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Thermally activated escape rate for the Brownian motion
of a fixed axis rotator in an asymmetrical double-well potential
for all values of the dissipation
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The Kramers theory of the escape rate of a Brownian particle from a potential well as extended by
Mel’nikov and Meshkov, �J. Chem. Phys. 85, 1018 �1986�� is used to evaluate the relaxation times
and the dynamic susceptibility for the rotational Brownian motion of fixed axis rotators in an
asymmetric double-well potential. An expression for the escape rate valid for all values of the
dissipation including the very low damping �VLD�, very high damping �VHD�, and crossover
regimes is derived. It is shown that this expression provides a good asymptotic estimate of the
inverse of the smallest nonvanishing eigenvalue �1 of the underlying Fokker-Planck operator
calculated by using the matrix-continued fraction method. For low barriers, where the Mel’nikov
and Meshkov approach is not applicable, analytic equations for the correlation time �� of the
longitudinal dipole correlation function in the VLD and VHD limits are derived and a simple
extrapolating equation valid for all values of the damping is proposed. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2008250�
I. INTRODUCTION

The Brownian motion in an asymmetric periodic poten-
tial is of interest in the solution of a variety of physical
problems involving a relaxation process. Among the most
prominent of these are dielectric relaxation and the dynamic
Kerr effect of nematic liquid crystals, magnetic relaxation of
single-domain ferromagnetic particles, dynamic response of
Josephson tunneling junctions, transport phenomena in semi-
conductors, etc.1–3

One of the most important characteristics associated
with the Brownian motion in any asymmetric multiwell po-
tential is the dependence of the greatest relaxation time and
the integral relaxation time on the asymmetry parameter. In
this context we remark that by taking longitudinal dielectric
relaxation in a symmetric double-well potential as an ex-
ample the greatest relaxation time which is the time required
to escape the well or the relaxation time of the longest-lived
relaxation mode is accurately approximated by the integral
relaxation time ��. The integral relaxation time is the area
under the decay curve of the electric polarization following
the removal of a steady field and corresponds in linear re-
sponse to the correlation time of the dipole moment. On the
other hand, in an asymmetric double-well potential for val-
ues of the asymmetry parameter well below that required to
destroy the double-well nature of the potential the integral
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relaxation time may diverge exponentially from the greatest
relaxation time with consequent suppression of the overbar-
rier relaxation mode so that the low-frequency dielectric loss
associated with this mode effectively disappears. This phe-
nomenon of course does not occur in symmetric potentials.
Hence it is of some importance to establish the effect of the
asymmetry parameter on the relaxation behavior. The behav-
ior as a function of that parameter has been studied both
numerically and analytically when the inertial of a dipole is
ignored.4,5 However, no calculations have been carried out
for asymmetric potentials when inertial effects are included
so that the very high-frequency modes associated with the
librational motion in the wells of the potential have been
excluded.

In the present context we remark that the greatest relax-
ation time is essentially the inverse of the smallest nonvan-
ishing eigenvalue �1 of the characteristic equation or secular
determinant of the relevant dynamical system. In other words
�1

−1 is the lifetime of the longest-lived relaxation mode of the
system. The greatest relaxation time may also be obtained by
calculating the mean first passage times from each of the
wells of the potential.6 As far as the calculation of �1 is
concerned, the secular equation may be generated by averag-
ing the appropriate Langevin equation over its realizations in
phase space yielding the hierarchy of differential-recurrence
equations governing the decay functions of the system.
Alternatively, one may expand the solution of the associated

probability density diffusion equation �usually the special-

© 2005 American Institute of Physics03-1

 AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2008250
http://dx.doi.org/10.1063/1.2008250
http://dx.doi.org/10.1063/1.2008250
http://dx.doi.org/10.1063/1.2008250


094503-2 Kalmykov, Titov, and Coffey J. Chem. Phys. 123, 094503 �2005�
ized form of the Fokker-Planck equation applicable to sepa-
rable and additive Hamiltonians comprising the sum of the
potential and kinetic energies known as the Klein-Kramers
equation� in Fourier series in the position and velocity
variables.1,2 In each of the two methods, the secular determi-
nant results from truncation of the set of differential-
recurrence relations at a number large enough to achieve
convergence of the resulting set of simultaneous ordinary
differential equations. Alternatively, if the problem is repre-
sented in the frequency domain so that the more powerful
continued fraction method may be used �more powerful in
the sense that it is very effective from a computational point
of view�, many convergents must be taken.1,7 Thus, �1 is not
in general available in closed form as it is always rendered as
the smallest root of a high-order polynomial equation.
Hence, it is difficult to compare �1 so determined with ex-
perimental observations of the greatest relaxation time or the
relaxation rate. Fortunately �noting that �1 for sufficiently
high barriers has exponential dependence on the barrier
height�, a way of overcoming this difficulty is to utilize an
ingenious method originally proposed by Kramers8 in con-
nection with thermally activated escape of particles out of a
potential well. His idea, motivated by the fluctuation-
dissipation theorem,2 is to calculate the prefactor A in an
Arrhenius-type equation for the reaction rate �, viz.,

� = A
�a

2�
e−�V/kT. �1�

Here �V is the height of the barrier, k is Boltzmann’s con-
stant, and T is the temperature. The parameter A represents
the interchange of energy between the reacting particles and
their surroundings or heat bath �for reviews of applications
of Kramers’ method, see Refs. 9 and 10�. The frequency
�a /2� which is the frequency of oscillation of a particle in
the potential well with a minimum at a is called the attempt
frequency. The original Arrhenius equation which is obtained
when A=1 �corresponding to transition state theory �TST��
assumes perpetual thermal equilibrium everywhere at tem-
perature T. Thus no account is taken of nonequilibrium ef-
fects due to the leaking of particles over the potential barrier
at c. In reality the Maxwell-Boltzmann distribution no longer
holds in the vicinity of the transition state c because the
fluctuation-dissipation theorem describing the coupling of
the reacting particles to their surroundings or heat bath is
violated by the Arrhenius equation.

