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It is shown how the existing theory of the dynamic Kerr effect and nonlinear dielectric relaxation based on
the noninertial Brownian rotation of noninteracting rigid dipolar particles may be generalized to take into
account interparticle interactions using the Maier-Saupe mean field potential. The results �available in simple
closed form� suggest that the frequency dependent nonlinear response provides a method of measuring the
Kramers escape rate �or in the analogous problem of magnetic relaxation of fine single domain ferromagnetic
particles, the superparamagnetic relaxation time�.
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A system in thermal equilibrium at temperature T dis-
turbed by an external stimulus evolves to a new equilibrium
�stationary� state. Moreover, if the energy stimulus is much
lower than the thermal energy kBT, linear �in the stimulus�
deviations of the expectation value of the relevant dynamical
variable in the stationary state are sufficient to evaluate the
generalized susceptibility �linear ac response� using appro-
priate equilibrium �stationary� correlation functions. The cal-
culation of the nonlinear stationary �ac� response even for
systems of noninteracting particles with a single coordinate
is, however, much more difficult because no connection be-
tween the transient and the ac responses exists. If interactions
are included the difficulties are compounded. Nonlinear di-
electric relaxation and the dynamic Kerr effect of permanent
dipoles in a mean field potential are naturally occurring ex-
amples.

In this context we remark that the orientational electric
polarization of noninteracting permanent dipoles in an ac
field E�t� treated by Debye �1� depends in the linear approxi-
mation in E�t� on the average over orientations of the Leg-
endre polynomial �P1�cos ����t� ,� being the polar angle of
the electric dipole moment vector �. Similar remarks apply
to the magnetization of blocked noninteracting ferrofluid par-
ticles with magnetic dipole moment � in ac magnetic fields
H�t� �2�. Subsequently �2–6� Debye’s calculation was gener-
alized to nonlinear responses. We mention �P2��t� governing
the Kerr effect response �KER� �3–5� and the nonlinear di-
electric effect �NLDE� �6,7� amending �P1��t� to O�E3�. The
conclusions are �to O�E2�� for the KER for a pure sinusoid
that the square law nonlinearity rectifies E�t� yielding a fre-
quency dependent dc response superimposed on which is the
dephased second harmonic �8�. In the NLDE, additional
terms in the fundamental and in the third harmonic appear in
�P1��t�. Experimental confirmation has been reported �7,9�.
The Debye theory may not be used for dense anisotropic
dipolar systems, where intermolecular interactions occur,
such as nematic liquid crystals. Here dielectric relaxation is
usually interpreted using as model the noninertial rotational
Brownian motion of a rodlike particle in an external potential
V �e.g., �6,10–12��. This model was used in Ref. �13�, where
the exact linear ac response is calculated in terms of contin-
ued fractions �using linear response theory �14�� for the
Maier-Saupe uniaxial anisotropy potential

V = − K cos2� , �1�

where K is the anisotropy constant. Exact solutions for the
nonlinear ac response in a uniaxial potential can also be ob-
tained by matrix continued fractions without using perturba-
tion theory �5,6�. However, that approach cannot yield
simple formulas for experimental comparison and, moreover,
it cannot provide an exact evolution equation for the ac re-
sponses for perturbation purposes. Preliminary steps toward
this were made in Refs. �2–6,15–18� for dielectric relaxation
of dipolar systems and for magnetic relaxation �superpara-
magnetism� of fine single domain ferromagnetic particles �in
most respects a replica of dielectric relaxation of nematics�.
Here we demonstrate how by calculating from perturbation
theory the linear ac response in the presence of E�t� one may
generate the KER and all higher order nonlinear responses.
The linear response comprising an infinity of relaxation
modes may be accurately represented by two modes, that of
low frequency arising from the slow barrier crossing of di-
poles and that of high frequency representing the infinity of
fast near-degenerate “intrawell” modes approximated as a
single high frequency mode. The analytical responses are
obtained utilizing the two-mode approximation for linear re-
sponse combined with Morita’s treatment �19� of nonlinear
response, showing how the distribution function induced by
a strong perturbing field may be calculated from the Green
functions in the absence of the perturbation, with linear re-
sponse theory as a special case.

