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Abstract— Policy-based network management (PBNM) is a
promising but not yet delivering discipline aimed at automating
network management decisions based on expert knowledge and
strategic business objectives. One of the issues which is almost not
being addressed in PBNM is the stability of the managed system
as the result of the dynamic interaction between the “natural”
network behaviour with the autonomous decision making. Yetthis
issue is central to the design of a self-management networking
system comprised of autonomous entities making decisions driven
by policies with often unknown consequences. Decisions made
by one entity may change the context and configuration of other
autonomous entities which may in turn react changing the context
and configuration of the first entity triggering an unbounded
chain of re-configuration actions. It is possible to model obligation
policies and their constraints with finite state transducers (FST).
It is also possible to learn patterns of recurrent behaviourusing
Bayesian networks (BN), a structurally similar kind of graph.
The method presented in this paper analytically composes both
finite state machines to derive predictions of the consequences of
enforcing a given policy improving system stability.

I. I NTRODUCTION

The current explosion in size, complexity and heterogeneity
of networks which has been driven by recent advances in wired
and wireless networking technology is set to continue into the
future with networks growing at an exponential rate. At the
same time, network operators are struggling in a highly com-
petitive market where they must keep their running costs to a
minimum. The conflict between the ever-increasing demands
of running large, complex and heterogeneous networks and
the ever-decreasing OPEX (operational expenditure) budgets
of network operators is driving intensive research in the area
of autonomous networks. A promising development in this
domain is policy-based network management (PBNM) which
aims to automate network management decision-making, im-
posing strategic business and technical objectives on all net-
work self-configuration activity.

A core issue for any autonomous system, however, is
stability and this has not been the focus of research to date.
Given its freedom to instigate changes in the network, an
autonomous management system may provoke cascades of
changes or configuration flipflops by zealous application of
operator directives in the form of policies. In order to mature,
like any autonomous being, the system must learn to observe
and deal with the consequences of its actions. In effect, to be
truly autonomous and not reliant on human intervention for
its development, it must learn from experience. This entails
observing its own activity, determining what are the effects
of its actions and acting on this knowledge to modify future

actions. The research presented in this paper aims to address
this requirement by combining state of the art policy-based
management and machine learning techniques. The outcome
is a policy engine which can modify its decisions at run-time
with reference to patterns of behaviour learnt automatically
over long timescales. Section II presents the architecture
of an adaptive policy-driven autonomous node. Section II-A
describes the policy model for the self-ware node. Section II-
B outlines the machine learning component designed to learn
patterns of recurrent behaviour. The stability of the system
is controlled by a composition of these two structures which
is described in section III and illustrated by an example in
section IV. Section V outlines how the output of the machine
learning component can be further exploited to provide a
probabilistic assessment of the risk of particular instabilities
in the system. Section VI concludes with a discussion of how
this forecasting method will be realised and evaluated.

II. SELF-WARE NODE ARCHITECTURE

The method presented in this paper must be considered
in the context of a network management system, such as
that outlined in [1], where the network elements have been
granted a degree of autonomy to manage themselves in a
fully or partially distributed environment. In this context,
network nodes are empowered to perform configuration and
maintenance tasks. The architecture of a single node in such
an autonomous system is depicted in Figure 1. It relies on the
interaction of three different kinds of knowledge with their
respective approaches for knowledge capture and manipulation
in order to direct and constrain the behaviour of the network
elements. These layers of knowledge map to the following
three components:Network Model (NM), Behaviour Model
(BM) andPolicy Model (PM). The Network Model comprises
relatively static prior knowledge about network configuration
constraints and procedures modelled as an ontology where
the model instance is updated in real-time. The Behaviour
Model represents and learns patterns of network behaviour
either as it is realised by management operations or the control
plane. The Policy Model (PM) models and enforces expert
knowledge and preferences about network configuration and
strategic objectives. The architecture assumes an event-based
system where events are messages about occurrences, such as
alarms or performance parameter increment events, or action
requests from one node to itself or another node. Events are
distributed by the Event Bus component in Figure 1, which is



Fig. 1. Context Architecture

the local realisation of a semi-distributed event management
functionality, set out in [1].

This architecture, described in more detail in [2], was the
platform used to develop the present composition method
but it may be considered in the context of any other archi-
tecture which includes behaviour model and policy model
components. The following sections outline the functionality
of these two components and how their underlying graphical
representations may be composed to predict consequences of
configuration changes. This functionality addresses the key
issue of stability of self-configuring systems by monitoring
the effects of configuration actions over long timescales and
adapting policy decisions on the basis of observed effects.