Kramers8 overcame the problem of the departure from
equilibrium by obtaining asymptotic solutions for �1 which
in this context is termed as the Kramers escape rate from the
Klein-Kramers equation in the limits of very small and inter-
mediate to high dissipative coupling to the bath. These solu-
tions, which are valid for high barriers ��V�kT� so that the
concept of an escape rate is valid, provide closed-form ex-
pressions for the escape rate and its inverse the greatest re-
laxation time ���1

−1 which may be easily compared with the
experiment. Kramers was, however, unable to find
asymptotic solutions for the crossover regime. This problem,
named the Kramers turnover problem, was solved nearly 50
years later by Mel’nikov11 and Mel’nikov and Meshkov.12
They gave an integral formula bridging the very low damp-
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ing �VLD� and TST solutions. Thus, they postulate from heu-
ristic reasoning, essentially appealing to continuity that an
escape rate formula valid for all values of the damping may
be given by simply multiplying the general intermediate-to-
high damping �IHD� result by their bridging integral.
Mel’nikov11 has further extended the bridging integral
method to take into account quantum effects in a semiclassi-
cal way. Furthermore, Grabert13 and Pollak et al.14 later pre-
sented a complete solution of the Kramers turnover problem
and have shown that the Mel’nikov and Meshkov universal
formula can be obtained without ad hoc interpolation be-
tween the weak and strong damping regimes. In the semi-
classical limit, the latter theory was extended to the quantum
regime by Rips and Pollak.15

As far as the verification of the universal turnover for-
mula of Mel’nikov and Meshkov is concerned, very few cal-
culations based on either the exact solutions of the Klein-
Kramers equation or on numerical simulations of the
Brownian dynamics have ever been given. Exceptions are
the comparison of the universal turnover formulas with the
numerical results for the escape from a single well, which
were given in Refs. 16 and 17 and the study of the one-
dimensional translational Brownian motion in a periodic po-
tential undertaken by Ferrando et al.18 Another exception is
the treatment of the same one-dimensional problem and its
generalization to diffusion on a surface which was accom-
plished by Pollak and co-workers in Refs. 19–21, respec-
tively. Examples of the exact treatment of rotational Brown-
ian motion problems are even fewer. Pastor and Szabo22

tested the Mel’nikov-Meshkov formula in the context of ori-
entational relaxation for a linear molecule in a uniaxial po-
tential and Coffey et al.23 considered a two-dimensional ana-
log of that model �planar rotation in a double-well cosine
potential�. Also Coffey and co-workers10,24,25 extended the
Mel’nikov-Meshkov calculation to magnetization relaxation
of single-domain ferromagnetic particles with nonaxially
symmetric potentials of the magnetocrystalline anisotropy.

In the context of the present problem of relaxation in
asymmetrical potential wells we remark that the majority of
the foregoing results have been obtained for potentials with
equivalent wells. There the symmetry of the potential masks
interesting effects, e.g., the exponential divergence of the
integral relaxation time and the greatest relaxation time
which may appear for potentials with nonequivalent wells, so
that the asymmetry of the potential can radically alter the
characteristics of the relaxation process.2 Exact numerical
and accurate analytical solutions of this problem have been
obtained in the very high damping limit when the inertial
effects of the relaxing population may be ignored. However,
it appears that solutions valid for all values of the damping
for an asymmetric potential have not yet been obtained. Here
we demonstrate that the Mel’nikov and Meshkov approach
when applied to the particular problem of the inertial Brown-
ian motion of a fixed axis rotator in a asymmetric double-
well potential yields an accurate solution for the greatest re-
laxation time �1

−1 for high barriers and for all values of the
dissipation. Such a potential allows the flipping of rotators to
neighboring wells, thus permitting both relaxation and oscil-

latory behavior in the same model and so may simulta-
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neously explain both the low-frequency relaxation and far-
infrared absorption spectra of dipolar systems.2,26 Various
applications of this model are discussed in detail in Refs. 2
and 26. The detailed description of the model for a symmet-
ric double-well potential is given in Ref. 23. Here, we cal-
culate the escape rate by the Mel’nikov-Meshkov asymptotic
�in the sense that it applies for high barriers� and universal
�in the sense that it is valid for all values of the damping�
formula for an asymmetrical potential. Then we compare the
inverse escape rate with the greatest relaxation time evalu-
ated from the exact matrix-continued fraction solution of the
underlying Langevin equation. Applications of the
Mel’nikov-Meshkov asymptote to the estimation of the inte-
gral relaxation time �in the present context where linear re-
sponse is assumed as the correlation time� of the longitudinal
relaxation function, the complex susceptibility, etc. are also
discussed and exact solutions for the electric susceptibility
valid in all frequency ranges are presented. Whence one may
conclude that essentially three relaxation-time processes ex-
ist: �i� a slow overbarrier relaxation process with relaxation
time given by �1

−1 which gives rise to low-frequency absorp-
tion with an Arrhenius-type relaxation time; �ii� relatively
fast near degenerate decay modes in the wells of the potential
which may be approximated by a single decay mode and
give rise in the frequency domain to weak intermediate fre-
quency absorption; and �iii� high-frequency oscillatory
modes which produce absorption in the far-infrared band of
frequencies. These three relaxation modes are obviously
present in symmetric potentials also. However, introducing
asymmetry will cause at a certain critical value of the asym-
metry parameter the overbarrier mode to become so weak
that it will be almost completely suppressed while both in-
trawell and oscillatory modes remain.

II. BASIC RELATIONS

Our starting point is the Langevin equation for a dipole
� rotating about an axis normal to the plane of rotation,2

I�̈�t� + 	�̇�t� +
dV���

d�
= ��t� , �2�

where I is the moment of inertia of a rotator about the axis of
rotation, � is the angle specifying the orientation of a rotator,
and 	�̇�t� and ��t� are the frictional and random torques
acting on a rotator due to the Brownian motion arising from
the heat bath. It is assumed that the random torque ��t� has
the white-noise properties

��t� = 0, ��t���t�� = 2kT	
�t − t�� .

