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COMPLETELY BOUNDED MAPPINGS
AND SIMPLICIAL COMPLEX STRUCTURE

IN THE PRIMITIVE IDEAL SPACE OF A C∗-ALGEBRA

ROBERT J. ARCHBOLD, DOUGLAS W. B. SOMERSET, AND RICHARD M. TIMONEY

Abstract. We consider the natural contraction from the central Haagerup
tensor product of a C*-algebra A with itself to the space of completely bounded
maps CB(A) on A and investigate those A where there exists an inverse
map with finite norm L(A). We show that a stabilised version L′(A) =
supn L(Mn(A)) depends only on the primitive ideal space Prim(A). The
dependence is via simplicial complex structures (defined from primal inter-
sections) on finite sets of primitive ideals that contain a Glimm ideal of A.
Moreover L′(A) = L(A ⊗ K(H)), with K(H) the compact operators, which
requires us to develop the theory in the context of C*-algebras that are not
necessarily unital.

1. Introduction

In previous work [10] we characterised, via a condition on the ideal structure,
those (unital) C∗-algebras A where the canonical contraction θZ from the central
Haagerup tensor product A⊗Z,hA to the space CB(A) of completely bounded maps
on A is isometric. This completed earlier work of Somerset [22] which had shown
sufficiency of the condition (all Glimm ideals of A should be primal ideals). Further
details on previous related work is given in [10].

Our aim here is to study those A for which θZ is injective but not necessarily
isometric. We recall that θZ is injective if and only if every Glimm ideal of A
is 2-primal (see [22, Corollary 6] and Theorem 3.8 (i) below). We then let L(A)
denote the norm of the inverse of θZ , a constant associated with A which can be
∞ (see Definition 4.1). It turns out that the value of L(A) (or even its finiteness)
cannot be determined by the ideal structure of A, but a stabilised version L′(A) =
supn L(Mn(A)) can be determined via the combinatorics of the ideal structure of
A (Theorem 6.1). This is perhaps unexpected in view of the equivalences: θZ is
isometric ⇐⇒ L(A) = 1 ⇐⇒ every Glimm ideal of A is primal ⇐⇒ L′(A) = 1.
In fact L′(A) depends only on the primitive ideal space Prim(A) (Theorem 6.2).

It is tempting to conjecture that L′(A) is L(A ⊗K(H)) (for K(H) the compact
operators on a separable infinite dimensional Hilbert space), and we do indeed prove
this in Corollary 6.3. However, it brings us into the realm of non-unital algebras,
and we need to develop a suitable notion of a central Haagerup tensor product
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A ⊗Z,h A in the non-unital case. We do this in section §3 and work throughout in
this generalised context. We remark that a more common approach of passing to
the multiplier algebra M(A) works if we express conditions in terms of the ideal
structure of M(A) ([10, Corollary 9]), but this can be very different to that of A
(see [10, Example 12] and Example 3.10 below).

The result about L′(A) being determined via the combinatorial structure of the
ideals of A (Theorem 6.1) proceeds by establishing comparisons with combinatori-
ally defined models which we call simplicial-spoke algebras (introduced in Notation
4.6). They have one Glimm ideal G∞ that fails to be a primal ideal (all other Glimm
ideals are in fact primitive ideals) and a finite number of primitive ideals containing
G∞. Aside from this finiteness, the subcollections of the primitive ideals containing
G∞ which have primal intersection can be quite general in these spoke algebras.
We proceed by relating L(A) and L′(A) (for arbitrary A) to these constants for
simplicial-spoke algebras linked to A (Theorems 5.1 and 6.1).

Due to the abstraction involved in these results, we provide some explicit exam-
ples (and inequalities) in §7 including an example where L(A) < ∞ but L′(A) = ∞.
This example arises as a sum of a sequence of examples where L(A) stays bounded,
but L′(A) increases to infinity. Our computations lead us to consider seemingly
elementary questions about matrix norms, and it may be of independent interest
to generalise Proposition 7.5 (for example). We conclude with examples of nilpo-
tent Lie groups G where L′(C∗(G)) = L(C∗(G)) = ∞ while θZ is injective for
A = C∗(G).

Throughout this work we make fundamental use of the tracial geometric mean
[23] and its link with the Haagerup tensor norm (see Lemma 2.1).