A. Policy Model

This architecture follows the event-condition-action
paradigm where the event may be an alarm or a service
request, the condition is evaluated on the event parameters
and the network state encoded in the distributed Network
Model, and the action is the desired response to that
event/condition, as defined by the operator. The Policy Model
in this architecture includes a classical Policy Decision Point
(PDP) [3], responsible for listening for events coming from
the Events Bus and evaluating the conditions and the local
policies in order to decide whether a policy condition has
been met and therefore the attendant reconfiguration action(s)
must be performed. Policies are modelled using a special kind
of finite state machine, presented in [4], calledFinite State
Transducers extended with Tautness Functions and Identities
(TFFST). These machines are graphs with two labels on
each edge, one expressing an input symbol and another
specifying an output symbol. A simpleif-then rule like “ if
|jitter| > 20ms then re-route Video-class connection;”
may be expressed as a transducer that receives information
about jitter for one connection and, depending on this value,
produces a certain re-routing action. This is illustrated in
Figure 2. The TFFST has only one edge, its input label
represents the type of event the rule is expecting (i.e., jitter)
and the condition that this must fulfil (i.e., the jitter value)
and the output label the output action that must be performed.
This evaluation model is oriented to the resolution of policy

Fig. 2. Correspondence between if-then constituents and TFFST elements.

conflicts and is intended to show good policy evaluation
performance. Its morphology is relevant to the analytic
procedure presented in section III.

B. Behaviour Model

In any self-managed network, such as that considered here,
the network devices take decisions and execute actions in order
to fulfil a service and/or user requirements. These actions
or behaviour can affect the network as a whole. Thus, it
becomes critical to observe the behaviour of network devices
and the network as a whole in order to evaluate the effects
of their autonomous activities, such as configuration changes.
The behaviour of a network device is represented by the
events (actions and notifications) on that network device. The
Behaviour Model component effectively serves to log and
summarise over individual events to give a general view of
the activity of a network device.1

More precisely, the internal representation of the Behaviour
Model is a Dynamic Bayesian Network (DBN) which is state-
of-art technology used to monitor different types of behaviour
with a temporal dimension, for example power consumption of
machines [5] or fault propagation in industrial processes [6].
Bayesian Networks (BN) [7] provide a means of monitoring
behaviour by specifying the dependencies and independencies
that hold between aspects of a system. BNs consists of a
directed acyclic graphical structure (DAG), where the nodes
represent variables from an application domain, in this case,
events in a network, and the arcs represent the influential
relationships between them. Furthermore there is an associated
conditional probability distribution over these variables which
encodes the probability that the variables assume their different
values, for example present vs. absent given the values of other
variables in the BN. Figure 3 shows an example Bayesian Net-
work for the network events “jitter” and “rerouteVideo” from
the TFFST in figure 2, their possible values and a probablity
distribution for each value of the variables. In the Behaviour
Model described here, the probability distribution is learnt
incrementally on-line for each network device from the event
activity of that network device. Time in Bayesian Networks is
implicitly represented by the arcs of the model which denote

1In the overall network architecture, the local node behaviour models are
aggregated to more global “group of nodes” behaviour models. In the semi-
distributed environment described in [1], nodes are organised in clusters and
individual nodes summarise their local model to be aggregated in the global
model of the clusterhead node.



Fig. 3. Bayesian Network representation of jitter TFFST

a causal relationship. Dynamic Bayesian Networks [8] are
a generalisation of Bayesian Networks that explicitly model
changes in the model over time with additional temporal
arcs. The system exploits this temporal dimension to ensure
the sequential nature of events represented in the Behaviour
Model.

III. F ORECASTINGINSTABILITY

In the last section we have introduced the two entities
needed for our forecasting method, the Behaviour Model
encoding long-term statistical knowledge about the observed
network behaviour and the Policy Model containing the ex-
perts knowledge that drives the adaptation of the network
to the changing context towards some strategic objectives.
Their morphological similarity and the fact that both models
are composed of the same set of events and actions have
induced us to combine their information analytically. This
section describes the general method for this combination of
the two models and section IV presents the TFFST and DBN
for an example flip-flop prediction scenario and illustrateshow
the DBN and TFFST models are composed to enforce system
stability.