Here the overbar denotes the statistical average over a large
number of rotators which have at time t identical angular
velocity �̇ and identical angular position �. In accordance
with the notation of Refs. 1 and 2, we shall use the notation
��t� and �̇�t� to denote the random variables while we shall
denote their sharp �definite� values or realizations at time t
by � and �̇. The internal field due to molecular interactions
and the external field are represented by the �periodic�

double-well potential �see Fig. 1�,

Downloaded 09 Jun 2009 to 134.226.1.229. Redistribution subject to
V���/�kT� = − 2� cos2� − � cos � − �2/�8��

= − 2��cos � + h�2, �3�

where �=V0 / �kT� is the barrier height parameter,
�=
E / �kT� is the external field parameter, E is the external
field, h=� / �4��, and kT is the thermal energy. The corre-
sponding Klein-Kramers �Fokker-Planck� equation for the
distribution function W�� , �̇ , t� can be written as2

Ẇ = LFPW , �4�

where the Fokker-Planck operator LFP is given by26

LFPW = − �̇
�W

��
+

1

I

dV

d�

�W

��̇
+ �� �

��̇
��̇W� +

kT

I

�2W

��̇2�
�5�

and �=	 / I. The first two terms on the right-hand side of Eq.
�5� comprise the convective or Liouville term describing in
the absence of dissipation the undamped streaming motion
along the energy trajectories in phase space corresponding to
Hamilton’s equations. The last term �the diffusion term� rep-
resents the interchange of energy �dissipative coupling� with
the heat bath.

In orientational relaxation, the quantity of greatest inter-
est is the equilibrium correlation function C�t� of the longi-
tudinal component of the dipole moment defined as

C�t� =
	cos ��0�cos ��t�
0 − 	cos ��0�
0

2

	cos2��0�
0 − 	cos ��0�
0
2 �6�

�the angular brackets denote the equilibrium ensemble aver-
age�. This allows one to calculate the longitudinal complex
susceptibility ����=�����− i����� defined as2

����
���0�

= 1 − i�C̃��� , �7�

where ���0�= �
2N0 /kT��	cos2��0�
0− 	cos ��0�
0
2� is the

FIG. 1. Potential V��� / �kT�=−2� cos2�−� cos �−�2 / �8�� for �=1 and
various values of �.
static susceptibility and N0 is the number of dipoles per unit
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volume. Moreover, one can also calculate the correlation
time �� which is defined as the area under the curve of C�t�
so that

�� = �
0

�

C�t�dt = C̃�0� . �8�

The time �� may equivalently be defined in terms of the
eigenvalues ��k� of the Fokker-Planck operator LFP from Eq.
�5� because the function C�t� may be formally written as the
discrete set of relaxation modes1,2

C�t� = �
k

cke
−�kt. �9�

Thus from Eqs. �8� and �9� one has

�� = �
k

ck/�k, �10�

where �kck=1 so that �� contains contributions from all the
eigenvalues �k. In general, for nonequivalent wells above a
critical value of the asymmetry parameter, �� may differ ex-
ponentially from the inverse of the smallest nonvanishing
eigenvalue �1

−1, which is the longest relaxation time � of the
system.2,4 In the frequency domain of representation of the
relaxation process, �1 corresponds to the half-width of the

spectrum C̃��� or, equivalently, to the low-frequency maxi-
mum of the dielectric loss spectra �����.

First, we present an exact method of solution of the
Langevin equation �2� based on matrix-continued fractions

and so exact evaluation of C̃��� ,� , and �−1. Then we show
� 1

we have
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how �1
−1 and the low-frequency part of C̃��� can be evalu-

ated in the low-temperature �high barrier� limit from the uni-
versal Mel’nikov-Meshkov equation.

III. DIFFERENTIAL-RECURRENCE RELATIONS
FOR THE CORRELATION FUNCTIONS

We recall2 that the average value �̄ of a random variable
��t� at time t is calculated from the Langevin equation �2�
regarded as an integral equation and interpreted as a Stra-
tonovich stochastic equation by expressing �̄ as an equation
of motion for a sharp value ��t�=� at time t. Equation �2�
then allows us to derive �see for details Ref. 2, Chap. 10� a
hierarchy of recurrence equations for the equilibrium corre-
lation functions cn,q�t� defined as

cn,q�t� = 	cos ��0�Hn���̇�t��e−iq��t�
0

− 	cos ��0�
0	Hn���̇�0��e−iq��0�
0, �11�

where Hn�z� is the Hermite polynomial of order n,27 ��0� is
the initial value of ��t�, and �=
I / �2kT�. We have for the
equations of motion of the sharp values that is the equation
of motion of the Fourier coefficients of the Green function or
fundamental solution of the problem

�
d

dt
Hn���̇�e−iq�

= 2nHn−1���̇�e−iq��2�̈ − iqe−iq���̇Hn���̇� . �12�

The two terms on the right-hand side of Eq. �12� can be
rearranged as
2nHn−1���̇�t��e−iq��t��2�̈�t� = ne−iq��t�Hn−1���̇�t���− 2����̇�t� − 2� sin 2��t� − � sin ��t� + ��t�/�kT��

= − in��e−i�q+2�� − e−i�q−2�� + 2h�e−i�q+1�� − e−i�q−1����Hn−1���̇�

− n��e−iq��Hn���̇� + 2�n − 1�Hn−2���̇�� + ne−iq��t�Hn−1���̇�t����t�/�kT�
and

− iqe−iq��t���̇�t�Hn���̇�t�� = − i�q/2�e−iq��Hn+1���̇�

+ 2nHn−1���̇�� ,

respectively. Here, we have noted that27

d

dz
Hn�z� = 2nHn−1�z�, Hn+1�z� = 2zHn�z� − 2nHn−1�z� ,

and2

e−iq��t�Hn−1���̇�t����t� = 2��kT�n − 1�e−iq�Hn−2���̇� ,

where ��=�� is the dimensionless damping parameter. Thus
�
d

dt
Hn���̇�e−iq� = − n��e−iq�Hn���̇�

−
iq

2
e−iq��Hn+1���̇� + 2nHn−1���̇��

− in��e−i�q+2�� − e−i�q−2��

+ 2h�e−i�q+1�� − e−i�q−1����Hn−1���̇� .

�13�

By multiplying Eq. �13� by cos ��0� and again averaging the
equation so obtained by postulating the equilibrium
�Maxwell-Boltzmann� distribution function of � , �̇ at the in-
stant t=0, we can derive �as described in detail in Ref. 2�
differential-recurrence equations for the correlation functions

cn,q�t�, viz.,
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�
d

dt
cn,q�t� = − n��cn,q�t� −

iq

2
�cn+1,q�t� + 2ncn−1,q�t��

− in��cn−1,q+2�t� − cn−1,q−2�t��

− 2in�h�cn−1,q+1�t� − cn−1,q−1�t�� . �14�

The solution of the recurrence in Eq. �14� can be obtained by
a matrix-continued fraction method.1,2 We remark that ex-
actly the same hierarchy may be obtained by first calculating
Green’s function of the Fokker-Planck equation �5� and then
averaging the hierarchy over the equilibrium Maxwell-
Boltzmann distribution.

