedd
magnetic nanoparticles in easily deformable~soft! structures
~sometimes calledcomplex magnetic fluids)are rather fasci-
nating. On the one hand, having been incorporated into
pramolecular structures, such particles can produce
magnetically controlled~smart! materials, e.g., ferroliquid
crystals@1–3# or ferrogels@4,5#. On the other hand, whe
distributed over the bulk of the matrix in small amounts, t
same particles can be used as magnetically driven mech
cal microprobes thus allowing one to obtain information
the rheology of the carrier media on the scale compara
with the particle size, that is*10 nm @6#. Indeed, single-
domain particles possess a high specific dipolar momen
that the response of the system to a probing ac field ma
easily recorded even with relatively unsophisticated equ
ment. However, one needs an appropriate theoretical fra
work to analyze the data, i.e., it is necessary to unders
what physical mechanisms contribute essentially to the m
netodynamic spectra of soft magnetic systems.

When a disperse system is sufficiently dilute—which
definitely so if the objective is to investigate the properties
the matrix itself—the main contribution to the spectra com
from the behavior ofindividualparticles. Unlike the situation
in more coarse suspensions, in nanosystems the orientat
dynamics is always a result of joint action of the determ
istic ~applied field, elasticity, and viscosity of the matrix! and
fluctuational~Brownian diffusion! factors. This circumstance
is of vital importance@6,7# for the understanding of the dy
namical spectra of complex magnetic fluids.

*Corresponding author. FAX:17 3422 336957. Email address
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In what follows we consider the orientational dynamics
an assembly of noninteracting Brownian dipolar particles
siding in an elastic matrix. We remark, that unlike the stud
@6,7# of fluid matrices with a nonequilibrium elasticity~the
Maxwell fluid!, our objective here is a magnetic spectrum
a ferrogel. Therefore, we consider a matrix that possess
true ~equilibrium! elasticity. The particles are assumed to
magnetically hard and the coupling of an individual partic
with the matrix is modeled by an orientational potential th
is a quadratic function with respect to the angular deviat
of the particle magnetic moment from its equilibrium dire
tion. The latter is imposed by the matrix, and depending
the history of the sample, two limiting cases are conceiva
~a! If the gel forms in the presence of a strong magnetic fie
this direction would be the same for all the particles. Th
the system is macroscopically anisotropic~uniaxial! and is
characterized by a symmetrical susceptibility tensor with t
main components—the longitudinal (x i) and transverse
(x') ones—which are found by summation of the corr
sponding single-particle contributions.~b! If the gel was cre-
ated in the absence of a field, the particle axes distributio
random, and the equilibrium direction of a particle magne
moment exists only as a mesoscopic parameter. Then,
system as a whole is isotropic, and its macroscopic sus
tibility is constructed according to the well-known rule, s
Ref. @8#, for example, as a weighted averagex̄5 1

3 (x i
12x').

As a dissipative part of the particle interaction with th
matrix, we take the viscous friction in the Stokes approxim
tion. To simplify the theory, the particle is modeled by
plane rotator, so that its only degree of freedom is the an
q describing the deviation of the particle dipolar momentm
from its equilibrium direction. Such a scheme is in comm
use, see Ref.@9#, for example, in the theory of dielectri
response of polar fluids.
©2001 The American Physical Society02-1
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II. REFERENCE TIMES

The equation of the orientational motion for a partic
with a moment of inertiaI writes

I q̈52
]U

]q
1Q~ t !, ~1!

where the first term on the right-hand side is the regu
torque produced by the elastic environment of the part
and the external fieldH. Assuming a harmonic~quadratic!
potential, we have

U5 1
2 Kq22m~H i cosq1H' sinq!, ~2!

where the indices of the field components correspond to
directionsq50 andq5p/2.

In the Stokes approximation, the torqueQ in Eq. ~1! in-
corporates the usual friction torque and the white noise@9#:

Q~ t !52zq̇1y~ t !, ^y~ t !y~ t8!&52zTd~ t2t8!, ~3!

where the termy(t) accounts for the thermal motion of
particle at temperatureT ~the Boltzmann constant is set her
after to unity!. We assume that by the order of magnitu
z56hv, i.e., z is the drag coefficient of a spherical partic
of volumev in a liquid with the viscosityh.

With the elastic potential~2!, the dissipation mechanism
~3!, and in the absence of an external field, Eq.~1! has the
form of the Langevin equation for a torsional oscillator

I q̈1zq̇1Kq5y~ t !. ~4!

