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Abstract— Policy-based network management (PBNM) is a actions. The research presented in this paper aims to addres
promising but not yet delivering discipline aimed at automaing  this requirement by combining state of the art policy-based
network management decisions based on expert knowledge andmanagement and machine learning techniques. The outcome
strategic business objectives. One of the issues which israst not . . . . g S .
being addressed in PBNM is the stability of the managed syste 'S @ policy engine which can modify !ts decisions at run-_tlme
as the result of the dynamic interaction between the “natursf ~ With reference to patterns of behaviour learnt automayical
network behaviour with the autonomous decision making. Yethis over long timescales. Section Il presents the architecture
issue is central to the design of a self-management networld of an adaptive policy-driven autonomous node. Section II-A
system comprised of autonomous entities making decisionsiden describes the policy model for the self-ware node. Section |

by policies with often unknown consequences. Decisions mad B outl h hine | . t desi diol
by one entity may change the context and configuration of ottre outiinés the machine fearning component designed 1o fearn

autonomous entities which may in turn react changing the corext ~ Patterns of recurrent behaviour. The stability of the syste
and configuration of the first entity triggering an unbounded is controlled by a composition of these two structures which

chain of re-configuration actions. It is possible to model oligation s described in section Il and illustrated by an example in
policies and their constraints with finite state transduces (FST). section IV. Section V outlines how the output of the machine

It is also possible to learn patterns of recurrent behaviourusing | . ¢ be furth loited t id
Bayesian networks (BN), a structurally similar kind of graph. earning component can be further exploited to provide a

The method presented in this paper ana|ytica||y composes (00} probabilistic assessment Of the riSk Of particular InStMB
finite state machines to derive predictions of the consequens of in the system. Section VI concludes with a discussion of how

enforcing a given policy improving system stability. this forecasting method will be realised and evaluated.

I. INTRODUCTION
o ] ) [1. SELF-WARE NODE ARCHITECTURE
The current explosion in size, complexity and heteroggneit

of networks which has been driven by recent advances in wiredThe method presented in this paper must be considered
and wireless networking technology is set to continue ihto tin the context of a network management system, such as
future with networks growing at an exponential rate. At théhat outlined in [1], where the network elements have been
same time, network operators are struggling in a highly corgranted a degree of autonomy to manage themselves in a
petitive market where they must keep their running costs tofally or partially distributed environment. In this contex
minimum. The conflict between the ever-increasing demandstwork nodes are empowered to perform configuration and
of running large, complex and heterogeneous networks amgintenance tasks. The architecture of a single node in such
the ever-decreasing OPEX (operational expenditure) badgan autonomous system is depicted in Figure 1. It relies on the
of network operators is driving intensive research in theaarinteraction of three different kinds of knowledge with thei
of autonomous networks. A promising development in thigspective approaches for knowledge capture and manipulat
domain is policy-based network management (PBNM) which order to direct and constrain the behaviour of the network
aims to automate network management decision-making, iglements. These layers of knowledge map to the following
posing strategic business and technical objectives onetll nthree componentdletwork Model (NM), Behaviour Model
work self-configuration activity. (BM) and Policy Model (PM). The Network Model comprises

A core issue for any autonomous system, however, figlatively static prior knowledge about network configioat
stability and this has not been the focus of research to datenstraints and procedures modelled as an ontology where
Given its freedom to instigate changes in the network, d@ahe model instance is updated in real-time. The Behaviour
autonomous management system may provoke cascadeMoftlel represents and learns patterns of network behaviour
changes or configuration flipflops by zealous application efther as it is realised by management operations or thealont
operator directives in the form of policies. In order to nraiu plane. The Policy Model (PM) models and enforces expert
like any autonomous being, the system must learn to obsekr®wledge and preferences about network configuration and
and deal with the consequences of its actions. In effectgto &trategic objectives. The architecture assumes an ewaseidb
truly autonomous and not reliant on human intervention faystem where events are messages about occurrences, such a
its development, it must learn from experience. This emtadhlarms or performance parameter increment events, ormactio
observing its own activity, determining what are the efecrequests from one node to itself or another node. Events are
of its actions and acting on this knowledge to modify futurdistributed by the Event Bus component in Figure 1, which is
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Fig. 1. Context Architecture performance. Its morphology is relevant to the analytic
procedure presented in section IlIlI.