IV. MATRIX-CONTINUED FRACTION SOLUTION

By Laplace transformation, we have from Eq. �14�

��s + n���c̃n,q�s� = �c0,q�0�
n,0 −
iq

2
�c̃n+1,q�s�

+ 2nc̃n−1,q�s�� − in��c̃n−1,q+2�s�

− c̃n−1,q−2�s�� − 2in�h�c̃n−1,q+1�s�

− c̃n−1,q−1�s�� . �15�

Here all other cn,q�0�=0 for n�1 because 	cos �Hn��̇�
0

=0 for the equilibrium Maxwell-Boltzmann distribution. In
order to solve Eq. �15�, we introduce the column vectors

C̃1�s� =�
�

c̃0,−2�s�
c̃0,−1�s�
c̃0,1�s�
c̃0,2�s�

�
� and C̃n�s� =�

�
c̃n−1,−2�s�
c̃n−1,−1�s�
c̃n−1,0�s�
c̃n−1,1�s�
c̃n−1,2�s�

�

��n � 2� .

Now, Eq. �15� can be rearranged as the set of matrix three-
term recurrence equations,

��s + ���n − 1��C̃n�s� − Qn
+C̃n+1�s� − Qn

−C̃n−1�s�

= �
n,1C1�0� , �16�

where the column vector C1�0� and the matrices Qn
+ and Qn

−

are given in Appendix I. By invoking the general method for
solving the matrix recurrence in Eq. �16�,2 we have the exact

solution for the spectrum C̃1�s� in terms of a matrix-
continued fraction, viz.,

C̃1�s� = ��1�s�C1�0� , �17�

where the matrix-continued fraction �n�s� is defined by the
recurrence equation

�n�s� = ���s + ���n − 1��I − Qn
+�n+1�s�Qn+1

− �−1

and I is the unit matrix.
˜
Having determined C1�s�, we can evaluate the spectrum
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C̃��� =
c̃0,−1�i�� + c̃0,1�i��
c0,−1�0� + c0,1�0�

�18�

of the equilibrium correlation function C�t�, the longitudinal
complex susceptibility ����=�����− i�����, and the correla-
tion time ��. By using matrix-continued fractions, one can
also estimate the smallest nonvanishing eigenvalue �1 of the
Fokker-Planck operator �that is �1 of the hierarchy of Eq.
�14��, Eq. �5�, from the secular equation1,2

det��1�NI + Q1 + Q1
+�2�− �1�Q2

−� = 0. �19�

We remark that �1 can also be evaluated from the half-width

of the spectrum C̃��� or, equivalently, from the low-
frequency maximum of the dielectric loss spectra �����. By
utilizing general properties of Fourier transforms, we may
also obtain simple asymptotic equations for ���� in the low-
and high-frequency limits. We have

�����
���0�

= ��
0

�

C��t�dt + ¯ = ��� �20�

for �→0 and

�����
���0�

� −
Ċ��0�

�
+

C� ��0�
�3 + ¯ �21�

for �→�. Here Ċ��0�=0 and

C� ��0� =
c�0,−1�0� + c�0,1�0�
c0,−1�0� + c0,1�0�

=
��

2�3�1 − � + 2�h
c0,2�0�
c0,1�0�

+ �
c0,3�0�
c0,1�0�� . �22�

We remark that for free Brownian rotation of plane ro-
tators ��=0 and h=0�, �1 becomes in the VLD and very high
damping �VHD� limits

�1 → 1/��
�� and �1 → 1/�2���� , �23�

respectively. Equations �23� provide bounds for the purpose
of testing the results of numerical calculations. Moreover, for
�=0 and h=0, the calculation shows that the matrix-
continued fraction algorithm yields the same results as the
exact analytic solution for the free rotational diffusion ob-
tained in Ref. 28, viz.,

���� =

2N0

2kT
�1 −

i����

1 + i����
M�1,1 + �1

+ i�����/�2��2�,1/�2��2��� , �24�

where M�a ,b ,z� is the confluent hypergeometric �Kummer�
function.27

V. MEL’NIKOV-MESHKOV FORMULA FOR �1

By solving the Fokker-Planck equation converted to an
energy-action diffusion equation by the Wiener-Hopf

method, Mel’nikov and Meshkov have evaluated the inverse
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of the longest relaxation time �−1=�1 for the translational
motion of a Brownian particle of mass M in a double-well
potential V�x� with nonequivalent wells as12

� =
A���S1 + S2�/kT�

A��S1/kT�A��S2/kT�
�IHD. �25�

Here �IHD is the longest relaxation time in the IHD limit
which can be estimated as

�IHD
−1 = �12

IHD + �21
IHD, �26�

where �12
IHD and �21

IHD are the Kramers IHD escape rates from
wells 1 and 2, respectively, � is a damping coefficient for
translational motion, S1 and S2 are the corresponding action
variables, and

A�d� = exp� 1

�
�

0

� ln�1 − exp�− d��2 + 1/4���
�2 + 1/4

d��; �27�

the function A�d� involving the actions has the following
properties:12

A�d� → 1 as d → � and A�d�/d → 1 as d → 0. �28�

The leading factor on the right-hand side of Eq. �25� is the
correction to the IHD escape rate due to Mel’nikov and
Meshkov �the depopulation factor�. The escape rates �12

IHD

and �21
IHD are evaluated from the Kramers IHD formula8

�ij �
�a

i

2�
�
1 +

�2

4�c
i2 −

�

2�c
i �e−�Vi/kT,

where �a
i =
V��ai� /M and �c

i =
�V��c�� /M are the angular
frequencies of oscillation of a particle in the potential well i
at minimum ai and at the barrier coordinate c, the double
prime denotes the second derivative with respect to x, and
�Vi=V�c�−V�ai� is the potential barrier.