The ratio of the inertial torque to the viscous one in Eq.~4!
defines the first of the reference times of the problem

t I5I /z. ~5!

During this interval the particle angular velocity thermalize
i.e., the velocity distribution function assumes the Maxw
form @10#.

In an elastic carrier medium, one may introduce the na
ral frequency of the torsional oscillation of the particle

vK5AK/I 51/AtKt I . ~6!

In combination witht I it defines the reference time of elast
restoration, namely,

tK5z/K5~vK
2 t I !

21. ~7!

Since the Brownian particle is in equilibrium with its en
vironment~heat bath!, one can introduce one more referen
time scale defining the thermal frequency

vT5AT/I 51/AtDt I . ~8!

In turn, combination ofvT with t I renders the well-known
Debye time of the thermal orientational relaxation

tD5z/T. ~9!
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Thus, the model system posseses three independen
rameters with the dimensions of time. Moreover, as is sho
below, in a typical nanosuspension~magnetic fluid, for ex-
ample! these times differ from one another by several ord
of magnitude. Under such circumstances, it should be
pected that the response of the system to an external
H(t) essentially depends on the interrelation between
period of the excitation and the reference times of the pr
lem. However, before commencing the analysis of the p
sible response modes, let us check the range of applicab
for the Stokes approximation. As is well known@11#, this
approach resumes a small Reynolds number. For a partic
a sizea moving with the velocityu5va, wherev is the
oscillation frequency, this condition is

Re;r fau/h;rpa5v/z;vt I!1, ~10!

where we set that the density of the liquid matrixr f and that
of the particlerp have the same order of magnitude. Subs
tuting the reference frequencies—elasticvK from Eq. ~6!
and thermalvT from Eq. ~8!—it appears that the Stoke
approximation~10! is valid as long as

t I!tK , tD , ~11!

i.e., the inertial time should be the smallest of all the ref
ence times.

It is convenient to introduce the dimensionless times
the Debye~thermal! and elastic relaxation as

tD5tD /t I5z2/TI, tK5tK /t I5z2/KI , ~12!

so that condition~11! corresponds totD , tK@1. The param-
eter tD for suspensions has often been estimated, and
conditiontD@1 may be written as the inequalityT/ah2!1,
which for T&103 K and h*1022 P holds as soon asa
*1029 cm, i.e., under all the conceivable conditions.

To estimate the timetK , we first remark that the elasticity
modulus of a polymeric gel is of the high elasticity~entropy!
origin, so that in order of magnitude it isE;nT, wheren is
the number of links in a unit volume. From dimension
considerations it followsK;Ev;nTv, that is the elastic
constant is the temperature times the number of links in
volume of the matrix that is equal to that of the particle. W
assume that the particle ‘‘senses’’ the presence of an ela
matrix if, having been embedded there, it dislodges at le
one link, that is whennv;1. ThenK*T, so thattK has the
same order of magnitude astD , for which case the inequality
~11! is already proven. For the particles of the sizea
;10 nm, the conditionnv;1 rendersE;0.4 atm, so that
the value obtained, namely,n;1018 cm23 is close to that of
real gel-formation thresholds@12# in polymers. However,
this estimation needs to be used carefully since, in a cer
sense, it yields the upper boundary of the tested range
deed, it assumes that the particle interacts with the ma
only in a steric ~excluded-volume! way. Therefore, this
mechanism becomes effective only for the networks that
so dense that on the average the interchain cell is too s
for a particle. On the other hand, had the particles been
2-2
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DYNAMIC SUSCEPTIBILITIES OF AN ASSEMBLY OF . . . PHYSICAL REVIEW E 63 031402
sorbed on the junctions or chain segments of the network
value ofnv may become much lower than unity.

III. EQUILIBRIUM FLUCTUATIONS OF THE
ORIENTATION ANGLE AND ANGULAR VELOCITY

In order to obtain the equilibrium correlation function fo
the orientation angle, we use the Langevin equation~4!. The
general solution of the homogeneous equation is sough
the formq(t)}exp(lt) yielding the characteristic equation

l21
1

t I
l1vK

2 50, ~13!

whose roots, determining the rates of the relaxation p
cesses in the system, are

l1,252
1

2t I
@16A124~vKt I !

2#. ~14!

Using definition~12! for the dimensionless elastic time an
the fact that in the physically relevant rangetK@1, we may
simplify Eq. ~14!, by setting

A124~vKt I !
25A124/tK'122/tK22/tK

2 . ~15!