We also use the following notation. For A a C∗-algebra, Primal(A) is the set
of primal ideals, Min-Primal(A) the minimal primal ideals and Glimm(A) the
Glimm ideals. Recall that an ideal I ∈ Id(A) is called n-primal if whenever
J1, . . . , Jn ∈ Id(A) with J1J2 · · · Jn = 0 there is 1 ≤ i ≤ n with Ji ⊆ I [8]. An
equivalent definition in terms of the topology of Prim(A) is that I is n-primal when
P1, P2, . . . , Pn ∈ Prim(A/I) implies there exists a net (Pα)α in Prim(A) converging
to all of P1, P2, . . . , Pn. To say I ∈ Primal(A) means that I is n-primal for each
n ≥ 2 [5]. Recall that for a (not necessarily unital) C∗-algebra A, a Glimm ideal is
the kernel of an equivalence class in Prim(A), where P, P ′ ∈ Prim(A) are defined
to be equivalent if f(P ) = f(P ′) for each f ∈ Cb(Prim(A)). We equip Glimm(A)
with the completely regular topology, so that it is the complete regularisation of
Prim(A) [15].

We shall frequently use the well known fact that there is a homeomorphism
Prim(A) → Prim(A ⊗ Mn) (respectively Prim(A) → Prim(A ⊗ K(H))), given by
P 
→ P ⊗ Mn (resp. P 
→ P ⊗K(H)). For the case of A ⊗ Mn, this is elementary,
and in the case of A ⊗ K(H) it follows easily from (for example) [17, Theorems
5 and 6] and the exactness of K(H). It is also elementary that the Glimm ideals
of A ⊗ Mn = Mn(A) are those of the form G ⊗ Mn where G ∈ Glimm(A), and a
similar remark applies to primal ideals.

We denote by S(A) the states of A, P(A) the pure states and Ff (A) the finite
type I factorial states. Recall that Ff (A) can be described [11] as those φ ∈ S(A)
where the GNS representation πφ : A → B(Hπφ

) has commutant πφ(A)′ a factor of
finite type I. Equivalently φ is a convex combination

∑n
i=1 tiψi where ψi ∈ P(A)

(1 ≤ i ≤ n) are equivalent pure states of A.
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For a tensor u =
∑�

j=1 aj ⊗ bj we use the (variation on standard) notation
u = a � b, where a = [a1, a2, . . . , a�] is a row matrix and b = [b1, b2, . . . , b�]t is a
column.

2. Fundamental techniques

In this section we collect a small number of results for use later on. We will
frequently use a consequence of [23, Coroll. 2.3] and Haagerup’s theorem [3, 5.4.7].
Before stating it, we need some more notation.

When X, Y are positive semidefinite �×� matrices (over C) we use tgm(X, Y ) for
the trace of (

√
XY

√
X)1/2, a quantity called the ‘tracial geometric mean’ in [23].

For u = a � b ∈ A ⊗ A and φ ∈ S(A) we let Q(b, φ) be the positive semidefinite
� × � matrix defined by

Q(b, φ) = (φ(b∗i bj))�
i,j=1.

Similarly Q(a∗, φ) = (φ(aia
∗
j ))

�
i,j=1.

Lemma 2.1. Let A be a C∗-algebra and u =
∑�

j=1 aj ⊗ bj ∈ A ⊗ A. Then

(2.1) ‖u‖h = sup{tgm(Q(a∗, φ1),Q(b, φ2)) : φ1, φ2 ∈ co(P(A))},
where co(P(A)) means the convex hull of P(A).

Proof. By separate homogeneity (of order 1/2) of tgm in each variable, we can
replace co(P(A)) by co(P(A)∪{0}) without changing the supremum above. By the
Krein–Milman theorem, we can further replace co(P(A) ∪ {0}) by the quasi-state
space E(A) = {tφ : φ ∈ S(A), 0 ≤ t ≤ 1} without affecting the supremum in
(2.1). [We rely here, and elsewhere, on the joint weak*-continuity of the expression
tgm(Q(a∗, φ1),Q(b, φ2)) for φ1, φ2 ∈ E(A) and fixed a, b. This continuity is
evident from the continuity of the square root of a positive semidefinite matrix.]

Consider a faithful embedding A ⊂ B(H) for some H. By injectivity we can
compute the norm ‖u‖h in B(H)⊗h B(H), where it is the same as the norm of the
elementary operator θ(u) on K(H) given by x 
→

∑�
j=1 ajxbj (Haagerup’s theorem).