The detailed derivation of the Melnikov and Meshkov
formula for orientational relaxation of a planar rotator in two
equivalent wells has been given in Ref. 23. This derivation
can readily be generalized to the calculation of the longest

relaxation time of the orientational relaxation in the potential

est nonvanishing eigenvalue alone since all the other eigen-
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with two nonequivalent wells, Eq. �3�, yielding the universal
formula in Eq. �25�, where �IHD

−1 is now given by �after ap-
propriate changes of notation�

�IHD
−1 =

1

��
�
��2

4
+

�2

I
�V���0�� −

��

2
�

��
 V��0�
�V���0��

e�V1/�kT� +
 V����
�V���0��

e�V2/�kT��
=

e−2��1 − h�2

2��
�
��2 + 8��1 − h2� − ���

�� 1

1 − h

e−8�h +
1


1 + h
� , �29�

where �1=0 and �2=� are the potential minima in wells 1
and 2, �0=�−arccos h is the barrier coordinate found from
the condition V��0�=0 �see Fig. 1�,

�V1,2

kT
= − 2��1 ± h�2,

�2

I
�V���0�� = 2��1 − h2� ,

�2

I
V��0� = 2��1 + h�,

�2

I
V���� = 2��1 − h� ,

�S1

kT
=

�

kT
�

−�0

�0 
− 2IV���d� = 4��
2��
1 − h2

+ h� − h arccos h� ,

�S2

kT
=

�

kT
�

�0

2�−�0 
− 2IV���d�

= 4��
2��
1 − h2 − h arccos h� .

If ��→�, we have from Eqs. �25�, �28�, and �29� the VHD
formula

�VHD =
����e2��1 − h�2

2��
1 − h + 
1 + he−8�h�
. �30�
In like manner, in the VLD limit, ��→0, we obtain
�VLD =
��e2��1 − h�2

��h/2 + 
1 − h2 − h arccos h�

4����
1 − h + 
1 + he−8�h��h� + 
1 − h2 − h arccos h��
1 − h2 − h arccos h�
. �31�
For h=0, the relaxation times from Eqs. �29�–�31� reduce to
those obtained in Ref. 23 for equivalent wells.

VI. THE VHD AND VLD ASYMPTOTES FOR �¸

As far as the calculation of the longitudinal correlation
time �� is concerned we remark that an accurate analytic
estimation of �� from Eqs. �8� and �10� is in principle a much
more complicated problem than the evaluation of the small-
values contribute to ��. Fortunately, an accurate method of
the estimation �� in the VHD and VLD limits exists. This
method is based on a mean first passage time calculation first
suggested by Szabo29 in the context of a theory of polarized
fluorescent emission in uniaxial liquid crystals based on the
Smoluchowski equation. However, it may be used for all
systems with dynamics governed by single-variable Fokker-
Planck equations to yield the correlation time in terms of the

equilibrium �stationary� distribution function W0 and diffu-
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sion coefficient D�2� only �see, e.g., Ref. 1, Sec. S.9 or Ref. 2,
Sec. 2.10�. The advantage of such a method is that it allows
us to obtain for the problem under consideration the VHD
and VLD asymptotes, valid for all barrier heights including
very low barriers, where asymptotic methods �like that of
Melnikov-Meshkov� are not applicable.

In the high damping limit ����1� the appropriate
single-variable Fokker-Planck �Smoluchowski� equation for
the probability density function W�� , t� of the orientations of
rotators is2,30

�

�t
W��,t� =

�

���

�

��
��sin 2� + 2h sin ��W��,t��

+
1

2���

�2

��2W��,t� . �32�

Thus, noting that here the diffusion coefficient D�2�

= �2����−1, the correlation time of the longitudinal dipole
moment autocorrelation function in the VHD limit is given
by

�� � ��
VHD =

2���

	cos2�
0 − 	cos �
0
2�

0

2� 1

W0���

���
0

�

�cos �� − 	cos ��
0�W0����d���2

d� , �33�

where W0��� is the equilibrium Boltzmann distribution func-

tion given by

and �37� may be used for ���5 and ���0.01.
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W0��� =� W0��̇,��d�̇

= e2� cos2�+4�h cos ���
0

2�

e2� cos2�+4�h cos �d�

�34�

�this function is a stationary solution of Eq. �32��; 	cos2�
0

and 	cos �
0 can be calculated as described in Appendix I.
In the opposite low damping limit ����1�, in order to

obtain a single-variable Fokker-Planck equation, one may
introduce as variables the energy of the dipole

� = �2�̇2 − 2� cos2� − 4�h cos � �35�

and the time w �phase� measured along a closed trajectory in
phase space as action-angle variables.31 The energy � varies
very slowly with time. Consequently, it is a slow variable in
comparison to the phase w. By averaging the Fokker-Planck
equation �4� over the fast phase variable w, Praestgaard and
van Kampen31 derived a single-variable Fokker-Planck equa-
tion for the probability density function W�� , t� in energy
space �in our notation�,

�

�t
W��,t� =

2��

�
� �

��
��2�̇2��� −

1

2
�

+ �2 �2

��2 �̇2����W��,t� , �36�

where the double overbar denotes averaging over the fast
phase variable. Noting that the diffusion coefficient D�2�

=2����̇2���, the correlation time �� is then given by

�� � ��
VLD = �
� + �+ + �−, �37�
where
�± =
1

�	cos2�
0 − 	cos �
0
2��−2��1±2h�

� ��
−2��1±2h�

�

�cos ����� − 	cos �
0�W0����d���2

2����̇2���W0���
d� �38�
and �2�̇2���=�+2� cos �2���+4�h cos ����. The calcula-

tion of W0��� , cos �2��� , cos ����, and the integrals in
Eqs. �38� is described in Appendix II. The term �
� in

Eq. �37� represents the contribution of the free rotation to the
correlation time �it is independent of �� and may be obtained

from the solution of the undamped equation Ẇ=0�.
The regions of applicability of the asymptotes from Eqs.