This transforms formulas~14! into

l152
1

t I
S 12

1

tK
D , l252

1

tK
S 11

1

tK
D , ~16!

which clearly demonstrates a marked difference in the m
nitude of the roots.

The general solution of Eq.~4! with allowance for the
initial conditionsq(0)5q and q̇(0)5V is

q~ t !5
q

Dl
~l1el2t2l2el1t!1

V

Dl
~el1t2el2t!

1
1

IDlE0

t

~expl1~ t2u!2expl2~ t2u!!y~u!du,

~17!

where Dl5l12l2. To find the correlation function, we
multiply Eq. ~17! by the initial valueq of the orientational
angle and take the average over the equilibrium ensembl
equilibrium one haŝ q2&5T/K, ^qV&50, and ^qy(u)&
50 for all u.0. The nonzero contribution comes only fro
the first term so that

^q~ t !q~0!&5
T

KDl
~l1el2t2l2el1t!

5
T

K H 12~K/2I !t2 for t!t I

exp~2t/tK! for t@t I . ~18!

Another way to obtain the correlation function that
more cumbersome but very useful methodically, is as
lows. Since we construct a description for a stationary st
expression~17! should hold in the long-time range as we
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In this limit l1,2t@1, so that in the general formula~17! one
needs to retain only the solution of the inhomogeneous pr
lem

q~ t !5
1

IDlE2`

t

~el1(t2u)2el2(t2u)!y~u!du

[E
2`

t

f ~ t2u!y~u!du. ~19!

Then the correlation function takes the form of a doub
integral:

^q~ t !q~0!&5E
2`

t

duE
2`

0

du8 f ~ t2u! f ~2u8!^y~u!y~u8!&,

which is easily taken with the aid of Eq.~3!. The result of
integration once again leads to formula~18! as it must do.

Differentiating Eq.~17! with respect to time, one finds th
time dependence of the angular velocity. The expression
its correlator

^V~ t !V~0!&5
^V2&
Dl

~l1el1t2l2el2t!'
2T

I
exp~2t/t I !

~20!

is obtained just as Eq.~18! and confirms the definition of the
relaxation timet I given above.

Comparing formulas~18! and ~20! one finds that in the
physically relevant range of material parameters (tK@t I)
the relaxation goes in two stages. First, in a rather fast m
ner ~during a time;t I) the equilibrium with respect to the
particle angular velocities settles. Then, in a much slow
fashion~on the time scale;tK) the equilibrium with respect
to the orientation angle is achieved. Note that we refer o
to monotonic relaxation. An oscillatory regime, although fo
mally not forbidden, requires the conditionvKt I*1, which,
see Sec. II, cannot be realized within a physically meaning
domain of material parameters. For example, in order to
vKt I*1 in a gel, the number of junctions should have be
increased by four orders of magnitude while the viscos
should have been kept constant at a value close to tha
water.

To end this section, we find the asymptotic form of t
correlation function for small times. To do that, we expa
q(t) in a Taylor series, multiply the expression obtained
the initial valueq, and take the average over the statistic
ensemble. The result is

^q~ t !q&5^q2&1^q̇q&t1 1
2 ^q̈q&t2. ~21!

Due to ergodicity, ensemble averaging is equivalent to t
over time, so that̂qq̇&50 and^qq̈&52^q̇2&. Therefore,

^q~ t !q&5^q2&2 1
2 ^V2&t2, t!t I . ~22!

This expression is usually called the dynamic limit of t
angular correlation function. It could be derived also fro
the general equation~18! in the small-time limit. We remark
that since expression~22! follows from the ergodicity hy-
2-3
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pothesis and the assumption that the observation tim
short, it should hold for more complicated models as we

IV. STATIC SUSCEPTIBILITIES

The equilibrium distribution function for the particles i
as usual, given by the Gibbs law. For the potential~2! and
with the standard expression12 IV2 for the kinetic energy,
one has

W0~q,V!5Z21 expF2
IV2

2T
2

Kq2

2T

1
m

T
~H i cosq1H' sinq!G , ~23!

whereZ is the partition function determined by the norma
izing condition*dq*dV W051.

First, we consider the longitudinal static susceptibili
i.e., the one along the axis imposed by the elastic poten
For simplicity, we assume that this direction is the same
all the particles of the assembly. In particular, this means
even in the absence of the probing field the system ha
nonzero magnetization

M5mn^cosq&,

wheren is the particle number density. Switching on a ma
netic fieldH i , imparts an additional orientation to the dipo
moments, so that the magnetization acquires the increm

dM i~H !5mn@^cosq&H2^cosq&#. ~24!

