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Precessional effects in the linear dynamic susceptibility of uniaxial
superparamagnets: Dependence of the ac response on the dissipation parameter
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It is shown that the low-frequency relaxation spectrum of the linear dynamic susceptibility of uniaxial single
domain particles with a uniform magnetic field applied at an oblique angle to the easy axis can be used to
deduce the value of the damping constant.
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A single domain ferromagnetic particle is characteriz
by an internal potential, having several local states of eq
librium with potential barriers between them. If the particl
are small~; 10 nm! so that the potential barriers are rel
tively low, the magnetization vectorM may cross over the
barriers due to thermal agitation. The ensuing thermal in
bility of the magnetization results in the phenomenon
superparamagnetism.1 This problem is important in informa
tion storage, rock magnetism, and the magnetization reve
observed in isolated ferromagnetic nanoparticles.2 The dy-
namics of the magnetizationM of a superparamagnetic pa
ticle is usually described by the Landau-Lifshitz or Gilbe
~LLG! equation3,4

2tN

d

dt
M5b~a21Ms@M3H#1@@M3H#3M # !, ~1!

where

tN5
b~11a2!Ms

2ga
~2!

is the free Brownian motion diffusion time of the magne
moment,a is the dimensionless damping~dissipation! con-
stant,Ms is the saturation magnetization,g is the gyromag-
netic ratio,b5v/(kT), v is the volume of the particle, an
the magnetic fieldH consists of applied fields~Zeeman
term!, the anisotropy fieldHa , and a random white-nois
field accounting for the thermal fluctuations of the magne
zation of an individual particle. Here the internal magnetiz
tion of a particle is assumed homogeneous. Surface
‘‘memory’’ effects are also omitted in Eq.~1!. These as-
sumptions are discussed elsewhere~e.g., Refs. 5–7!. Further-
more, the description of the relaxation processes in the c
text of Eq. ~1! does not take into account effects such
macroscopic quantum tunneling~a mechanism of magnetiza
tion reversal suggested in Ref. 1!. These effects are impor
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tant at very low temperatures8,9 and necessitate an appropr
ate quantum-mechanical treatment, e.g., Refs. 10–12.

The various regimes of relaxation ofM in superparamag-
netic particles are governed bya. In general,a is difficult to
estimate theoretically, although a few experimental meth
of measuringa @such as ferromagnetic resonance~FMR! and
the angular variation of the switching field, e.g., Refs. 7 a
8# have been proposed. Yet another complementary and
tentially promising technique, viz., thenonlinearresponse of
single domain particles to alternating~ac! stimuli, has
recently13 been suggested in order to evaluatea. In particu-
lar, it has been shown in Ref. 13 that for uniaxial partic
having a strong ac field applied at an anglec to the easy~Z!
axis, the nonlinear response truncated at terms cubic in th
field is particularly sensitive to the value ofa. On the other
hand, thelinear response to the ac field does not exhibit su
behavior. The explanation of this is reasonably straightf
ward: the linear ac response may simply be calculated fr
the after effect solution following the removal of a wea
uniform field applied at an anglec to the easy axis. Thus th
superparamagnetic~greatest! relaxation timet is that of a
particle with simple uniaxial anisotropy, which is given b
Brown’s4 expression

t;tN

Ap

2s3/2es, s@1, ~3!

wheres5bK is the barrier height parameter andK is the
anisotropy constant. Equation~3! yields the approximate po
sition of the peak in the imaginary partx9~v! of the complex
susceptibilityx(v)5x8(v)2 ix9(v) in linear response. The
most striking feature of Eq.~3! is thatt when normalized by
tN is independent ofa. The physical reason for this is th
lack of coupling between the transverse and longitudi
modes in the linear response when a weak ac field alon
applied at an anglec to theZ axis. If one proceeds, howeve
©2001 The American Physical Society11-1
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to the next term in the response which yields the so-ca
third-order susceptibilityx (3)(v), then a strong dependenc
of the imaginary part ofx (3)(v) on a appears.13 The expla-
nation of this lies in the coupling between the longitudin
and transverse~or processional! modes in the nonlinear re
sponse. Thus one can evaluatea from measurements of th
nonlinear ac response.

Here unlike Ref. 13, we consider a uniaxial particle in
strong uniform fieldH0 applied at an anglec to the anisot-
ropy axis of the particle. Hence the system in the absenc
the ac perturbation unlike that of13 is nonaxially symmetric,
thus we expect precessional effects due to coupling of
transverse and longitudinal modes to appear even in the
ear response to a small ac fieldH(t) superimposed onH0 .
Indeed, the limiting values ofa, viz., a→` anda→0, cor-
respond to the high-damping and the low-damping limits
the Kramers escape rate theory.14 The coupling effect is
made manifest in the formulas for the Kramers escape rat
inverse of the greatest relaxation timet of the magnetization
for both intermediate to high damping~IHD! and very low
damping~VLD ! which apply to nonaxially symmetric poten
tials of the magnetocrystalline anisotropy5,6 ~see below!.