By [23, Coroll. 2.3], the completely bounded norm of the elementary operator is

‖u‖h = ‖θ(u)‖cb = sup{tgm(Q(a∗, φ1),Q(b, φ2)) : φ1, φ2 ∈ Ff (K(H))},
where it is to be understood that φ1 and φ2 are extended (uniquely) to states of the
multiplier algebra M(K(H)) = B(H). Thus φ1 and φ2 are convex combinations of
vector states of B(H). Since such states are weak*-dense in S(B(H)) (by [16, 3.4.1]),
we can replace Ff (K(H)) by S(B(H)) in this formula. By the separate homogeneity,
we can further replace S(B(H)) by E(B(H)). Restricting φ1, φ2 ∈ E(B(H)) to A
we get quasi-states of A. So ‖u‖h is at least the supremum in (2.1). As all elements
of E(A) are restrictions of elements of E(B(H)), we have the opposite inequality
also. �

The following argument is similar to one in the proof of (1) ⇒ (2) in [5, Th.
3.3]. In the course of the proof we will be considering the open map β : P(A) → Â
given by β(ψ) = πψ (the equivalence class of the GNS representation associated
to ψ). Recall that states φ ∈ Ff (A) are convex combinations

∑n
i=1 tiψi where

ψi ∈ P(A) and β(ψi) is constant (1 ≤ i ≤ n). The assignment β̃(φ) = β(ψ1) gives
a well-defined map β̃ : Ff (A) → Â (see [11, p. 134]).
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Lemma 2.2. Let A be a C∗-algebra and Q a primal ideal of A. Given any two
states φ1, φ2 ∈ S(A/Q), there are commonly indexed nets (φ1,α)α and (φ2,α)α in
the finite type I factorial states Ff (A) of A with the properties

(i) limα φi,α = φi (i = 1, 2),
(ii) β̃(φ1,α) = β̃(φ2,α) for all α.
Moreover, if φ1, φ2 ∈ P(A/Q), we can take all φi,α ∈ P(A).

Proof. We choose the index set for the nets to be a weak*-neighbourhood base U of
open convex neighbourhoods of the origin in A∗ (ordered by reverse inclusion). For
each U ∈ U choose finite convex combinations ψi,U =

∑NU

k=1 ti,Uk ψi,U
k ∈ φi + U/2,

where ti,Uk ∈ [0, 1],
∑NU

k=1 ti,Uk = 1, ψi,U
k ∈ P(A/Q) for 1 ≤ k ≤ NU and i = 1, 2.

By primality of Q, the 2NU open sets β(P(A) ∩ (ψi,U
k + U/2)) must have non-

empty intersection. Choose πU ∈ Â in this intersection. Then, for 1 ≤ k ≤ NU and
i = 1, 2, there exist ψ̃i,U

k ∈ P(A) with ψ̃i,U
k − ψi,U

k ∈ U/2 and β(ψ̃i,U
k ) = πU . Take

φi,α = φi,U =
∑NU

k=1 ti,Uk ψ̃i,U
k ∈ φi + U to get the desired nets.

If we start with pure states φ1, φ2 ∈ P(A/Q), there is no need for convex combi-
nations and the argument becomes simpler. �

Note that by [11, Proposition 2.1], condition (ii) above is equivalent to
(φ1,α + φ2,α)/2 ∈ Ff (A).

Lemma 2.3. Let X and Y be operator spaces and φ : X → Y be a complete con-
traction. Then φ(n) ⊗ φ(n) : Mn(X) ⊗h Mn(X) → Mn(Y ) ⊗h Mn(Y ) is contractive
for each n ≥ 1.

Proof. The norm of a tensor u ∈ Mn(X) ⊗h Mn(X) is the infimum of ‖a‖‖b‖
over all representations u =

∑�
j=1 aj ⊗ bj , where ‖a‖ means the norm of the row

[a1, a2, . . . , a�] ∈ M1,�(Mn(X)) ⊆ Mn�(X) and ‖b‖ means the norm of the column
[b1, b2, . . . , b�]t. (See, for example, [19, p. 240].) Applying φ(n) to each aj , bj gives
a representation of (φ(n) ⊗ φ(n))(u) ∈ Mn(Y ) ⊗ Mn(Y ). Since φ(n�) is a complete
contraction, ‖(φ(n) ⊗ φ(n))(u)‖h ≤ ‖a‖‖b‖. �

Here is a generalisation of [10, Lemma 5], with a more succinct proof.

Lemma 2.4. Let bj (1 ≤ j ≤ N) be orthogonal, positive elements of norm one in
a C∗-algebra A (that is, bj ≥ 0, ‖bj‖ = 1 and bjbk = 0 for j �= k, 1 ≤ j, k ≤ N)
and let X denote their linear span. Let dj (1 ≤ j ≤ N) be orthogonal positive
elements of a C∗-algebra B and let Y denote their linear span. Assume ‖dj‖ ≤ 1
for 1 ≤ j ≤ N .