�33� and �37� are the same as for the corresponding Fokker-
Planck equations �32� and �36�, viz., the VHD ����1� and
VLD ����1� regions, respectively; in practice, Eqs. �33�
VII. RESULTS AND DISCUSSION

The imaginary ����� part of the complex susceptibility
for various values of the anisotropy parameter �, the asym-
metry parameter h, and the friction coefficient �� are shown
in Fig. 2 �the calculations were carried out for 
2N0 / �kT�
=1�. In general, three bands appear in the dielectric loss
����� spectra. One relaxation band dominates the low-
frequency part of the spectra and is due to the slow overbar-
rier relaxation of the dipoles in the double-well potential.
The characteristic frequency �R��1 of this low-frequency
band strongly depends on � and h as well as on the friction

parameter ��. Regarding the barrier height or � dependence,
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the frequency �R decreases exponentially as � is raised. This
behavior occurs because the probability of escape of a dipole
from one well to another over the potential barrier exponen-
tially decreases with increasing �. As far as the dependence
of the low-frequency part of the spectrum for large friction
�small inertial effects� ���10 is concerned, the frequency
�R decreases as �� increases as is apparent by inspection of
curves in Fig. 2�c�. For small friction �large inertial effects�
���0.1 the frequency �R decreases with decreasing �� for
given values of � and h �cf. curves 1–3 in Fig. 2�c��. This
low-frequency part of the spectrum may by approximated by
the Debye equation

����
���0�

=
1 − �

1 + i��
+ � , �39�

where the longest relaxation time �=1/�1 is given by the
universal equation �25� and � is a parameter accounting for
the contribution of the high-frequency modes. As h in-
creases, the magnitude of the low-frequency band decreases
and this band disappears entirely for h�1 �see Fig. 2�a��
where the double-well nature of the potential is destroyed.

A very high-frequency band is visible in all the figures
due to the fast inertial librations of the dipoles in the poten-
tial wells. This band corresponds to the terahertz �far-
infrared� range of frequencies and is usually associated with
the Poley absorption.32 For ��1 and h�0, the characteristic
frequency of librations �L increases as ��−1
�. As far as
the behavior as a function of �� is concerned, the amplitude
of the high-frequency band decreases progressively with in-
creasing ��, as one would intuitively expect. On the other
hand, for small friction �large inertial effects� ���1, a fine

FIG. 2. Dielectric loss spectra �solid lines� for various values of � ,�, and h.
The Debye spectra �Eq. �39�� are shown by the dotted lines with crosses.
The high-frequency asymptotes �Eq. �21�� are shown by the dashed lines.
structure appears in the high-frequency part of the spectra
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�due to resonances at high harmonic frequencies of the al-
most free motion in the �anharmonic� potential�. We remark
that the high-frequency ����L� behavior of �̂���� is en-
tirely determined by the inertia of the system and is de-
scribed by Eq. �21� �these high-frequency asymptotes are
also shown in Fig. 2 for comparison�. Finally, as we have
mentioned in the Introduction it is apparent that between the
low-frequency and very high-frequency bands, a third band
exists in the dielectric loss spectra. This band is due to the
high-frequency relaxation or decay modes of the dipoles in
the potential wells which will always exist in the spectra
even in the noninertial limit.2 Such relaxation modes are gen-
erally termed the intrawell modes.

Thus one may conclude that the asymmetric double-well
potential gives rise to three distinguished relaxation pro-
cesses: �i� a slow low-frequency overbarrier mode, �ii� rela-
tively fast intermediate frequency modes due to the near de-
generate exponential decays in the wells of the potential, and
�iii� fast high-frequency oscillatory �librational� modes in the
wells of the potential. If the asymmetry parameter which is
strongly dependent on the precise details of the potential2 is
regarded as a structural relaxation parameter in the sense
used by Gilroy and Philips33 it appears that the structural
parameter can effectively destroy the low-frequency relax-
ation mode due to the overbarrier relaxation so that above
the critical value of that parameter the system is no longer
effectively a multiwell system as the population behaves like
that of a single-well potential. Hence we only have fast near
degenerate exponential decays in the well accompanied by
high-frequency oscillatory modes arising from inertial effects
due to the small oscillations in the well �c.f. Fig. 2�a��.

The greatest relaxation time � predicted by the
Mel’nikov and Meshkov12 method �Eq. �25�� and the small-
est nonvanishing eigenvalue �1 calculated numerically by
matrix-continued fraction methods as the low-frequency
maximum of the dielectric loss spectra ����� are shown in
Fig. 3 as functions of �� for various values of h and �. Here,
the VHD �Eq. �30��, IHD �Eq. �29��, and VLD �Eq. �31��
asymptotes are also shown for comparison. Apparently in the
high barrier limit, Eq. �25� provides a good approximation to
�1 for all �� including the VHD, VLD, and turnover regions.
Furthermore, Eq. �25� yields a reasonable estimate for �1

even for ��1.
The quantitative agreement in damping behavior may be

explained as follows. The behavior of the escape rate as a
function of the barrier height parameter � for large � is
approximately an Arrhenius type and arises from an equilib-
rium property of the system �namely, the Boltzmann distri-
bution at the bottom of the well�. On the other hand, the
damping dependence of the escape rate is due to nonequilib-
rium �dynamical� properties of the system and so is con-
tained in the prefactor A only, the detailed nature of which
depends on the behavior of the energy distribution function
at the barrier points.10 The Mel’nikov-Meshkov approach11

yields the distribution function at the saddle point for all
values of the damping allowing one to evaluate the damping
dependence of the prefactor A in Eq. �1�. We remark that as
emphasized by Kramers, it is hardly ever of any practical

importance to improve on the accuracy of the IHD or VLD
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formulas themselves because in experimental situations
where relaxation is studied, one has only estimates of the
prefactor within a certain degree of accuracy which is diffi-
cult to evaluate. For example, little detailed information
about the value of �� exists. Nevertheless, it is important to
predict the behavior of the relaxation times as a function of
�� using analytical methods such as the one used in this
paper because of the detailed information such methods yield
about the mechanisms underlying the relaxation process. The
description of the relaxation processes in the context of Eq.
�25� neglects quantum effects. These effects are important at
very low temperatures and necessitate an appropriate
quantum-mechanical treatment. Mel’nikov and Mesnkov12

and Rips and Pollak15 have extended the bridging integral
method for mechanical particles to account for quantum ef-
fects in a semiclassical way.