the local realisation of a semi-distributed event managemd- Behaviour Model
functionality, set out in [1]. In any self-managed network, such as that considered here,
This architecture, described in more detail in [2], was thi#e network devices take decisions and execute actionslar or
platform used to develop the present composition methesl fulfii a service and/or user requirements. These actions
but it may be considered in the context of any other archir behaviour can affect the network as a whole. Thus, it
tecture which includes behaviour model and policy modekcomes critical to observe the behaviour of network device
components. The following sections outline the functidgal and the network as a whole in order to evaluate the effects
of these two components and how their underlying graphicafl their autonomous activities, such as configuration ckang
representations may be composed to predict consequence$hy behaviour of a network device is represented by the
configuration changes. This functionality addresses the kevents (actions and notifications) on that network devite T
issue of stability of self-configuring systems by monitgrin Behaviour Model component effectively serves to log and
the effects of configuration actions over long timescales agsummarise over individual events to give a general view of
adapting policy decisions on the basis of observed effects.the activity of a network devicé.
. More precisely, the internal representation of the Behavio
A. Policy Model : . . o
] . N ~ Model is a Dynamic Bayesian Network (DBN) which is state-
This architecture follows the event-condition-actiogf. gt technology used to monitor different types of bebavi
paradigm where the event may be an alarm or a serviggn a temporal dimension, for example power consumption of
request, the condition is evaluate_d on thg eyent parametgygchines [5] or fault propagation in industrial processis [
and the network stat_e er?coded in the distributed NetWOﬂ%\yesian Networks (BN) [7] provide a means of monitoring
Model, and the action is the desired response to thahaviour by specifying the dependencies and indepengenci
event/condition, as defined by the operator. The Policy Mod@at hold between aspects of a system. BNs consists of a
in this architecture includes a classical Policy Decisi@nP yjrected acyclic graphical structure (DAG), where the reode
(PDP) [3], responsible for listening for events coming fromepresent variables from an application domain, in thicas
the Events Bus and evaluating the conditions and the |0Q§J;nts in a network, and the arcs represent the influential
policies in order to decide whether a policy condition hag|ationships between them. Furthermore there is an agsoci
been met and therefore the attendant reconfiguration &s}iornzonditional probability distribution over these variablehich
must be performed. Policies are modelled using a specidl Kigncodes the probability that the variables assume théareit
of finite state machine, presented in [4], callBuhite State yajyes, for example present vs. absent given the valuesief ot
Transducers extended Wlth Tautness Funct_lons and ldestiti,53riables in the BN. Figure 3 shows an example Bayesian Net-
(TFFST). These machines are graphs with two labels Qgbrk for the network events “jitter” and “rerouteVideo” fro
each edge, one expressing an input symbol and anothes TFFST in figure 2, their possible values and a probablity
specifying an output symbol. A simpléthen rule like “if gistribution for each value of the variables. In the Behavio
|jitter| > 20ms then re-route Video-class connection;” vodel described here, the probability distribution is tear
may be expressed as a transducer that receives informafigitementally on-line for each network device from the éven
about jitter for one connection and, depending on this valugetivity of that network device. Time in Bayesian Networks i

produces a certain re-routing action. This is illustrated implicitly represented by the arcs of the model which denote
Figure 2. The TFFST has only one edge, its input label
represents the type of event the rule is expecting (i.¢er)it  lin the overall network architecture, the local node behavimodels are
and the condition that this must fulfil (i.e., the jitter vaju adgregated to more global “group of nodes” behaviour modelshe semi-

. distributed environment described in [1], nodes are osgahin clusters and
and the output label the output action that must be perform ividual nodes summarise their local model to be aggebat the global

This evaluation model is oriented to the resolution of policmodel of the clusterhead node.



Jitter (the input label), according to an expert preferences. treior
Md 530 e to convert the Behaviour Model DAG to the Policy Model
e e TFFST, the DAG must be compiled out to the representation

of transitions between the various values or states ofritdaen

variables. For example, the DBN in figure 3 is compiled out

into the 3 FSTs in figure 4, ignoring the:Route = false

value. Figure 5 illustrates the general case where the DBN

¥ (shown on the left) with variable valugs, b, ¢} is translated

T 3?_3; into an TFFST (shown on the right)To translate a DBN into

Fake 827 a weighted transducer [9], a TFFST is created in which each
event of the DBN is the consequence of its parent events in the
DBN graph and the weight of that specific path of the TFFST

Fig. 3. Bayesian Network representation of jitter TFFST is the corresponding conditional probability in the DBN.