We can define a linear map φ : X → Y by φ(bj) = dj, and it has the following
properties:

(i) ‖φ‖ ≤ 1.
(ii) The map φ(n)⊗φ(n) : Mn(X)⊗hMn(X)→Mn(Y )⊗hMn(Y ) (with Haagerup

tensor norms in each case) has norm at most one.
(iii) If ‖dj‖ = 1 for each j, then φ(n) ⊗ φ(n) is an isometry between Mn(X) ⊗h

Mn(X) and Mn(Y ) ⊗h Mn(Y ).

Proof. The fact that φ is contractive is proved in [10, Lemma 5]. As φ has range
in the commutative C∗-algebra generated by d1, d2, . . . , dN , it must be completely
contractive ([19, p. 107]). By Lemma 2.3 we deduce ‖φ(n) ⊗ φ(n)‖ ≤ 1.
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To get the last statement, we can apply the same arguments to the inverse
map from the span of d1, d2, . . . , dN to the commutative C∗-algebra generated by
b1, b2, . . . , bN . �

3. The non-unital central Haagerup tensor product

In this section we extend the theory of the central Haagerup tensor product
to cover the case when the algebra need not be unital. This is desirable for two
reasons: first because there are interesting non-unital examples such as C∗-algebras
from non-discrete groups, and second because we shall soon wish to consider the
stabilization A ⊗ K(H) of a C∗-algebra A. Let A be a (possibly non-unital) C∗-
algebra.

Definition 3.1. Let JA be the closure in A⊗h A of the linear span of the elements
of the form az⊗ b−a⊗ zb with a, b ∈ A, z ∈ Z(M(A)), the centre of the multiplier
algebra M(A). (In fact JA is an ideal.)

We define A⊗Z,h A to be the quotient (A⊗h A)/JA, and we denote the quotient
norm by ‖ · ‖Z,h.

Note that this agrees with the usual definition of A⊗Z,h A when A is unital (in
which case M(A) = A).

Notation 3.2. We recall that the map θ : A ⊗ A → CB(A) given by

θ

⎛⎝ �∑
j=1

aj ⊗ bj

⎞⎠ (x) =
�∑

j=1

ajxbj

is contractive in the Haagerup tensor norm (‖θ(u)‖cb ≤ ‖u‖h). Hence it extends to a
contraction on the completed tensor product θ : A⊗h A → CB(A), and it is evident
that θ(JA) = 0. Thus the map θ induces a contraction θZ : A ⊗Z,h A → CB(A),
where θZ(u + JA) = θ(u) for u ∈ A ⊗h A, and ‖θZ(u + JA)‖cb ≤ ‖u + JA‖Z,h. For
convenience we will frequently write θZ(u) and ‖u‖Z,h where it is to be understood
that u should be replaced by the coset u + JA.

Lemma 3.3. For each G ∈ Glimm(A), A ⊗h G + G ⊗h A ⊇ JA.

Proof. Let G ∈ Glimm(A). In the proof of [10, Lemma 10], elaborating an argument
from [3, p. 88], it is shown that there is a maximal ideal J of Z(M(A)) such that
JA ⊆ G. Let φJ : Z(M(A)) → C be the multiplicative linear functional with kernel
J , and let z ∈ Z(M(A)). Then z − φJ (z)1 ∈ J , and so for a, b ∈ A we have

az ⊗ b − a ⊗ zb = (az − φJ(z)a) ⊗ b − a ⊗ (zb − φJ(z)b)
= ((z − φJ(z)1)a) ⊗ b − a ⊗ ((z − φJ (z)1)b)
∈ A ⊗h G + G ⊗h A.

As A ⊗h G + G ⊗h A is a closed ideal in A ⊗h A (by [1, Corollary 2.6]), the result
follows. �

The following lemma is presumably well known, but we have been unable to
locate a reference.

Lemma 3.4. Let T be a completely regular (Hausdorff) space, Y ⊆ X a compact
subset and N1, N2, . . . , Nm a finite open cover of Y . Then there exist R-valued
continuous functions f1, . . . , fm, fm+1 on T with 0 ≤ fj ≤ 1 (1 ≤ j ≤ m + 1), fj

vanishes outside Nj (1 ≤ j ≤ m),
∑m

j=1 fj = 1 on Y and fm+1 = 1 −
∑m

j=1 fj.
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Proof. As T is a completely regular (Hausdorff) space there is a compact Hausdorff
space T ′ that contains it. There are open N ′

j ⊆ T ′ so that N ′
j ∩ T = Nj . As

{N ′
j : 1 ≤ j ≤ m} ∪ {T ′ \ Y } is an open cover of T ′, there are continuous functions

f ′
j : T ′ → R (1 ≤ j ≤ m + 1) with

∑m+1
j=1 f ′

j = 1, 0 ≤ f ′
j ≤ 1 (1 ≤ j ≤ m + 1),

f ′
j vanishes outside N ′

j and f ′
m+1 vanishes on Y . Let fj be the restriction of f ′

j to
T . �

The next result is a direct generalisation of [22, Theorem 1] to include the non-
unital case. Recall that from [1, Corollary 2.6], for I an ideal in A, the quotient
(A ⊗h A)/(A ⊗h I + I ⊗h A) is isometrically isomorphic to (A/I) ⊗h (A/I). For
u ∈ A ⊗h A we let uI denote the image of u in the quotient.