These VHD and VLD asymptotes for �� are shown in
Figs. 4 and 5. In Fig. 4, we compare Eqs. �33� and �37� with
the exact numerical solution for the correlation time �� and
the Mel’nikov-Meshkov universal formula. Here we see the
asymmetry effect alluded to in the Introduction where for a
certain value of h, namely, hc�0.18, the Arrhenius behavior
�exponential increase with increasing barrier height� of the
correlation time �� disappears. Such an effect occurs at a
critical value hc of the ratio h, i.e., bias field parameter/
anisotropy barrier height parameter, far less than the nucle-
ation field which is the value needed to destroy the bistable
nature of the potential. Thus in the low-temperature limit, the
overall relaxation process is no longer dominated by the slow
decay or interwell mode associated with the barrier crossing
at values of h in excess of the critical value. The phenom-
enon was first discovered by �by numerical methods� Coffey
et al.4 and later explained by Garanin5 for the very similar
problem of the magnetization relaxation of a uniaxial super-
paramagnetic particle subjected to a dc magnetic field.

5

FIG. 3. Longest relaxation time �=1/�1 vs �� for �=1.5 and 6, and h
=0.0, 0.1 and 0.2. solid lines 1: the universal equation �25�; dot-dashed lines
4: the VHD equation �30�; dashed lines line 3: the IHD equation �29�; dotted
4: the VLD equation �31�; and filled circles: exact matrix-continued fraction
solution.
Garanin showed that this effect is a natural consequence of
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the population depletion of the shallower of the two potential
wells �which are involved in the barrier crossing� by the
uniform field. Essentially when a significant part of the
population of the shallow well has descended to the deeper
well the enhanced population in that well cannot escape be-
cause of the high potential barrier which it has to overcome.
Further, in Ref. 34 it has been shown that this depletion
effect always exists in relaxation in bistable potentials and it
has also been asserted2 that such an effect is a general feature
of relaxation in biased double-well potentials. In the particu-
lar application to the present problem, the long-time behavior
of C�t� at low temperatures �� ,��1� may be approximated
by two exponentials corresponding to overbarrier and in-
trawell relaxation processes �on neglecting the contribution
of librational modes�,

C�t� � �1 − ��e−t�1 + �e−t/�well, �40�

where �well is the effective relaxation time in the deep well
and so has a weak temperature dependence. According to
Eqs. �10� and �40�,

FIG. 4. �� /� vs � for ��=0.001 ��a� very low damping� and ��=10 ��b�
high damping�. Solid lines: exact matrix-continued fraction solution for the
correlation time ��; stars: the universal Mel’nikov-Meshkov equation �25�;
and triangles: Eqs. �33� and �37� for the VHD and VLD regions,
respectively.

FIG. 5. �� /� vs �� for small barrier heights �=0.25 and 0.5 and h=0.1.
Filled circles: exact matrix-continued fraction solution for the correlation
time ��; dashed-dotted lines 2: the VLD equation �37�; dotted lines 3: the

VHD equation �33�; and solid lines 1: Eq. �42�.
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�� � �1 − ���1
−1 + ��well. �41�

If h�hc, the quantity �1−���1
−1 increases exponentially as

the temperature T decreases and so �1−���1
−1 determines

completely the temperature dependence of the correlation
time ��. If h�hc, on the other hand, the quantity �1−���1

−1

decreases exponentially as T decreases �due to the depletion
effect �1−���1

−1 is exponentially small in spite of the fact
that �1

−1 is exponentially large�, thus �� no longer has Arrhen-
ius behavior and now differs exponentially from �1

−1. Thus
for h=hc, the relaxation switches from being dominated by
the behavior of the longest-lived relaxation mode associated
with �1

−1 that is the inverse Kramers escape rate to being
dominated by the fast relaxation processes in the deep well
of the potential because of the depletion of the upper �shal-
low� well at low temperatures.5,34

In Fig. 5, we compare the VHD and VLD correlation
time equations �33� and �37� with the exact numerical solu-
tion for the correlation time at small barriers. Here a simple
ad hoc extrapolating equation9

�� � ��
VLD + ��

VHD �42�

provides a satisfactory estimate of the correlation time �� for
all dampings and also the greatest relaxation time provided
h�hc because in that situation �� ��1

−1. We emphasize that
Eqs. �33�, �37�, and �42� can be used for all barrier heights �,
where the Melnikov-Meshkov universal formula is not appli-
cable.

Thus the simple analytic Mel’nikov-Meshkov
formula,11,12 Eq. �25�, for the longest relaxation time bridg-
ing the VLD and IHD escape rates as a function of the dis-
sipation parameter �� yields satisfactory agreement with the
numerical results for fixed axis rotators in an asymmetric
� � � � � � �
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double-well potential for all values of ��. Equation �25� al-
lows one also to estimate accurately the damping depen-
dence of the low-frequency part of the spectra of the equi-
librium correlation function C�t� and of the longitudinal
complex susceptibility ����. Moreover it allows one to esti-
mate the contribution of the overbarrier relaxation mode to
the correlation time ��.
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APPENDIX A: EQUATIONS FOR C1„0… ,Qn
+,

AND Qn
−

The column vector C1�0� and the matrices Qn
+ and Qn

−

are given by

C1�0� =�
�

c0,−2�0�
c0,−1�0�
c0,1�0�
c0,2�0�

�
� ,

Qn
+ = −

i

2�
� � � � � � �

¯ − 2 0 0 0 0 ¯

¯ 0 − 1 0 0 0 ¯

¯ 0 0 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯

� � � � � � �

� ,
Qn
− = − i�n − 1��

� � � � � � � � � � �

¯ − � − 2�h − 2 2�h � 0 0 0 0 ¯

¯ 0 − � − 2�h − 1 2�h � 0 0 0 ¯

¯ 0 0 − � − 2�h 0 2�h � 0 0 ¯

¯ 0 0 0 − � − 2�h 1 2�h � 0 ¯

¯ 0 0 0 0 − � − 2�h 2 2�h � ¯

� � � � � � � � � � �

� .