Now we recall that the Fokker-Planck equation~FPE! for
the probability density distributionW of M ~Ref. 4! corre-
sponding to Eq.~1! is4,15

2tN

]

]t
W5DW1b$a21u•@¹V3¹W#1¹•~W¹V!%,

~4!

where ¹ and D are the gradient and the Laplacian on t
surface of the unit sphere, respectively,u is the unit vector
directed alongM , and V(M ) is the free-energy density
Here, in the absence of the ac field,V is given by

bV52s@cos2 q12h~sinc cosw sinq1cosc cosq!#,
~5!

whereq and w are the polar and azimuthal angles, resp
tively, and h5MsH0 /(2K) is the dimensionless externa
field parameter. The free energy in Eq.~5! has a bistable
structure with minima atn1 andn2 separated by a potentia
barrier containing a saddle point atn0 .15 If ( a1

( i ) ,a2
( i ) ,a3

( i ))
denote the direction cosines ofM and M is close to a sta-
tionary pointni of the free energy, thenV(M ) can be ap-
proximated to second order ina ( i ) as4

V5Vi1
1

2
@c1

~ i !~a1
~ i !!21c2

~ i !~a2
~ i !!2#. ~6!

Substituting Eq.~6! into Eq.~5!, the FPE may be solved nea
the saddle point yielding4,15

t5t IHD;H V0

2pv0
@v1eb~V12V0!1v2eb~V22V0!#J 21

, ~7!

where v i
25g2Ms

22c1
( i )c2

( i )( i 51,2) and v0
25

2g2Ms
22c1

(0)c2
(0) are the squares of the well and saddle a

gular frequencies, respectively, and
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4tN
@2c1

~0!2c2
~0!1A~c2

~0!2c1
~0!!224a22c1

~0!c2
~0!#.

Equations forci
( j ) andVi are given elsewhere.15 Equation~7!

is similar to the IHD formula derived by Kramers14 and ap-
plies when the energy loss per cycle at the saddle point
ergy of the motion of the magnetic momentDE@kT. If
DE!kT~VLD !, we have for the escape from a sing
well5,16

t5tLD;
pkT

v1DE
eb~V02V1!. ~8!

@Here instead of numerical evaluation ofDE, we have used
an approximationDE'avuV0u ~Ref. 5!#. The IHD and VLD
limits correspond toa>1 anda<0.01, respectively. How-
ever, for crossover values ofa ~about a'0.1! neither the
IHD formula ~7! nor the VLD, Eq. ~8!, can yield reliable
quantitative estimates. Thus a more detailed analysis
necessary.17

Equations~7! and~8! applied to the potential given by Eq
~5! yield the greatest relaxation timet in the appropriate
limits ~IHD, VLD ! for a strong uniform fieldH0 applied at
an anglec to theZ axis 8,18; t is effectively identical to the
integral relaxation time~in linear response, the correlatio
time!19 if the strength ofH0 is smaller than the reduced crit
cal field hc at which depletion of the shallower of the tw
potential wells of the bistable potential occurs~for example,
hc'0.17 in the axially symmetrical case19!. As shown in
Refs. 8 and17, the asymptotes~7! and ~8! are in excellent
agreement with the exact numerical results from the FPE~4!.
Equations~7! and ~8! can also successfully reproduce th
experimental angular variation of the switching field for i
dividual Co and BaFeCoTiO particles and thus allows one
evaluatea.8

Equations~7! and ~8! for t, which now exhibit stronga
dependence, suggest that the frictional dependence of
relaxation process may also be observed and used for
evaluation ofa in the linear ac response of the system.
order to verify our conjectures concerning thea dependence
of the linear response to a small ac fieldH(t) ~i.e., assuming
bMsH!1!, we have calculated using linear-response the
the complex magnetic susceptibilityx~v! of the system. The
susceptibility was calculated by using a matrix continue
fraction solution20,21 of the system of moments@the expecta-
tion values of the spherical harmonics^Yl ,m&(t)# governing
the kinetics of the magnetizationM ~the moment system ca
be obtained either from the FPE or from the LL
equation22!. The details of the calculation can be foun
elsewhere20,21; it is assumed thatH(t) is directed alongH0 .
The plots of Re$x(v)% and log10@2Im$x(v)%# vs log10(vtN)
are shown in Figs. 1–3 for a wide range of frequency, b
field strength, and damping~the calculations were carried ou
for vbMs

2N051; N0 is the number of particles per unit vo
ume!. The results indicate that a marked dependence ofx~v!
on a exists and that three distinct dispersion bands appea
the spectrum. Furthermore, the characteristic frequency
the half-width of the low-frequency relaxation band~LRB!
are determined by the characteristic frequencyvob;t21 of
1-2
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the overbarrier relaxation mode. Asa decreases, this pea
shifts to higher frequencies and reaches its limiting va
tLD