The cornerstone of our calculation is the Smoluchowski
�Fokker-Planck� equation for the density W�� , t� of orienta-
tions of dipoles � on the surface of the unit sphere �1,4–6�

Ẇ = �LFP + Lext�t��W ,

where LFPW= �2�D�−1��W+�� · �W�V�� is the unperturbed
Fokker-Planck operator while LextW= �2�D�−1�� · �W�Vext�
is the Zeeman energy Vext=−�E ·�� contribution, and � and
� are the gradient and Laplacian on the surface of the unit
sphere. Here �= �kBT�−1 ,�D=�� /2 is the Debye relaxation
time for free diffusion, and � is the viscous drag coefficient.
Expanding W in the �Pn� yields �4–6�
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�Dḟn�t� + cnfn−2�t� + dnfn�t� + gnfn+2�t�

= ��t�an�fn−1�t� − fn+1�t�� , �2�

where fn�t�= �Pn�cos ����t� and ��t�=��E�t�, and all the co-
efficients are given, e.g., in Refs. �4–6�. One may write

fn�t� = fn
�0� + fn

�1��t� + fn
�2��t� + fn

�3��t� + ¯

�with the superscripts denoting the relevant order in E�t�� so
that

�Dḟn
�m��t� + cnfn−2

�m� �t� + dnfn
�m��t� + gnfn+2

�m� �t�

= ��t�an� fn−1
�m−1��t� − fn+1

�m−1��t�� . �3�

Thus to calculate the matrix element f2
�2��t�, i.e., the lowest

order approximation to the KER, we first determine
�f2n−1

�1� �t�� satisfying Eq. �3� with m=1. The exact solutions of
Eq. �3� for f2n−1

�1� �t� for the stationary response to ��t�=�ei	t

are given by continued fractions �5�. However, in order to
obtain analytical approximations, we use another method.
Suppose that a small probing field �1=��E1
1 applied
along the polar axis at t=−� is removed at t=0. The step-off
���t�=0 for t�0� solution of Eq. �3� for m=1 f2n−1,of f

�1� �t� is

f2n−1,of f
�1� �t� = �1
2n−1�1,2n−1�t� , �4�

where �1,2n−1�t� are the normalized equilibrium correlation
functions defined as

�k,m�t� =
�Pk�cos ��0��Pm�cos ��t���0 − �Pk�0�Pm�0

�PkPm�0 − �Pk�0�Pm�0
, �5�

�Pn�0= �Pn�cos ��0���0, and 
2n−1= �P1P2n−1�0 are the static
susceptibilities, which can be expressed as hypergeometric
functions �13�. The Green functions G2n−1�t� of the unper-

turbed ���t�=0� Eq. �3� with m=1 is G2n−1�t�=−�̇1,2n−1�t�
�14�. Thus

f2n−1
�1� �t� = − 
2n−1	

−�

t

�̇1,2n−1�t − t����t��dt�. �6�

If ��t�=�ei	t, Eq. �6� yields f2n−1
�1� �t�=
2n−1�	��ei	t, where


2n−1�	� are the generalized complex susceptibilities


2n−1�	�

2n−1

= 1 − i		
0

�

�1,2n−1�t�e−i	tdt . �7�

The time domain behavior of �1,2n−1�t� is characterized by
the integral and effective relaxation times

�2n−1 = 	
0

�

�1,2n−1�t�dt, �2n−1
ef f = − 1/�̇1,2n−1�0� . �8�

Here �2n−1
ef f is evaluated from Eq. �3� with ��t�=0 using equi-

librium averages as

�2n−1
ef f

�D
= −

f2n−1,of f
�1� �0�

�Dḟ2n−1,of f
�1� �0�

= 
d2n−1 + c2n−1
�P1P2n−3�0

�P1P2n−1�0
+ g2n−1

�P1P2n+1�0

�P1P2n−1�0
�−1

and �2n−1 is given by the mean first passage time approach of
Szabo �20�, which for the present problem yields

�2n−1 =
2�D

Z�P1P2n−1�0
	

−1

1 e−�z2

1 − z2	
−1

z

xe�x2
dx

�	
−1

z

P2n−1�y�e�y2
dy dz ,

where Z=�−1
1 e�z2

dz is the partition function and �=�K is the
barrier height parameter. �1,2n−1�t� may also be written as an
eigensolution using the eigenvalues ��k� of LFP, viz.,
�1,2n−1�t�=�kck

ne−t�k, where �kck
n=1 and �1 �essentially the

Kramers escape rate� is associated with the slowest relax-
ation mode and so with the long time behavior of �1,2n−1�t�;
the other �k characterize high frequency intrawell modes. By
Eq. �8� �2n−1=�kck

n /�k and �2n−1
ef f =1/�kck

n�k. The behavior of
�1, �2n−1, and �2n−1

ef f is given, for ��1, by

�1�D = 1 −
2

5
� + ¯ ,

�2n−1

�D
=

n ! − �1/2�n

n�1/2�n
+ �

2 + 8n ! /�3/2�n−2

3n�4n + 1�
+ ¯ ,

�2n−1
ef f

�D
=

1

n
+

2�

4n2 + n
+ …

��a�� is the Pochhammer symbol� and, for ��1, by

�1�D 

2�3/2e−�

��
�1 −

1

�
−

3

4�2 + …� ,

�2n−1

�D



��e�

2�3/2�1 +
1

�
+

7 + n − 2n2

4�2 + ¯� ,

�2n−1
ef f

�D



2�

2n2 − n
�1 −

3

2�
+ ¯� .