Here the angular brackets denote the statistical averaging
the subscript indicates the value of the magnetic field
which it is taken. The absence of a subscript means the
of zero field. In the approximation, linear inH and with
allowance for the normalizing condition, the equilibrium di
tribution function~23! transforms into

W05A K

2pT
expS 2

Kq2

2T D
3F11

mH i

T
~cosq2^cosq&!1

mH'

T
sinqG ,

~25!

and the longitudinal susceptibility writes

x i~0!5 lim
H i→0

dM i

H i
5

nm2

T
@^cos2 q&2^cosq&2#. ~26!

The equilibrium averages are evaluated easily with the
of the formula

^cosNq&5A K

2pTE2`

`

dq expS 2
Kq2

2T
1 iNq D

5expS 2
N2T

2K D . ~27!
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Applying this to Eq.~26!, one gets

x i~0!5
nm2

T
e2T/KFcoshS T

K D21G . ~28!

In a similar way, forH5H' we get the transverse stat
susceptibility

x'~0!5
nm2

T
^sin2 q&5

nm2

T
e2T/K sinhS T

K D . ~29!

For vanishing elasticity (K!T), expressions~28! and
~29! tend to the same limit

x i~0!5x'~0!5nm2/2T,

which, as it must do, coincides with the already known res
for a system of free rotators@6,10#.

In the opposite case of high rigidity (K@T) it follows
from formula ~29! that the transverse susceptibility tends
the finite athermic limit

x'~0!5nm2/K, K@T. ~30!

For the longitudinal susceptibility the rigorous athermic lim
is zero. According to Eq.~28!, it is approached as

x i~0!5nm2T/2K2, K@T. ~31!

Indeed, in a rigid gel, the particle is almost perfectly orient
along the macroscopic anisotropy axis on account of its c
pling to the matrix only. Therefore, application of a magne
field along the same direction can do practically nothing
the further enhancement of orientation. From Eq.~1!, in the
static fluctuation-free (Q50) limit one arrives at the stan
dard equilibrium condition

]U/]q50. ~32!

For the longitudinal response (H5H i) Eq. ~32! yields

Kq1mH i sinq50.

This equation does not have a solution that is linear w
respect to the field strength implying that the longitudin
susceptibility becomes nonzero only when thermal fluct
tions are taken into account, see expression~31!. For the
transverse susceptibility the finite athermic limit can be,
course, be obtained directly from Eq.~32! as well. At H
5H' one has

Kq5mH' cosq'mH' .

Expressing q from here and substituting it intox'

5nmq/H' , formula ~30! is recovered.

V. DYNAMIC SUSCEPTIBILITY

The linear response of any system to a weak probing fi
H(t) can be represented@8# as an integral
2-4
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M ~ t !5E
0

`

dt K~t!H~ t2t!. ~33!

This relationship explicitly takes into account the causa
principle, according to which the memory functionK~t!
must vanish in the long-time limit.K~`!50. For a harmonic
signal H(t)5he2 ivt relation ~33! allows to define a gener
alized linear susceptibility as

M ~ t !5he2 ivtE
0

`

dt eivtK~t!5he2 ivtx~v!. ~34!

The memory functionK is associated with particula
physical characteristics of a system using the correspond
principle. Setting the above-found static susceptibility—s
Eqs. ~28! and ~29!—equal to the limit of Eq.~34! at v50,
one finds

xa~0!5
nm2

T
^xa

2&5E
0

`

dt Ka[E
0

`

dtS 2
dGa

dt D5Ga~0!,

~35!

where, according to Eqs.~28! and ~29! we set

xa5H cosq2^cosq& for a5i

sinq for a5'.
~36!

Thus, as the fluctuation-dissipation theorem predicts~see,
Ref. @10#, for example!, one finds that the linear susceptib
ity of the system is determined by the equilibrium dipo
correlation function. The final expression forx in the nor-
malized form is

xa~v!/xa~0!511 ivE
0

`

dteivtGa~t! ~37!

with

Gi5
^cosq t cosq&2^cosq&2

^cos2 q&2^cosq&2
, G'5

^sinq t sinq&2

^sin2 q&2
.

~38!

As it should be, in an isotropic system that has no rigid
(K50), one getŝ cosq&50 and thusGi5G' .

In the model under discussion, both components of
dipolar correlation function could be calculated exactly@10#.
An essential simplification arises because the Langevin e
tion ~4! is linear in the phase variableq. Since the white
noisey(t) is a Gaussian random process, the variableq(t)
has the same statistics on account of the linearity of
Langevin equation. Taking the Gaussian average, one fi

^eix&5^cosx&5exp@2 1
2 ^x2&#. ~39!