Theorem 3.5. Let A be a C∗-algebra and let u ∈ A ⊗h A. Then

‖u‖Z,h = sup{‖uG‖h : G ∈ Glimm(A)}.
Hence JA =

⋂
{A ⊗h G + G ⊗h A : G ∈ Glimm(A)}.

Proof. It is enough to prove equality when u has the form u =
∑�

i=1 ai⊗bi (ai, bi ∈
A). Let α = sup{‖uG‖h : G ∈ Glimm(A)}. From Lemma 3.3 it is clear that
‖u‖Z,h ≥ α. Suppose ε > 0 is given. Set

X =

{
P ∈ Prim(A) :

∥∥∥∥∥
�∑

i=1

(aia
∗
i + P )

∥∥∥∥∥ ≥ ε/2

}

∪
{

P ∈ Prim(A) :

∥∥∥∥∥
�∑

i=1

(b∗i bi + P )

∥∥∥∥∥ ≥ ε/2

}
.

Then X is compact, being a union of two compact sets (by [16, 3.3.7]). Let
Y = φA(X), where φA : Prim(A) → Glimm(A) is the complete regularisation map.
Then Y is a compact subset of Glimm(A).

For each G ∈ Y there exists by [13, Lemma 2.3] an invertible �× � matrix S such
that if (a′

i) = (ai)S−1 and (b′i) = S(bi), then∥∥∥∥∥
�∑

i=1

(a′
ia

′
i
∗ + G)

∥∥∥∥∥ ,

∥∥∥∥∥
�∑

i=1

(b′i
∗b′i + G)

∥∥∥∥∥ < α +
ε

2
.

For x ∈ A, the norm function G 
→ ‖x+G‖ is upper semicontinuous on Glimm(A)
(see the first paragraph of the proof of [24, Theorem 3.1] or [14, Corollary 1.9] for the
general, non-unital, case). By this upper semicontinuity there is a neighbourhood
N of G such that ∥∥∥∥∥

�∑
i=1

(a′
ia

′
i
∗ + G′)

∥∥∥∥∥ ,

∥∥∥∥∥
�∑

i=1

(b′i
∗b′i + G′)

∥∥∥∥∥ < α +
ε

2

for all G′ ∈ N . Thus by compactness of Y there exist open subsets {Nj}m
j=1 of

Glimm(A) and invertible � × � matrices {Sj}m
j=1 such that the Nj cover Y , and if

G ∈ Nj , then ∥∥∥∥∥
�∑

i=1

(aj
ia

j
i
∗ + G)

∥∥∥∥∥ ,

∥∥∥∥∥
�∑

i=1

(bj
i
∗bj

i + G)

∥∥∥∥∥ < α +
ε

2
,

where (aj
i ) = (ai)S−1

j and (bj
i ) = Sj(bi).
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As Glimm(A) is a completely regular (Hausdorff) space, we can apply Lemma 3.4
to find continuous fj : Glimm(A) → R (1 ≤ j ≤ m + 1) with 0 ≤ fj ≤ 1
(1 ≤ j ≤ m + 1), fj vanishes outside Nj (1 ≤ j ≤ m),

∑m
j=1 fj = 1 on Y and

fm+1 = 1 −
∑m

j=1 fj . Let z1, . . . , zm+1 be the elements of Z(M(A)) corresponding
to f1, . . . , fm+1 under the Dauns-Hofmann Theorem ([15], or see for instance [20,
§A.3]). Then for x ∈ A and P ∈ Prim(A) we have zja + P = fj(φA(P ))a + P
(1 ≤ j ≤ m + 1). For x ∈ A and G ∈ Glimm(A) we have zja + G = fj(G)a + G
(1 ≤ j ≤ m + 1) since zja − fj(G)a belongs to all P ∈ Prim(A) with P ⊇ G.

Set

v =
m∑

j=1

�∑
i=1

aj
iz

1/2
j ⊗ z

1/2
j bj

i and w =
�∑

i=1

aiz
1/2
m+1 ⊗ z

1/2
m+1bi.