The spectra of 
2n−1�	� can be accurately described at all
frequencies �see Fig. 1� by a sum of two Lorentzians, viz.,

FIG. 1. −Im�
2n−1�	�� vs 	�D �solid lines, Eqs. �3� and �7� for
n=1,3,5�; 
2n−1	�2n−1 �dotted lines�; and 
2n−1�	�2n−1

ef f �−1 �dashed
lines�. Symbols, Eq. �9�
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2n−1�	�

2n−1

=
�2n−1

1 + i	/�1
+

1 − �2n−1

1 + i	�W
2n−1 , �9�

where �2n−1 and �W
2n−1 are determined so as to ensure the

correct low and high frequency behavior of 
2n−1�	�, viz.,

2n−1�	� /
2n−1�1− i	�2n−1 as 	→0 and 
2n−1 /
2n−1�	�

 i	�2n−1

ef f as 	→�, and are given by

�m =
�m/�m

ef f − 1

�1�m − 2 + 1/��1�m
ef f�

, �W
m =

�1�m − 1

�1 − 1/�m
ef f . �10�

In the time domain, the two-mode approximation Eq. �9� is
equivalent to assuming that the relaxation function �1,2n−1�t�
�which in general comprises an infinite number of exponen-
tials� may be approximated by two exponentials only. An
interested reader can find a detailed description and various
applications of this two-mode approximation in Ref. �6�.

The second order response �f2n
�2��t�� satisfies Eq. �3� with

m=2. The exact solution for the element f2
�2��t� governing the

KER, with ��t�=� cos 	t, is

f2
�2��t� = �2Re�F0

�2��	� + F2
�2��	�e2i	t� , �11�

where the frequency dependent dc F0
�2��	� and the second

harmonic F2
�2��	� terms are

�F0
�2��	�

F2
�2��	�

� =
3��

4�
�
n=1

�
�− 1�n+1n!

��n + 1/2��k=1

n � S2k�0�
S2k�2i	�

�
��
2n−1�	� − 
2n+1�	�� . �12�

and the continued fractions Sn�i	� are defined as Sn�i	�
=cn�i	�D−dn−gnSn+2�i	��−1 �cf. �13�, Eq. �26��. In order to
obtain a simple analytic approximation for the KER, we no-
tice that the normalized step-off solution of Eq. �3� with m
=2 is f2,of f

�2� �t�=�2
2�2,2�t�, where �2,2�t� is the normalized

second rank equilibrium correlation function defined by Eq.
�5� and 
2= ��P2

2�0− �P2�0
2� /3. As the overbarrier relaxation

mode is not involved in the propagator of f2
�2��t�, one may

use a single mode approximation for �2,2�t�, viz.,

�2,2�t� � e−t/�2
ef f

, �13�

with the effective relaxation time �2
ef f given by

�2
ef f

�D
= −

f2,of f
�2� �0�

�Dḟ2,of f
�2� �0�

=
�P2

2�0 − �P2�0
2

1 + �P2�0 − 2�P2
2�0

.

The qualitative behavior of �2
ef f is �2

ef f /�D=1/3+2� /189
+¯ for ��1 and �2

ef f /�D=�−1 /2+�−25 /4+¯ for ��1.
Moreover, using the effective relaxation time means that Eq.
�3� for m=2 can be represented as

�2
ef f ḟ2

�2��t� + f2
�2��t� = − 
2��t�	

−�

t

�̇�1��t − t����t��dt�

with solution

f2
�2��t� = −


2

�2
ef	

−�

t

��t��e−�t−t��/�2
ef	

−�

t�
�̇�1��t� − t����t��dt�dt�.

�14�

Here ��1��t� is the normalized ���1��0�=1� effective relax-
ation function, accounting for the driving functions
�f2n−1

�1� �t��. As before ��1��t� is characterized by the integral,
�, and effective, �ef f, relaxation times, which can be esti-
mated from the low and high frequency asymptotes of the dc
KER �=−lim	→02 Im�F0

�2��	�� / �	
2� and �ef f

=lim	→�
2�2	 Im�F0
�2��	���−1. The one-sided Fourier trans-

form of −�̇�1��t� may be represented in a two-mode approxi-
mation as

TABLE I. Numerical values of ��1�D�−1, �ef f /�D, and � /�D.