: . . . @ Jitter>=20:reRouteVideo @
a causal relationship. Dynamic Bayesian Networks [8] are

a generalisation of Bayesian Networks that explicitly nmode
changes in the model over time with additional temporal
arcs. The system exploits this temporal dimension to ensure
the sequential nature of events represented in the Belhraviou
Model.

10<Jitter<20:reRouteVideqQ

Jitter<=10:reRouteVideo @

Fig. 4. Converted TFFST from BN
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IIl. FORECASTINGINSTABILITY

In the last section we have introduced the two entities
needed for our forecasting method, the Behaviour Model
encoding long-term statistical knowledge about the olesrv
network behaviour and the Policy Model containing the ex-
perts knowledge that drives the adaptation of the network
to the changing context towards some strategic objectives.
Their morphological similarity and the fact that both madel
are composed of the same set of events and actions have
induced us to combine their information analytically. This
section describes the general method for this combination o
the two models and section IV presents the TFFST and DBN
for an example flip-flop prediction scenario and illustraiess
the DBN and TFFST models are composed to enforce system
stability.

N - — O -
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A. Bayesian Network to Finite State Transducer Conversion

In order to analytically combine the knowledge in the
Behaviour Model with the knowledge in the Policy Model,
they must be translated to a common representation, in this
case, the TFFST representation on which the policies aré
already modelled. The nodes of the Behaviour Model DAG
represent an individual random variable, the range of walug. Composition of Finite State Transducers
that variable can take and the probability of the variable
assuming that value given the values of its parent nodegs). '%Jetween FSTs. The meaning of composition here is the same
our purposes, those random variables are different eveBsty .o o, any other binary relations:
in the system and the values this event can take (parameter
ranges, presence/absence, etc). The graph expresseslhe pr RioRs ={(x;2) | (z;9) € R1;(y; 2) € Ra}
ability of a child node assuming a particular value of a Valda
given the parent node variable assumes a given value, leeg.,
probability that the reRouteVideo variable in figure 3 hdsiga
true when the jitter variable has valuggh. As described in
section II-A, in the TFFST policy model, each arc representsatyg special symbol “[]", also represented asermeans that no output
the desired consequence (the output label) of a given eventroduced by the transition. See [4] for details on TFFSTs.

@) (b)

ig. 5. The DBN on the left is translated into the TFFST on tightr

Transducers composition is a precisely defined operation

his can be seen as a chain of processing events: the output
events from the first transducer are taken as input to thensleco
one. However the whole process is expressed and carried



out by a single FST, the one resulting from the compositiadhe rule "if ¢ then a” and Figure 7(d) is the composition of
operation. For example in Figure 4 the composition of the firthe transducers in figures 7(b) and 7(c). In the composition,
and second FSTs produces the third FST, as detailed in [4fhe actiona appears on both sides of the transducer, in the
input and in the output. This means that performing acton
eventually (or with a high probability) will cause the ex&on
of the same actioma again, a flip-flop behaviour that may be

prevented by ignoring the rule modelled by Figure 7(c). A
l l detailed and specific example is presented in section IV.
0 0 0 When to Stop the lterationtn the Behaviour Model, the
probability of the occurrence of an event is computed ingide
b c ‘c given sampling time window, each temporal edge in the BM

DBN corresponds to that period of time. Therefore, the short
est path length of the DBN graph times the sampling window
corresponds to the shortest period of time representedéy th
Behaviour Model T;.;») and the longest path length times
the sampling window is the longest period of time modelled
(Taz)- In this way, we can associate each loop in the iteration
of steps 3 to 5 with a period of time betwe®y,;,, and T},

The aim of this method is to identify repetitive behaviouatth
C. Forecasting will produce a continuous device reconfiguration over short
medium timescales. If the flip-flop occurs over a medium—long

The purpose of the analytic composition of the behavio ¢ e d Ks). thi be i q
DBN and policy TFFST models is to derive predictions ofmeframe (i.e. days or weeks), this may be interpreted as a

the consequences of enforcing a given policy, in partictdar routine system adaptation. Thus, the iteration must finisarw

detect flip-flop configuration changes. The steps of the ainalyfjhe a_ccumulated time reaches a predefined threshold or safe
flip-flop forecast process proceed as follows: uration.

1) Translate Bayesian Network of the BM into a TFFST. IV. AN EXAMPLE: A DYNAMIC STANDBY LINK

2) Compute the union of BM and PM TFFSTSs.