Then for G ∈ Glimm(A)∥∥∥∥∥∥
m∑

j=1

�∑
i=1

(zja
j
ia

j
i
∗ + G)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑

j=1

fj(G)
�∑

i=1

(aj
ia

j
i
∗ + G)

∥∥∥∥∥∥
< α +

ε

2
,

and similarly for G′ ∈ Glimm(A),∥∥∥∥∥∥
m∑

j=1

�∑
i=1

(zjb
j
i
∗bj

i + G′)

∥∥∥∥∥∥ < α +
ε

2
.

Hence

‖v‖h ≤

∥∥∥∥∥∥
m∑

j=1

�∑
i=1

zja
j
ia

j
i
∗

∥∥∥∥∥∥
1/2 ∥∥∥∥∥∥

m∑
j=1

�∑
i=1

zjb
j
i
∗bj

i

∥∥∥∥∥∥
1/2

< α +
ε

2

(since
⋂
{G : G ∈ Glimm(A)} = {0}).

Furthermore, for P ∈ Prim(A)∥∥∥∥∥
�∑

i=1

(zm+1aia
∗
i + P )

∥∥∥∥∥ = fm+1(φA(P ))

∥∥∥∥∥
�∑

i=1

(aia
∗
i + P )

∥∥∥∥∥ <
ε

2
,

since fm+1 is supported in Glimm(A) \ Y .
Similarly for P ∈ Prim(A),∥∥∥∥∥

�∑
i=1

(zm+1b
∗
i bi + P )

∥∥∥∥∥ <
ε

2
.

Hence

‖w‖h ≤
∥∥∥∥∥

�∑
i=1

zm+1aia
∗
i

∥∥∥∥∥
1/2 ∥∥∥∥∥

�∑
i=1

zm+1b
∗
i bi

∥∥∥∥∥
1/2

<
ε

2
.

Finally we show that u − (v + w) ∈ JA. For this it is convenient to work inside
M(A)⊗hM(A) using the natural isometric isomorphism A⊗hA ↪→ M(A)⊗hM(A).
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Then

u − (v + w) = u −
m∑

j=1

u(z1/2
j ⊗ z

1/2
j ) − u(z1/2

m+1 ⊗ z
1/2
m+1)

= u

⎛⎝1 −
m+1∑
j=1

z
1/2
j ⊗ z

1/2
j

⎞⎠
= u

⎛⎝m+1∑
j=1

(z1/2
j ⊗ 1)(z1/2

j ⊗ 1 − 1 ⊗ z
1/2
j )

⎞⎠ .

But u(z1/2
j ⊗ 1 − 1 ⊗ z

1/2
j ) ∈ JA for all j, so u − (v + w) ∈ JA.

Hence ‖u‖Z,h ≤ ‖v + w‖h < α + ε, as required. �

A fact that we will often use is stated here for easy reference and can be found
in [3, 5.3.12, 5.4.10].

Proposition 3.6. For A a C∗-algebra and u ∈ A ⊗ A, ‖θ(u)‖cb = sup{‖uP ‖h :
P ∈ Prim(A)}.

The next result is proved in [22, Proposition 3], but we give a rather different
proof by using Lemma 2.1.

Proposition 3.7. Let A be a C∗-algebra and let u ∈ A ⊗h A. Then

‖θ(u)‖cb = sup{‖uQ‖h : Q ∈ Primal(A)}
= sup{‖uQ‖h : Q ∈ Min-Primal(A)}.

Proof. Since θZ is contractive, and so are the canonical maps A⊗h A → (A/Q)⊗h

(A/Q), it is sufficient to prove the result when u =
∑�

j=1 aj ⊗ bj ∈ A ⊗ A.
Since Prim(A) ⊆ Primal(A), we get an inequality from Proposition 3.6.
By Lemma 2.1, if Q ∈ Primal(A) and ε > 0, then there exist φ1, φ2 ∈ co(P(A/Q))

with
tgm(Q(a∗, φ1),Q(b, φ2)) ≥ ‖uQ‖h − ε.

By Lemma 2.2 there are nets (φ1,α)α and (φ2,α)α in Ff (A) satisfying β̃(φ1,α) =
β̃(φ2,α) (all α) and limα φi,α = φi (i = 1, 2). For each α, let Pα = ker β̃(φ1,α) and
then φ1,α, φ2,α ∈ co P(A/Pα). So, by Lemma 2.1 and Proposition 3.6,

tgm(Q(a∗, φ1,α),Q(b, φ2,α)) ≤ ‖uPα‖h ≤ ‖θ(u)‖cb.