With the aid of formula~39! and standard trigonometric re
lationships, we have for the dipolar correlation functions

Gi~ t !5
cosĥq tq&21

cosĥq2&21
, G'~ t !5

sinĥ q tq&

sinĥ q2&
. ~40!
03140
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The general expression~18! for the angular correlation
function has been derived in Sec. III. Its substitution into E
~40! enables one to write down the dependence of the s
ceptibility on the material parameters of the system as
integral ~37!. The latter, however, cannot be evaluated
closed form. Thus one cannot derive a simple analytical
pression forx valid for an arbitrary set of material param
eters. However, a number of important simplifications a
possible. To arrive at them, we represent Eq.~18! as

^q tq&5^q2&H 11b

2b
exp@2g~12b!t#

2
12b

2b
exp@2g~11b!t#J

5^q2&exp~2gt !
sinh~bt1c!

sinhc
, ~41!

where we denoteg[1/(2t I), b[A124/tK[tanhc, andb
[gb.

To be specific, we take the transverse correlation funct
from Eq.~40!. Expanding it in the Taylor series with respe
to the angular correlation function and using the binom
expansion we have

sinĥ q tq&5 (
n50

`
^q2&2n11

~2n11!!

exp@2g~2n11!t#

~2 sinhc!2n11

3 (
k50

2n11

C2n11
k ~21!k exp@~2n1122k!

3~bt1c!#. ~42!

Taking into account the relation between the parameterc
andb, Eq. ~42! may be rewritten as

sinĥ q tq&5 (
n50

` F ~11b!^q2&
2b G2n11 1

~2n11!!

3 (
k50

2n11 S b21

b11D k

C2n11
k exp~2gn,k

' t ! ~43!

with

^q2&5T/K, gn,k
' 5g@~2n11!~12b!12kb#.

Substituting Eq.~43! in Eq. ~37! and integrating with respec
to time, we obtain

x'~v!

x'~0!
511

iv

sinĥ q2&
(
n50

` F ~11b!^q2&
2b G2n11 1

~2n11!!

3 (
k50

2n11 S b21

b11D k C2n11
k

gn,k
' 2 iv

. ~44!

In like manner, the longitudinal susceptibility may be tran
formed ~see also Ref.@10#! and takes the form
2-5
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x i~v!

x i~0!
511

iv

cosĥq2&21
(
n51

` F ~11b!^q2&
2b G2n 1

~2n!!

3 (
k50

2n S b21

b11D k C2n
k

gn,k
i 2 iv

, ~45!

where

gn,k
i 5g@2n~12b!12kb#.

VI. HIGH-RIGIDITY ÕLOW-TEMPERATURE LIMIT

Formulas~44! and ~45! are very convenient in order t
analyze the caseT,K, which is natural to callthe high-
rigidity limit . As the above estimation shows, for a polyme
gel the onset of this inequality is roughly equivalent to t
condition that the particle-matrix steric interaction is esta
lished.

Apparently, in the high-rigidity limit the macroscopic an
isotropy is most pronounced, and the two susceptibility co
ponents differ considerably. To obtain the approximate f
mula for x' , we retain in expansion~44! only the term
linear in the parameterT/K and make use of the approxima
relationb5A124/tK'122/tK . The result is

x'~v!

x'~0!
511 ivF S 11

1

tK
D 1

g0,0
' 2 iv

2
1

tK~g0,1
' 2 iv!

G
5

1

12 ivtK
1

ivtK

~ tK2 ivtK!~12 ivtK!

.
1

12 ivtK2v2t ItK

~tK@t I !. ~46!

Therefore, in the lowest order the relation describing
transverse susceptibility of a suspension in a rigid (T!K)
gel has the structure of the Rocard formula. The latter typ
frequency dependence is well known in molecular spect
copy, see Ref.@10#, for example. We would like to remind
however, that in the physically relevant range of mate
parameters (tK@t I) Eq. ~46!, despite the fact that it is qua
dratic in v, does not display any resonance and its beha
is close to the Debye susceptibility. The main function of t
additional term in the denominator is to prevent the div
gence of the integral absorption~‘‘ultraviolet catastrophe’’!
by ensuring the correct behavior atv→`. Its subsidiary ef-
fect is that at some high frequency the real part ofx' , al-
ready being very small, becomes negative, see insets in F
1 and 2. We remark also that formula~46! can be derived
directly from the Langevin equation~4! if we neglect fluc-
tuations.