A. Bayesian Network to Finite State Transducer Conversion

In order to analytically combine the knowledge in the
Behaviour Model with the knowledge in the Policy Model,
they must be translated to a common representation, in this
case, the TFFST representation on which the policies are
already modelled. The nodes of the Behaviour Model DAG
represent an individual random variable, the range of values
that variable can take and the probability of the variable
assuming that value given the values of its parent node(s). For
our purposes, those random variables are different event types
in the system and the values this event can take (parameter
ranges, presence/absence, etc). The graph expresses the prob-
ability of a child node assuming a particular value of a variable
given the parent node variable assumes a given value, e.g., the
probability that the reRouteVideo variable in figure 3 has value
true when the jitter variable has valuehigh. As described in
section II-A, in the TFFST policy model, each arc represents
the desired consequence (the output label) of a given event

(the input label), according to an expert preferences. In order
to convert the Behaviour Model DAG to the Policy Model
TFFST, the DAG must be compiled out to the representation
of transitions between the various values or states of its random
variables. For example, the DBN in figure 3 is compiled out
into the 3 FSTs in figure 4, ignoring thereRoute = false

value. Figure 5 illustrates the general case where the DBN
(shown on the left) with variable values{a, b, c} is translated
into an TFFST (shown on the right).2 To translate a DBN into
a weighted transducer [9], a TFFST is created in which each
event of the DBN is the consequence of its parent events in the
DBN graph and the weight of that specific path of the TFFST
is the corresponding conditional probability in the DBN.

0 1
Jitter<=10:reRouteVideo

0 1
10<Jitter<20:reRouteVideo

0 1
Jitter>=20:reRouteVideo

Fig. 4. Converted TFFST from BN
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0
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a:[]

1

b:c

(b)

Fig. 5. The DBN on the left is translated into the TFFST on the right.

B. Composition of Finite State Transducers

Transducers composition is a precisely defined operation
between FSTs. The meaning of composition here is the same
as for any other binary relations:

R1 ◦ R2 = {(x; z) | (x; y) ∈ R1; (y; z) ∈ R2}

This can be seen as a chain of processing events: the output
events from the first transducer are taken as input to the second
one. However the whole process is expressed and carried

2The special symbol “[]”, also represented as anǫ, means that no output
is produced by the transition. See [4] for details on TFFSTs.



out by a single FST, the one resulting from the composition
operation. For example in Figure 4 the composition of the first
and second FSTs produces the third FST, as detailed in [4].

0

1

a:b

(a)

0

1

b:c

(b)

0

1

a:c

(c)

Fig. 6. Basic Composition Example.

C. Forecasting

The purpose of the analytic composition of the behaviour
DBN and policy TFFST models is to derive predictions of
the consequences of enforcing a given policy, in particularto
detect flip-flop configuration changes. The steps of the analytic
flip-flop forecast process proceed as follows:

1) Translate Bayesian Network of the BM into a TFFST.
2) Compute the union of BM and PM TFFSTs.
3) Compose the TFFST from the previous step with itself.
4) Detect repetitions of events in the input and the output

of every possible path.
5) If there is no repetition detected in step 4, return to step

3, otherwise stop the process.
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b

c

(a)

0
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a:[]

1

b:c

(b)

0

1

c:a

(c)

0

2

 a:[]

1

 b:a

(d)

Fig. 7. Analytic Flip-Flop Discovery.

As a high-level example, Figure 7(a) represents the discov-
ered pattern of the actiona followed by the actionb and the
eventc. As in section III-A, Figure 7(b) represents the same
pattern as a TFFST. The TFFST in Figure 7(c) represents

the rule ”if c then a” and Figure 7(d) is the composition of
the transducers in figures 7(b) and 7(c). In the composition,
the actiona appears on both sides of the transducer, in the
input and in the output. This means that performing actiona
eventually (or with a high probability) will cause the execution
of the same actiona again, a flip-flop behaviour that may be
prevented by ignoring the rule modelled by Figure 7(c). A
detailed and specific example is presented in section IV.