3) Compose the TFFST from the previous step with itsel

4) Detect repetitions of events in the input and the outp
of every possible path.

5) If there is no repetition detected in step 4, return to st
3, otherwise stop the process.

@ (b) ©

Fig. 6. Basic Composition Example.

In a 3G network, an RNC node is connected to each of its
ﬁBS nodes by a primary link and a secondary standby link.
l‘ﬂ'aditionally the standby link is a second fibre on which a
standby link is configured when the network is rolled out.sThi
Renario represents a hypothetical network managemect fun
tion in a 3G telecommunications network using IP transport
to configure standby links dynamically according to network
demands rather than statically at network roll-out timeisTh
function is potentially very useful as standby links reserv
specific resources in the nodes they connect and also in any
node that cross-connects the link. In this scenario, nétwor
nodes which are experiencing high traffic can free up ressurc

by dropping one or many standby links which they cross-
o [ connect. Dynamic reconfiguration of standby links would

allow nodes to free up these reserved resources at need for

revenue-producing traffic.

° " a baa Figure 8 illustrates this scenario for four network nodese T
' ' ' standby link between the RNC and RBS B is cross-connected
° through Router A. This standby link therefore has reserved

resources in the RNC, RBS B and also Router A. In this
example, Router A can drop the standby link between RNC
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(a) (b) (© (d) and RBS B if it is experiencing high traffic levels and reqgsire
the reserved resources to meet user demand. The network
Fig. 7. Analytic Flip-Flop Discovery. device which governs the standby link configuration, the RNC

will then try to reconfigure a new standby link. This dynamism

As a high-level example, Figure 7(a) represents the discae-configure and drop links at will can result in a cycle where
ered pattern of the actioa followed by the actiorb and the the RNC configures a standby link through Router A who
eventc. As in section IlI-A, Figure 7(b) represents the samthen drops the link when it is overloaded and then the RNC
pattern as a TFFST. The TFFST in Figure 7(c) represeiitigs to reconfigure the link through Router C who may then



drop the standby link again if it is overloaded. If the traffi@. Policies

load on both Router A and C are not correlated this might The system presented in this simple example is governed

not be a problem. The resulting flip-flop may occur over gy only one policy that governs what the nodes do when they

large or medium timescale, constituting a dynamic adaptatiare overloaded in order to gain resources. In this case, the
rather than a disrupting inconvenience. However, if th@mapreferred way to gain resources is to drop hosted standkg lin

of Router A and Router C are correlated, for example if boecayse they are reserving resources but not using them. The

are in the vicinity of a stadium and on Saturdays the ZOR§FST model for this policy is depicted in Figure 9.
receives much more people than on working days, the fIip—ropPoIiCyl_ If the node Nis overl oaded

described may occur at a very fast rate, t_>ecom|ng a problen} hen ask RNC to drop and reroute
for the devices being re-configured continuously. Thus, the . .

. : ; standby |inks which are currently
desired dynamism could result in an unbounded set of change;,sout ed through N
where no standby link is stable for any substantial duragi®n '
the area itself is inherently overloaded suggesting thateso
longer term solution must be found.

It is this kind of instability that this method is designed
to foresee and hence avoid. The sections below outline the
policies, configuration actions and behaviour model fos thi 0
scenario and describe how the composition of the policy hode
and behaviour model can identify the cycle of reconfiguratio Load:drog
actions and thereby stop the cycle.

Fig. 9. Policy 1 as a TFFST.

C. Belief States

Figures 10, 11, 12 and 13 show subparts of the DBN model
and the FST translations of the learnt high probability $ran
tions or belief states relevant to this scenario. For sicityli
in this example we are disregarding the probability of the
correlation between events. This is equivalent to assuming
that two successive events in the DBN are correlated with
a probability of 1 = 1). Section V discuss the impact of
considering the probabilities in the DBN.

Fig. 8. Standby link scenario network schema. Belief State 1: On Saturdays and after it was requested
to host a standby link, Router C may be overloaded for
some periods of time (Fig. 10, DBN left, FST right).

A. Messages Belief State 2: On Saturdays and after it was requested

In this example, the workflow of the system is driven to host a standby link, Router A may be overloaded for
Pi€, Y some periods of time (Fig. 11, DBN left, FST right).

by messages that are interchanged or broadcast between t.h%elief State 3: After Router C asks RNC to reroute
managed nodes. These messages report occurrences or action

standby links, RNC requests Router A to host a standby
requests made by one node to another. The relevant messages,. (Fig. 12, DBN left, EST right)
for this example are: 9. 2 ' gnb).