In order to evaluate the temperature correction to
transverse susceptibility, we sum Eq.~44! up ton51 allow-
ing the smallness of the parametert I /tK . This yields

x'~v!

x'~0!
5

1

12 ivtK2v2t ItK
F12

ivtK~T/K !2

3~32 ivtK! G . ~47!
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Calculation~with the same accuracy! of the longitudinal sus-
ceptibility with the aid of Eq.~45! yields

x i~v!

x i~0!
5

1

12 1
2 ivtK2 1

2 v2t ItK
F12

ivtK~T/K !2

12~42 ivtK!G .
~48!

Comparison of formulas~47! and ~48! shows, as one migh
have expected, that in the dynamic limit~see Ref.@13#, for
example! the longitudinal magnetization relaxes twice as fa
as the transverse onet i5t'/25tK/2. The corrections}T2

to the Rocard-like dispersion factors in Eqs.~47! and~48! are
new. For both orientations, they considerably improve
quality of the approximation. In Fig. 1 we show the results
numerically exact evaluation of the transverse susceptib
by Eq.~44! against the analytic dependence~47!. We remark
that although the approximation is formally justified only f

FIG. 1. ~a! Transverse susceptibility forT/K,2; solid curves
~left to right! show the real part by the exact formula~44! at, re-
spectively,T/K50.5, 1.0, and 1.5; dashed curve shows the res
obtained with the approximate formula~47! for T/K51.5; for lower
values, exact and approximate curves do not resolve within
scale of the figure. Inset shows the details of the curve behavio
the high-frequency end.~b! Imaginary part of the transverse susce
tibility for the same values ofT/K.
2-6
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T,K, the curves by Eq.~47! resemble the exact one rath
closely atT/K*1 as well in the whole frequency range.

It should be noted that formulas~47! and ~48! are easily
derived from the approximate dipolar correlation function
The pertinent relationships follow from Eq.~40! when for-
mula ~18! and the smallness of the parametersT/K and
t I /tK are taken into account:

G'~ t !5e2t/tK1
t I

tK
~e2t/tK2e2t/t I !

1
T2

6K2
~e23t/tK2e2t/tK!,

~49!

Gi~ t !5e22t/tK12
t I

tK
~e22t/tK2e2t/t I !

1
T2

12K2
~e24t/tK2e22t/tK!.

FIG. 2. ~a! Transverse susceptibility forT/K>3; solid curves
~left to right! show the real part by the exact formula~44! at, re-
spectively,T/K53,5,10,20; dashed curves show the result obtai
with the approximate formula~52! for T/K53 and 5; for higher
values, the exact and approximate curves do not resolve within
scale of the figure. Inset shows the details of the curve behavio
the high-frequency end.~b! Imaginary part of the transverse susce
tibility for the same values ofT/K.
03140
.

Substituting Eq.~49! in Eq. ~37!, after integration and some
rearrangements one recovers Eqs.~47! and ~48!.

VII. LOW-RIGIDITY ÕHIGH-TEMPERATURE LIMIT

The opposite relation between elasticity and temperat
i.e., T@K, corresponds to weak elastic effects so that
particles are almost free. In this limit the difference betwe
the correlation functions~40! tends to zero exponentially:

Gi~ t !5G'~ t !5exp@^q tq&2^q2&#, ~50!

indicating that the transverse and longitudinal susceptibili
should approach a common limiting form.

The angle correlation function entering Eq.~50! is given
by a general formula~18!. We evaluate it with the quadrati
accuracy in the small parametert I /tK and consider the in-
termediate time asymptoticst!tK→`. The result is

^q tq&2^q2&52
t

tD
1

t I

tD
~12e2t/t I !

1
t I

2

tDtK
@322t/t I1

1
2 ~ t/t I !

2

2~ t/t I13!e2t/t I#. ~51!

The first two terms of this expansion constitute the we
known expression for the angular correlation function o
free particle@10#. The effect of rigidity is rendered by the las
term, note that in the limit considered it contains an ad
tional power of the small parametert I /tK .

Substituting Eq.~51! in Eq. ~50! and integrating the dipo-
lar correlation function so obtained, one finds on the basis
the linear-response theory~37! the approximate expression

x~v!

x~0!
5

1

12 ivtD2v2t ItD
F11

K

T

ivtD

~12 ivtD!2G , T@K.

~52!

In deriving this equation, we have taken into account
smallness oft I /tD . Note that in the limit under consider
ation the subscript ofx is not relevant.