Taking limits we get ‖uQ‖h − ε ≤ ‖θ(u)‖cb. This establishes the first equality.
The second follows because each primal ideal contains a minimal primal and

‖uQ‖h increases as Q decreases. �

The following generalises [10, Theorem 8] and [22, Theorem 4, Corollary 6 (ii)].

Theorem 3.8. Let A be a C∗-algebra and θZ : A ⊗Z,h A → CB(A) the linear
contraction given by θZ(a ⊗ b + JA)(x) = axb. Then

(i) θZ is injective if and only if each G ∈ Glimm(A) is a 2-primal ideal of A.
(ii) θZ is an isometry if and only if each G ∈ Glimm(A) is a primal ideal of A.

Proof. (i) This can be shown as in [22, Corollary 6] using Theorem 3.5 in place
of [22, Theorem 1].
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(ii) If each Glimm ideal of A is primal, then we can see that θZ is isometric
by Theorem 3.5 and Proposition 3.7. (See [22, Theorem 4] for the unital
case.)

The converse follows as in [10, Theorem 17], using Theorem 3.5 in place
of [22, Theorem 1]. �

The family of C∗-algebras for which every Glimm ideal is primal includes the
following: von Neumann algebras [5, Proposition 4.3], quotients of AW ∗-algebras
[21, Lemma 2.8], prime C∗-algebras, and the C∗-algebras of amenable discrete
groups [18]. Let G be a simply connected nilpotent Lie group, g the Lie algebra of
G and z the centre of g. Then every Glimm ideal of C∗(G) is primal if the maximal
coadjoint orbit dimension in g∗ equals dim(g/z). Moreover, the converse holds in
the case where G is 2-step nilpotent [6]. Thus, for example, every Glimm ideal is
primal in the case where G is the continuous Heisenberg group and also in the case
G = Wn (n even) where Wn is the “universal” simply connected, two-step nilpotent
Lie group studied in [8, Section 2]. Up to topological isomorphism, there are 24
simply connected, nilpotent Lie groups of dimension 6 (excluding those which are
direct products of lower dimensional groups). Of these, 21 have a group C∗-algebra
for which every Glimm ideal is primal [8, p. 292].

We note briefly that the main result of [10, Section 4] also extends to the non-
unital case.

Theorem 3.9. Let A be a C∗-algebra. Fix � ≥ 1. Then

‖θZ(u)‖cb = ‖u‖Z,h

holds for each u =
∑�

j=1 aj ⊗ bj ∈ A ⊗ A if and only if every Glimm ideal in A is
(�2 + 1)-primal.

Proof. The proof of sufficiency of the condition that every Glimm ideal in A is
(�2 + 1)-primal is as in [10, Proposition 14], using Theorem 3.5 in place of [22,
Theorem 1].

The proof of the converse is as in [10, Theorem 17]. In the course of proving
Theorem 5.1 below, we will generalise the main ideas of the proof of [10, Theorem
17]. �

Example 3.10. In [10, Example 12] an example is given of a C∗-algebra A where
each Glimm ideal of A is primal but there is a Glimm ideal in M(A) that is not
2-primal. In this case the map θZ : A⊗Z,h A → CB(A) is isometric (by Theorem 3.8
(ii)) but the linear contraction ΘZ : M(A) ⊗Z,h M(A) → CB(A) given by

ΘZ(c ⊗ d + JM(A))(x) = cxd

is not even injective (by Theorem 3.8 (i)).

4. The constants L(A) and L′(A) and basic properties

In this section we define the constants L(A) and L′(A) associated to a C∗-
algebra A and we construct combinatorially defined models called simplicial-spoke
C∗-algebras which will be useful for determining L′(A) for general C*-algebras in
later sections. We also give some basic results for later use.
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Definition 4.1. For a (unital or non-unital) C∗-algebra A, define

L(A) = inf{C > 0 : ‖u‖Z,h ≤ C‖θZ(u)‖cb∀u ∈ A ⊗ A},
where θZ : A ⊗Z,h A → CB(A) is the canonical map introduced in Notation 3.2.

We define
L′(A) = sup

n≥1
L(Mn(A)).

Remark 4.2. By a density argument, we could equally define L(A) = inf{C > 0 :
‖u‖Z,h ≤ C‖θZ(u)‖cb∀u ∈ A ⊗Z,h A} (using the completion). It follows that if A
has a Glimm ideal that is not 2-primal (so that θZ is not injective by Theorem 3.8),
then L(A) = ∞. If L(A) < ∞, then θZ is an isomorphism onto its range, and by
completeness of A ⊗Z,h A, the range of θZ is closed. Conversely if θZ is injective
and has closed range, then L(A) < ∞ (by the open mapping theorem).