The exceptions are the matrices Q1
+ and Q2

−, which are given by

Q1
+ = −

i

2�
� � � � � � �

¯ − 2 0 0 0 0 ¯

¯ 0 − 1 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯� ,
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Q2
− = − i�

� � � � � � � � � �

¯ − � − 2�h − 2 2�h 0 0 0 0 ¯

¯ 0 − � − 2�h − 1 � 0 0 0 ¯

¯ 0 0 − � − 2�h 2�h � 0 0 ¯

¯ 0 0 0 − � 1 2�h � 0 ¯

¯ 0 0 0 0 − 2�h 2 2�h � ¯

� � � � � � � � � �

� .
The initial conditions c0,q�0�,

c0,q�0� = 	e−iq�cos �
0 − 	cos �
0	e−iq�
0

= �
0

2�

cos �e−iq�W0���d�

− �
0

2�

cos �W0���d��
0

2�

e−iq�W0���d� ,

where W0��� is the equilibrium distribution in configuration
space defined by Eq. �34�, can be evaluated analytically in
terms of the modified Bessel functions of the first kind In

�Ref. 27� by noting that

	e−iq�cos �
0 =

�
m=−�

�

Im����I−2m+q+1�4�h� + I−2m+q−1�4�h��

2 �
m=−�

�

Im���I−2m�4�h�

,

	e−iq�
0 =

�
m=−�

�

Im���I−2m+q�4�h�

�
m=−�

�

Im���I−2m�4�h�

,

and

	cos �
0 =

�
m=−�

�

Im����I−2m+1�4�h� + I−2m−1�4�h��

2 �
m=−�

�

Im���I−2m�4�h�

.

APPENDIX B: EVALUATION OF AVERAGES IN THE
UNDAMPED LIMIT

In the very low damping limit ����1�, the energy of the
dipole is not conserved but will vary very slowly with time
�quasistationarity�. Thus the dynamics of the system are de-
scribed by the one-dimensional Fokker-Planck equation �36�
and differ but little from those of the undamped limit ���
=0�. In the undamped limit, the energy � is a constant of the
motion. Thus the dynamics of the dipole are described by the

deterministic differential equation
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��
d�

dt
�2

= � + 4�h cos � + 2� cos2�

or, by introducing a new variable Z=cos �,

��
dZ

dt
�2

= 2��Z2 + 2hZ + ����1 − Z2� , �B1�

where ��=� / �2��. Equation �B1� has a solution35,36 in terms
of the Jacobian doubly periodic elliptic functions sn�u�m�
and cn�u�m�:27

cos ��t� =�±
1−a±sn2�M1t/�+w±,m1�
1+a±sn2�M1t/�+w±,m1� , − 1 � 2h � �� � h2

−
a−cn�M2t/�+w,m2�

1−a cn�M2t/�+w,m2� , �� � h2,
�

�B2�

where

m1 =
1 − �� − 2
h2 − ��

1 − �� + 2
h2 − ��
, m2 =

1

2�1 +
1 − ��


�1 + ���2 − 4h2� ,

M1 = 
��1 − �� + 2
h2 − ���/2, M2 = 
2�
�1 + ���2 − 4h2,

a± =
1 ± h − 
h2 − ��

1 � h + 
h2 − ��
, a =

2h

1 + �� + 
�1 + ���2 − 4h2
,

w± = �
0


�1�cos ��0��/�a±�1±cos ��0��� dt

�1 − t2��1 − m1t2�

,

w = �
0

�sin ��0�
1−a2�/�1+a cos ��0�� dt

�1 − t2��1 − m2t2�

.

We remark that the three solutions given by Eq. �B2� corre-
spond to the three possible domains of energy variations,
viz., the oscillations in the deeper well �domain I: −1−2h
����h2�, the oscillations in the shallow well �domain II:
−1+2h����h2�, and rotation �domain III: h2������.
The condition for the existence of two wells is h�1.

The function cos ��t� is a periodic function of its argu-
ments M1t /�+w± and M2t /�+w with the period T given by
2K�m1� for −1�2h����h2 and 4K�m2� for ���h2, where
K�m� is the complete elliptic integral of the first kind. Hence

cos ��t� can be expanded in the Fourier series
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cos ��t�� =
1

2
c0 + �

n=1

�

cncos�2�n�t� + w�
T

� �B3�

with coefficients

cn =
2

T
�

−T/2

T/2

cos ��t��e−2i�nt�/Tdt�.

Thus, we can readily obtain cos � averaged over the phase w
from Eq. �B3�, viz.,

cos ���,w� =
1

T
�

−T/2

T/2

cos ���,w�dw =
1

2
c0.

The coefficients c0 can be calculated analytically using table
integrals from Ref. 37. We have

cos ����

=��1 ± 2
��−a±,m1�

K�m1� , − 1 � 2h � �� � h2

− 1
a +

�1−a2�
aK�m2�
1−m2

��a2,
m2

m2−1� , �� � h2 �
�B4�

and

cos2����

= �
a±−1
a±+1

+ 2
a±E�m1�−��a±�2−m1���−a±,m1�

�a±+1��a±+m1�K�m1� , − 1 � 2h � �� � h2

1 +
E�m2�−��a2,

m2

m2−1 �/
1−m2

�m2+a2/�1−a2��K�m2� , �� � h2, �
�B5�

where E�m� and ��� ,m� are complete elliptic integrals of the
second and third kinds, respectively.

Hence, noting that Wst is the equilibrium Maxwell-
Boltzmann distribution W0, viz.,

W0���0�,�̇�0��d��0�d�̇�0�

=
�e−�2�2�0�+2� cos2��0�+4�h cos ��0�

2
�3e� �
m=−�

�

Im���I−2m�4�h�

�d��0�d�̇�0� �B6�

by making the transformation of the variables ���0� , �̇�0��
→ �w ,��,38 and by integrating the distribution function W0

over the phase w, we obtain

W0���d� =
e−�−�d�

�3/2 �
m=−�

�

Im���I−2m�4�h�

��K�m1����/M1��� , − 1 � 2h � �� � h2

2K�m2����/M2��� , �� � h2.
�

�B7�

=

The average of a dynamical quantity A��� is defined as
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	A
=


0 =
e−�

�3/2 �
m=−�

�

Im���I−2m�4�h�

���
−2��1+2h�

2�h2

A
=

���K�m1����M1
−1���e−�d�

+ �
−2��1−2h�

2�h2

A
=

���K�m1����M1
−1���e−�d�

+ 2�
2�h2

�

A
=

���K�m2����M2
−1���e−�d�� . �B8�

In particular, one can verify that the equipartition theorem
holds, viz.,

�2	�̇2
0 = 	� + 2� cos2� + 4�h cos �
0 =
1

2
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