As formula ~52! shows, at high temperatures the ma
term of the magnetic susceptibility of a ferrogel on
again—compare Eqs.~47! and ~48!—assumes the Rocar
form. However, the parameter in this new equation istD and
not tK , so that now Eq.~52! is akin to the susceptibility of a
dipolar suspension with a simple viscous carrier@10#.

The exact dependenciesx'(v) by Eq. ~44! for T/K>3
are presented in Fig. 2 in comparison with the approxim
expression~52!. Here the temperature-dependent correct
to the Rocard form is}1/T. As the graphs show, the ap
proximation obtained works fairly well down toT/K*5 in
the whole frequency range.

According to Fig. 2~a!, the real part ofx in a weakly
elastic medium does not differ qualitatively from that re
dered by the standard Rocard factor. However, for the ima
nary part, see Fig. 2~b!, one easily notices the difference
Namely, at any finite temperature, the maximum of the
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sorption line is lowered in comparison with the Rocard~or
equivalent Debye! level that in our units is 0.5 and is tem
perature independent.

This deformation of the absorption peak is also freque
dependent. Separating the imaginary part of Eq.~52! and
neglecting its difference from the Debye one, i.e., sett
v2t ItD!1, we have

x9~v!

x~0!
5

X

11X2 F11
K

T

123X2

~11X2!2G , ~53!

whereX5vtD . From Eq.~53! it follows that the ‘‘elastic’’
correction is positive at low frequencies, passes through z
at X51/A3 and becomes negative. Inside the negative reg
at X5A5/3 it assumes minimum of29K/16T.

Therefore, in the high-temperature limit the anisotropy
the susceptibility is exponentially small in the reduced el
ticity t I /tK . However, the contribution from the elast
mechanism to the isotropic part of the susceptibility is line
in this parameter. Analysis of the limiting temperature ca
shows that in each of them the susceptibility may be writ
in the Rocard form. As one expects, the effective relaxat
time in the high-temperature case coincides with the De
time of orientational diffusiontD , while in the low-
temperature limit it tends to the elastic relaxation timetK .

The overall behavior of the transverse susceptibility in
wide temperature range is presented in Fig. 3. As is appa
from Fig. 3~b!, the maximum of the absorption line goe
down and atT/K'3 falls as low as 0.41, that is about 80
of the pure Debye value, which in the units used here is

In Fig. 3~c! the curvesx'(v) are plotted in double-
logarithmic coordinates. This reveals the presence of
asymptotics in the absorption line: the low-frequency wi
that depends linearly on the frequency, and the hi
frequency end where the dependence is cubic. In what
lows we derive the corresponding approximate expressio

VIII. HIGH-FREQUENCY ASYMPTOTICS

In the high-frequency range, the behavior of the corre
tion functions at short times is essential. Hence, it is con
nient to expand the angular correlator in Taylor series w
respect to time and to cut off all the terms higher thant3.
This yields

^q tq&5^q2&2
vT

2t2

2
1

vT
2t3

6t I
, t→0. ~54!

With this expansion, using formula~40!, we obtain the trans-
verse dipolar correlation function as

G'~ t !512S 12
t

3t I
D vT

2t2

2
cotĥ q2&. ~55!

Substituting this in Eq.~37! and performing some simpl
rearrangements, the desired asymptotic expression for
susceptibility is
03140
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x'~v!

x'~0!
5S 211

i

vt I
DvT

2

v2
cothS T

K D , v→`. ~56!

The longitudinal susceptibility is found in like manner as

FIG. 3. ~a! Real parts of the transverse susceptibility curves~left
to right! at, respectively,T/K50.1, 1, 2, 3, 5, 10 and 20.~b! Imagi-
nary part of the transverse susceptibility for the same values ofT/K.
~c! Imaginary part of the transverse susceptibility for the same v
ues ofT/K double-logarithmic plot.
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x i~v!

x i~0!
5S 211

i

vt I
DvT

2

v2
cothS T

2K D , v→`. ~57!

Formulas~56! and ~57! confirm that the high-frequenc
asymptotics are 1/v2 for the real part of the susceptibilit
and 1/v3 for the imaginary one. In the high-temperature lim
(T@K) the coth function in Eq.~56! tends to unity, so tha
the high-frequency asymptotics of the absorption line is p
portional to the thermal frequencyvT

25T/I . In the low-
temperature limit, that isT!K, the function coth(T/K)
→K/T, so that the asymptotic value of absorption is prop
tional to KvT

2/T5vK
2 5K/I , i.e., eigenfrequency of the

elasticity-driven oscillations. These conclusions are illu
trated in Figs. 4~a!, 4~b!, where these asymptotics are com
pared to the exact results obtained with the aid of Eq.~44!.