When to Stop the Iteration:In the Behaviour Model, the
probability of the occurrence of an event is computed insidea
given sampling time window, each temporal edge in the BM
DBN corresponds to that period of time. Therefore, the short-
est path length of the DBN graph times the sampling window
corresponds to the shortest period of time represented by the
Behaviour Model (Tmin) and the longest path length times
the sampling window is the longest period of time modelled
(Tmax). In this way, we can associate each loop in the iteration
of steps 3 to 5 with a period of time betweenTmin andTmax.
The aim of this method is to identify repetitive behaviour that
will produce a continuous device reconfiguration over short–
medium timescales. If the flip-flop occurs over a medium–long
timeframe (i.e. days or weeks), this may be interpreted as a
routine system adaptation. Thus, the iteration must finish when
the accumulated time reaches a predefined threshold or safe
duration.

IV. A N EXAMPLE : A DYNAMIC STANDBY L INK

In a 3G network, an RNC node is connected to each of its
RBS nodes by a primary link and a secondary standby link.
Traditionally the standby link is a second fibre on which a
standby link is configured when the network is rolled out. This
scenario represents a hypothetical network management func-
tion in a 3G telecommunications network using IP transport
to configure standby links dynamically according to network
demands rather than statically at network roll-out time. This
function is potentially very useful as standby links reserve
specific resources in the nodes they connect and also in any
node that cross-connects the link. In this scenario, network
nodes which are experiencing high traffic can free up resources
by dropping one or many standby links which they cross-
connect. Dynamic reconfiguration of standby links would
allow nodes to free up these reserved resources at need for
revenue-producing traffic.

Figure 8 illustrates this scenario for four network nodes. The
standby link between the RNC and RBS B is cross-connected
through Router A. This standby link therefore has reserved
resources in the RNC, RBS B and also Router A. In this
example, Router A can drop the standby link between RNC
and RBS B if it is experiencing high traffic levels and requires
the reserved resources to meet user demand. The network
device which governs the standby link configuration, the RNC,
will then try to reconfigure a new standby link. This dynamism
to configure and drop links at will can result in a cycle where
the RNC configures a standby link through Router A who
then drops the link when it is overloaded and then the RNC
tries to reconfigure the link through Router C who may then



drop the standby link again if it is overloaded. If the traffic
load on both Router A and C are not correlated this might
not be a problem. The resulting flip-flop may occur over a
large or medium timescale, constituting a dynamic adaptation
rather than a disrupting inconvenience. However, if the loads
of Router A and Router C are correlated, for example if both
are in the vicinity of a stadium and on Saturdays the zone
receives much more people than on working days, the flip-flop
described may occur at a very fast rate, becoming a problem
for the devices being re-configured continuously. Thus, the
desired dynamism could result in an unbounded set of changes
where no standby link is stable for any substantial durationas
the area itself is inherently overloaded suggesting that some
longer term solution must be found.

It is this kind of instability that this method is designed
to foresee and hence avoid. The sections below outline the
policies, configuration actions and behaviour model for this
scenario and describe how the composition of the policy model
and behaviour model can identify the cycle of reconfiguration
actions and thereby stop the cycle.

Fig. 8. Standby link scenario network schema.

A. Messages

In this example, the workflow of the system is driven
by messages that are interchanged or broadcast between the
managed nodes. These messages report occurrences or action
requests made by one node to another. The relevant messages
for this example are:

• reqA and reqC: a standby link acceptance request mes-
sage sent from RNC to Router A and Router C respec-
tively.;

• dropA anddropC: a message from Router A or Router
C sent to the RNC requesting to drop and re-route the
standby link through them;

• oLoad: the set of events informing about a node overload;
• oLoadA: an event informing that specifically Router A

is overloaded;
• oLoadC: an event informing that specifically Router C

is overloaded;
• sat: a time event stating that it is Saturday.

B. Policies

The system presented in this simple example is governed
by only one policy that governs what the nodes do when they
are overloaded in order to gain resources. In this case, the
preferred way to gain resources is to drop hosted standby links
because they are reserving resources but not using them. The
TFFST model for this policy is depicted in Figure 9.

Policy 1: If the node N is overloaded
then ask RNC to drop and reroute
standby links which are currently
routed through N.

0

1

oLoad:drop

Fig. 9. Policy 1 as a TFFST.

C. Belief States

Figures 10, 11, 12 and 13 show subparts of the DBN model
and the FST translations of the learnt high probability transi-
tions or belief states relevant to this scenario. For simplicity,
in this example we are disregarding the probability of the
correlation between events. This is equivalent to assuming
that two successive events in the DBN are correlated with
a probability of 1 (p = 1). Section V discuss the impact of
considering the probabilities in the DBN.