Belief State 4: After Router A asks RNC to reroute

« regA andreqC: a standby link acceptance request mes-  standby links, RNC requests Router C to host a standby
sage sent from RNC to Router A and Router C respec- |ink (Fig. 13, DBN left, FST right).

tively.;

« dropA anddropC: a message from Router A or RouteD. Union of Belief States and Policies
C sent to the RNC requesting to drop and re-route theTo combine policies and observations, we can assume that
standby link through them; a policy is also a correlation between the event triggering i

« oLoad: the set of events informing about a node overloadind the action enforced with a probability of 1. The union

« oLoadA: an event informing that specifically Router A(see Figure 14) of all the observations plus the policies is

is overloaded, . . 3 a FST that models all the known correlation between events
o oLoadC: an event informing that specifically Router C
3The first column of nodes in the DBN is in a first time slice ané th

is overloaded; ! d ) ;
. ’ . - second column in a second time slice. The representatiorbeamwlled out
o sat a time event stating that it is Saturday. over multiple time slices.
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Fig. 12. Belief State 3.
Fig. 10. Belief State 1.
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Fig. 13. Belief State 4.
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Fig. 11. Belief State 2. V. INCORPORATINGPROBABILITIES

The example set out above presents the simple case where
only deterministic behaviour (transitions whepe= 1) is
and actions, those that are explicitly enforced by polieied considered in the TFFST composition process. However, the
those that are just observed because they are consequenggdabilistic information encoded in the DBNs should be
matters out of the management system’s control, for exampigploited rather than ignored. In the DBN-to-FST conversio
the “natural” behaviour of the network dictated by the cohtr process, each arc connectingde; andnode; in the DBN is
plane. compiled out into multiple arcs of the FST which represest th
transition from each value afode; to each value ofiode;.
The probabilities of these transitions are what is encoded i
E. Composition Iteration the conditional probability table ofode;. Therefore, each arc
in the DBN FST has an associated probability of occurrence.
If we iterate composing the FST above with itself we obtaithe probabilities for individual arcs (learnt probabdgi of
a view of what happens when the output of the system feed8BN FST arcs and deterministip (= 1) policy FST arcs)
back into the system again as its input. The first compositigan be combined as part of the composition process. For paths
produces the FST in Figure 15. This figure shows two possilighich constitute flipflops or cycles of activity, the probliipi
paths with repetitions in the input and the outp()(—  associated with any policies in this path can be interpreted
reqA : reqA — (1), (0) — reqC : reqC’ — (1)). This as an evaluation of the risk associated with this policy. The
repetition should be read as: due to the combination of j@slic probability may then be used by the system or a human
and behaviour/context which is out of the management systeoperator to evaluate whether the risk presented by enfrcin
control, requesting the Router A to host a standby link wilh given policy is worth taking.
cause, after a chain of events and actions, the replication o
the same request. By tracing back the pair of edges which VI. CONCLUSION AND FUTURE WORK
generated the repetitive one, it is possible to deduce thafThe stability of distributed policy-based and self-
this state of affairs occurs on Saturdays and because thanagement communication systems is an open issue
enforcement of Policy 1. which as yet has not been tackled on a large scale. Yet, a
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Fig. 14. A TFFST Union of Belief States and Policies.

regA:reqC “
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oLoad:regA

oLoad:reqC

Fig. 15. First Composition of the union TFFST with Itself.

reconfiguration actions. This analytic method is currently
being prototyped as part of a distributed self-management
system for 3G telecommunications nodes. The policy
evaluation and enforcement functionality described heite w
be evaluated against a traditional policy engine baselime f
processing speed and complexity and also relative to an
overall system goal to maximise network resource usage.
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commercially viable self-management system must ensure
such stability in order to realise the reduction in OPEX sost
which a self-management system is intended to provide.
This paper presents an analytic and implementable method
to identify and hence reduce unstable behaviour in such
systems and is a basic step towards a more general theory
of stability in distributed policy-based systems. The roelth
described here could be used both as an offline tool to
assist the creation and update of policies using system wide
data and on the network devices at runtime, using more
accurate and up-to-date behavioural knowledge to avoid
unexpected flip-flops or unbounded sequences (cascades) of