IX. LOW-FREQUENCY ASYMPTOTICS. EFFECTIVE
RELAXATION TIMES

From the basic formula~37! of linear-response theory i
follows that the low-frequency wing of the absorption lin
may be described by the expression

FIG. 4. ~a! High-frequency asymptotics of the transverse s
ceptibility. Solid lines are obtained by the numerically exact so
tion of Eq. ~44!, dashed ones by the approximate formula~56!; the
values ofT/K are 0.5, 5 and 20 ranging from top to bottom in~a!
and reversely in~b!.
03140
-

-

-

xa~v!

xa~0!
511 ivta

eff , v→0, ~58!

where

ta
eff[E

0

`

Ga~ t !dt ~59!

is the effective time characterizing the final stage of the eq
librium settling. Formula~58! explicitly shows that the low-
frequency asymptotics arex'

8 } const (v) andx'9 }v.
Comparing expression~58! with the general formula~44!

at v→0 we have

FIG. 5. ~a! Effective relaxation times: transversal~1! and longi-
tudinal ~2!, scaled withtK , as functions of the reduced temperatu
T/K ~solid lines!; the corresponding intuitive expressions~sums of
partial relaxation rates! are shown by dashed lines.~b! The same
relaxation times, scaled withtD , as functions of the inverse tem
peratureK/T ~solid lines!; the intuitive expressions are shown b
dashed lines.

-
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t'
eff5

1

sinh~T/K ! (
n50

` S ~11b!^q2&
2b D 2n11

3 (
k50

2n11 S b21

b11D k 1

k! ~2n112k!!gn,k
'

, ~60!

where

b5A124/tK, gn,k
' 5@~2n11!~12b!12kb#/2t I .

We reiterate that Eq.~60! is valid for arbitrary values of
material parameters. For the case of interesttK@t I , formula
~60! simplifies considerably and takes the form

t'
eff

tK
'

1

sinh~T/K ! (
n50

`
~T/K !2n11

~2n11!~2n11!!

5
1

sinh~T/K !
E

0

T/K sinhu

u
du5

Sinhi~T/K!

sinh~T/K !
, ~61!

thus reducing it to one hyperbolic integral function. In lik
manner for the effective time of longitudinal relaxation, o
has

t i
eff

tK
'

1

cosh~T/K !21 (
n51

`
~T/K !2n

2n2n!

5
1

cosh~T/K !21E0

T/K cosh~u!21

u
du. ~62!

The temperature behavior of the effective relaxation tim
is presented in Figs. 5~a! and 5~b!. For comparison, in the
dashed lines we show the results of the intuitive approa
where the average rate (t̃eff)21 of a process that undergoe
in several stages is assumed to be the sum of the partial r
i.e., inverse relaxation times. For our case

~ t̃'
eff!215tK

211tD
21 , ~ t̃ i

eff!2152tK
211tD

21 . ~63!

In Fig. 5~a! the effective times are scaled with the elas
time tK that dominates in the low-temperature case. Acco
a

L.

03140
s

h,

es,

-

ingly, atT→0 ~dynamic limit, no fluctuations! both effective
times are finite, the transverse time being exactly twice
large as the longitudinal one. As the temperature gro
and/or the rigidity decreases, the relaxation by orientatio
diffusion becomes more efficient, and the effective time go
down tending to the Debye expression}1/T.

In Fig. 5~b! the same effective times are presented sca
with the Debye time tD , which controls the high-
temperature case. Here the abscissa axis is inverted with
spect to that of Fig. 5~a! so that the left end of the plo
corresponds now to a high-temperature case. There the m
roscopic anisotropy of the gel is very weak, and both eff
tive times approach each other exponentially, see Eq.~50!. In
the low-temperature rangeK/T@1, the dynamic limit, where
t'52t i , comes in effect, compare Fig. 5~a!. However, in
none of the cases does the intuitive approach~63! seem ap-
propriate to describe the real effective timesta

eff except
maybe in trivial limitsT/K→0 andK/T→0.

Finally, we present the asymptotic relations for the effe
tive times obtained from Eqs.~61! and ~62!:

t'
eff55 tKF12

T2

9K2G for T!K

tDF11
K

T G for T@K,

~64!

t i
eff55

1
2 tKF12

T2

24K2G for T!K

tDF11
K

T G for T@K.
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