Belief State 1: On Saturdays and after it was requested
to host a standby link, Router C may be overloaded for
some periods of time (Fig. 10, DBN left, FST right).3

Belief State 2: On Saturdays and after it was requested
to host a standby link, Router A may be overloaded for
some periods of time (Fig. 11, DBN left, FST right).

Belief State 3: After Router C asks RNC to reroute
standby links, RNC requests Router A to host a standby
link (Fig. 12, DBN left, FST right).

Belief State 4: After Router A asks RNC to reroute
standby links, RNC requests Router C to host a standby
link (Fig. 13, DBN left, FST right).

D. Union of Belief States and Policies

To combine policies and observations, we can assume that
a policy is also a correlation between the event triggering it
and the action enforced with a probability of 1. The union
(see Figure 14) of all the observations plus the policies is
a FST that models all the known correlation between events

3The first column of nodes in the DBN is in a first time slice and the
second column in a second time slice. The representation canbe rolled out
over multiple time slices.
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Fig. 10. Belief State 1.
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Fig. 11. Belief State 2.

and actions, those that are explicitly enforced by policiesand
those that are just observed because they are consequence of
matters out of the management system’s control, for example
the “natural” behaviour of the network dictated by the control
plane.

E. Composition Iteration

If we iterate composing the FST above with itself we obtain
a view of what happens when the output of the system feeds
back into the system again as its input. The first composition
produces the FST in Figure 15. This figure shows two possible
paths with repetitions in the input and the output ((0) −→
reqA : reqA −→ (1), (0) −→ reqC : reqC −→ (1)). This
repetition should be read as: due to the combination of policies
and behaviour/context which is out of the management systems
control, requesting the Router A to host a standby link will
cause, after a chain of events and actions, the replication of
the same request. By tracing back the pair of edges which
generated the repetitive one, it is possible to deduce that
this state of affairs occurs on Saturdays and because the
enforcement of Policy 1.

dropC

reqA

(a)

0

1

dropC:reqA

(b)

Fig. 12. Belief State 3.

dropA

reqC

(a)

0

1

dropA:reqC

(b)

Fig. 13. Belief State 4.

V. I NCORPORATINGPROBABILITIES

The example set out above presents the simple case where
only deterministic behaviour (transitions wherep = 1) is
considered in the TFFST composition process. However, the
probabilistic information encoded in the DBNs should be
exploited rather than ignored. In the DBN-to-FST conversion
process, each arc connectingnodei andnodej in the DBN is
compiled out into multiple arcs of the FST which represent the
transition from each value ofnodei to each value ofnodej .
The probabilities of these transitions are what is encoded in
the conditional probability table ofnodej . Therefore, each arc
in the DBN FST has an associated probability of occurrence.
The probabilities for individual arcs (learnt probabilities of
DBN FST arcs and deterministic (p = 1) policy FST arcs)
can be combined as part of the composition process. For paths
which constitute flipflops or cycles of activity, the probability
associated with any policies in this path can be interpreted
as an evaluation of the risk associated with this policy. The
probability may then be used by the system or a human
operator to evaluate whether the risk presented by enforcing
a given policy is worth taking.

VI. CONCLUSION AND FUTURE WORK

The stability of distributed policy-based and self-
management communication systems is an open issue
which as yet has not been tackled on a large scale. Yet, a
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Fig. 14. A TFFST Union of Belief States and Policies.
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2

reqA:[]
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sat:drop

reqC:drop
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Fig. 15. First Composition of the union TFFST with Itself.

commercially viable self-management system must ensure
such stability in order to realise the reduction in OPEX costs
which a self-management system is intended to provide.
This paper presents an analytic and implementable method
to identify and hence reduce unstable behaviour in such
systems and is a basic step towards a more general theory
of stability in distributed policy-based systems. The method
described here could be used both as an offline tool to
assist the creation and update of policies using system wide
data and on the network devices at runtime, using more
accurate and up-to-date behavioural knowledge to avoid
unexpected flip-flops or unbounded sequences (cascades) of

reconfiguration actions. This analytic method is currently
being prototyped as part of a distributed self-management
system for 3G telecommunications nodes. The policy
evaluation and enforcement functionality described here will
be evaluated against a traditional policy engine baseline for
processing speed and complexity and also relative to an
overall system goal to maximise network resource usage.
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