� 0 1 2 3 4 5 6 8 10

��1�D�−1 1.0 1.531 2.476 4.243 7.702 14.77 29.75 135.8 693.9

�ef f /�D −1.0 −2.169 83.37 2.411 1.352 1.021 0.881 0.805 0.826

� /�D 1.0 1.582 2.655 4.713 8.788 17.09 34.43 153.2 757.9

FIG. 2. Exact Re�F0
�2��	�� /�2 �Eq. �12�, solid lines� and approxi-

mate �Eq. �16�, symbols� solutions.
FIG. 3. Exact Re�F2

�2��	�� /�2 �Eq. �12�, solid lines� and approxi-
mate �Eq. �16�, symbols� solutions.
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1 − i	�̃�1��	� =
�2

1 + i	/�1
+

1 − �2

1 + i	�W
2 . �15�

Here �2 and �W
2 may be evaluated from Eq. �10� using �1,

�m=�, and �m
ef f =�ef f �see Table I�. For ��1 and ��1, their

behavior is �2=1+� /35+ ¯ ,�W
2 /�D=� /70+¯ and �2=1

+�−1+ ¯ ,�W
2 /�D
−1/2�+¯, respectively. Thus, setting

��t�=� cos 	t, Eq. �14� yields

f2
�2��t� =


2�2

2
Re��1 +

e2i	t

1 + 2i	�2
ef f�

�� �2

1 + i	/�1
+

1 − �2

1 + i	�W
2 �� , �16�

Apparently, the KER calculated from the approximate Eq.
�16� is in excellent agreement with the exact Eq. �12�; see
Figs. 2 and 3. The results suggest a method of measuring the
overbarrier relaxation time 1/�1, i.e., the inverse Kramers
escape rate, using the dc component of the Kerr response.
For free diffusion ��=0�, 
2=1/15, �2

ef f =�D /3, �1=1/�D,
and �2=1 so that Eq. �16� reduces to the known results
�3,21�.

Finally as in �3,21�, f1
�1��t� and f2

�2��t� yield the NLDE
f1

�3��t�. We have

f1
�3��t� = −

1

6
��P1

4�0 − 3�P1
2�0

2�	
−�

t

��t���̇�3��t − t��

�	
−�

t�
��t���̇2,2�t� − t��

�	
−�

t�
�̇�1��t� − t����t��dt�dt�dt�, �17�

representing the generalization of Eq. �21� of Ref. �3� or Eq.
�14.21� of Ref. �21� to a mean field. ��3��t� contains the

contribution of the matrix elements of the KER to f1
�3��t� and

is represented by a two-mode approximation as the propaga-
tor involves overbarrier relaxation.

In this paper, we have described exact and approximate
calculations of the nonlinear orientational ac response of per-
manent dipoles in the presence of a uniaxial potential Eq.
�1�. The approximate calculation accurately represents the
relevant matrix elements of the exact time ordered matrix
exponential solution generated by perturbation theory using
Picard’s method �3,21,22�. Thus the approximate solution ef-
fectively generalizes the existing analytic results for nonin-
teracting dipoles in ac driving fields to a mean field potential
and has a similar mathematical form Eq. �16� �but with pa-
rameters given in terms of the barrier height parameter �� so
explaining the successful application of the known frequency
dependence of the KER for free diffusion to the analysis of
experimental spectra of electric birefringence of nematics
which was previously done without any theoretical justifica-
tion �see, e.g., Ref. �23��. The results apply both to nonlinear
dielectric relaxation and KER of nematics and also to mag-
netic birefringence relaxation of ferrofluids. The solution of
the problem citing, for example, the matrix element f2

�2��t�,
clearly demonstrates that the dc component of a second order
nonlinear response contains information about the linear re-
sponse function. This fact suggests possible methods of mea-
surement of the overbarrier relaxation time �inverse Kramers
rate� via the dc electric or magnetic birefringence. We have
illustrated the calculation for the simplest mean field poten-
tial and have ignored induced moments. The calculation may,
however, be very easily extended to �a� nonstationary re-
sponse, �b� induced moments, and �c� other mean field po-
tentials such as biaxial anisotropy. Finally, the method may
be extended to fractional Brownian motion resulting in
anomalous relaxation as described in Ref. �6�.
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