21. In addition, a far weaker second relaxation peak
pears at high frequencies~HF!. This HF relaxation band
~HRB! is due to the intrawell modes@for c50 ands@1, the
characteristic frequency of this relaxation peak isvwell
'2s(11h)/tN ~Ref. 19!#. The third FMR peak due to the
excitation of transverse modes having frequencies clos
the precession frequencyvpr of the magnetization appear
only at low damping and strongly manifests itself at HF.
a decreases, the FMR peak shifts to higher frequencies s
vpr;a21. Moreover, atc50 or c5p, the FMR peak dis-
appears because the transverse modes no longer take p
the relaxation process. The dependence of the linear resp
on the bias-field strength is demonstrated in Fig. 3. Here,
effect of the depletion19,23of the shallower of the two poten
tial wells of a bistable potential~5! by a bias field is appar
ent: at fields above the critical fieldhc at which the depletion
occurs, it is possible to make the LF peak disappear~curves
3 and 38!. Such behavior ofx~v! implies that if one is inter-
ested solely in the low-frequency (vt<1) part of x~v!,

FIG. 1. Re$x(v)% vs log10(vtN) from the IHD (a51) to the
VLD ( a50.001) limits for s510, h50.1, andc5p/4. Curves
1–4: exact numerical calculations ofx~v! based on the results o
Refs. 20 and 21. Stars and filled circles: Eq.~9! with Dxhf'0.023
andt from Eqs.~7! and ~8!, respectively.

FIG. 2. The same as in Fig. 1 but for log10@2Im$x(v)%#.
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where the effect of the HF modes may be completely igno
~so that the relaxation of the magnetization at long times m
be approximated by a single exponential with the charac
istic time t!, then the Debye-like relaxation formula, viz.,

x~v!5
xst2Dxhf

11 ivt
1Dxhf , ~9!

yields an accurate description of the LF spectra~see Figs.
1–3!. Here t is given by Eqs.~7! and ~8! in the IHD and
VLD limits, respectively,xst5x(0) is the static susceptibil
ity, and Dxhf is the contribution of the HF transverse an
longitudinal modes. The values ofxst andDxhf depend onj,
c, and s and can be measured experimentally, calcula
numerically, and/or estimated theoretically~an example of
such theoretical estimations ofxst and Dxhf for c50 has
been given by Garanin19!. Our calculations indicate tha
Eqs.~7!–~9! yield an adequate description of the LF spec
for s>3.

We have demonstrated that it is unnecessary to reso
the nonlinear response in order to observe large precess
effects in the relaxation processes of uniaxial superparam
nets. All that is required is to superimpose a strong bias fi
H0 at an anglec to the easy axis of the uniaxial particle, thu
ensuring that the system is nonaxially symmetric, and the
calculate the linear response to a perturbing ac fieldH(t). It
follows that the nonaxial symmetry causes the various da
ing regimes~IHD and VLD! of the Kramers problem to ap
pear unlike in an axially symmetric potential, where the fo
mula for t @for example, Eq.~2!# is valid for all a because
t/tN is independent ofa. We remark that the intrinsica
dependence ofx~v! for the oblique field configuration serve
as a signature of the coupling between the longitudinal
precessional modes of the magnetization. Hence, it shoul
possible to determine the evasive damping coefficient fr
measurements of thelinear response, e.g., by fitting th
theory to the experimental LF dependence ofx~v! on the
angle c and the bias strengthH0 , so that the sole fitting

FIG. 3. log10@2Im$x(v)%# vs log10(vtN) for s510, c5p/4,
a51.0 ~IHD: solid lines 1, 2, and 3!, anda50.01 ~low damping:
dashed-dotted lines 18, 28, and 38!. Lines 1, 18(h50.01), 2, 28(h
50.17), and 3, 38(h50.4) are exact numerical calculations. Sta
and filled circles: Eqs.~9! with t from Eqs.~7! and~8!, respectively.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 64 012411
parameter isa. Just as in the nonlinear response,13 a can be
determined at differentT, yielding its temperature depen
dence. This is of importance because of its implications
the search for other mechanisms of magnetization revers
M ~e.g., macroscopic quantum tunneling9,27!, as a knowl-
edge ofa and itsT dependence allows the separation of t
various relaxation mechanisms. Moreover, such experim
are much more easily accomplished than those for the n
linear response of Ref. 13. The results we have obtai
suggest that the experimental measurements of linear
nonlinear susceptibility of fine particles~e.g., Refs. 24–26!
should be repeated for a strong bias-field configuration.

The results we have presented pertain to noninterac
superparamagnetic particles with easy axes oriented a
theZ axis of the laboratory system of coordinates. If the ea
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axes are randomly distributed in space, further averag
must be carried out in order to calculatex~v!. In the calcu-
lations, we have also assumed that all the particles are i
tical; in order to account for polydispersity, one must av
agex~v! over the appropriate distribution function~e.g., over
the particle volumes; see for details Refs. 25, 26, and!.
Furthermore, the neglect of interparticle interactions in
present model suggests that the results we have obtaine
applicable for systems where the effects of the dipole-dip
and exchange interactions may be ignored, such as indivi
nanoparticles~e.g., Refs. 2 and 8! and diluted solid suspen
sions of nanoparticles~e.g., Ref. 26!.
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