If all Glimm ideals of A are primal, then we know L(A) = L′(A) = 1 by The-
orem 3.8 (ii) (and remarks in the Introduction concerning Glimm(Mn(A)) and
Primal(Mn(A))).

Proposition 4.3. Let A be a C∗-algebra. Then L(Mn(A)) ≤ L(Mn+1(A)) for
n ≥ 1.

Proof. There is a ∗-algebra embedding jn : Mn(A) → Mn+1(A) adding a row and
column of zeros to x ∈ Mn(A) to get jn(x) ∈ Mn+1(A). Moreover for u ∈ Mn(A)⊗
Mn(A), I any ideal of A, and qI : A → A/I the quotient map, (qI)(n) : Mn(A) =
A ⊗ Mn → A/I ⊗ Mn = Mn(A/I) = Mn(A)/Mn(I) is also a quotient and jn ◦
(qI)(n) = (qI)(n+1) ◦ jn.

It follows that for u ∈ Mn(A)⊗Mn(A), if we let v = (jn ⊗ jn)(u) ∈ Mn+1(A)⊗
Mn+1(A), then for each ideal I of A we have ‖uMn(I)‖h = ‖vMn+1(I)‖h. Hence

‖u‖Z,h = sup{‖uMn(G)‖h : G ∈ Glimm(A)}
= sup{‖vMn+1(G)‖h : G ∈ Glimm(A)}
= ‖v‖Z,h,

‖θZ(u)‖cb = sup{‖uMn(P )‖h : P ∈ Prim(A)}
= sup{‖vMn+1(P )‖h : P ∈ Prim(A)}
= ‖θZ(v)‖cb,

and it follows that L(Mn(A)) ≤ L(Mn+1(A)). �
Proposition 4.4. Let A and B be C∗-algebras. Then

L(A ⊕ B) = max(L(A), L(B))

(interpreted in [1,∞]). Moreover L′(A ⊕ B) = max(L′(A), L′(B)).

Proof. Let qA : A ⊕ B → A and qB : B → A ⊕ B be the coordinate projections.
The irreducible representations of A ⊕ B are those of the form π ◦ qA or σ ◦ qB

with π an irreducible representation of A and σ an irreducible representation of B.
Hence the primitive ideals of A⊕B are those of the form P ⊕B and A⊕Q where
P ∈ Prim(A), Q ∈ Prim(B). As A and B are ideals of A ⊕ B, Prim(A ⊕ B) is
topologically the disjoint union of Prim(A) and Prim(B).

It follows that the complete regularisation Glimm(A ⊕ B) is the disjoint union
Glimm(A) ∪ Glimm(B). In terms of ideals, Glimm(A ⊕ B) = {G ⊕ B : G ∈
Glimm(A)} ∪ {A ⊕ H : H ∈ Glimm(B)}.
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Let u =
∑�

i=1(ai, bi)⊗(ci, di) ∈ (A⊕B)⊗(A⊕B), where ai, ci ∈ A and bi, di ∈ B

(1 ≤ i ≤ n). Let uA =
∑�

i=1 ai ⊗ ci (= (qA ⊗ qA)(u)) and uB =
∑�

i=1 bi ⊗ di. We
first establish

(4.1) ‖u‖Z,h = max(‖uA‖Z,h, ‖uB‖Z,h)

and

(4.2) ‖θ(u)‖cb = max(‖θA(uA)‖cb, ‖θB(uB)‖cb)

(where θA : A⊗A → CB(A) is the usual map taking values in elementary operators
on A, and θB, θ = θA⊕B are similarly defined).

Suppose G ∈ Glimm(A). Then A/G is canonically isomorphic to (A ⊕ B)/
(G⊕B), and we deduce ‖u(G⊕B)‖h = ‖u(G)

A ‖h. Similarly we can verify ‖u(A⊗H)‖h =
‖(uB)(H)‖h. Then (4.1) follows from Theorem 3.5.

On the other hand, replacing G and H in the above arguments by P ∈ Prim(A)
and Q ∈ Prim(B) respectively, we obtain ‖u(P⊕B)‖h = ‖(uA)(P )‖h and ‖u(A⊕Q)‖h

= ‖(uB)(Q)‖h. From this, (4.2) follows from Proposition 3.6.
Now let 0 < L < L(A). Then there exists w ∈ A ⊗ A with

‖θA(w)‖cb <
1
L
‖w‖Z,h.

Clearly there is u ∈ (A ⊕ B) ⊗ (A ⊕ B) such that uA = u and uB = 0. Then using
(4.1) and (4.2), we have ‖θ(u)‖cb < 1

L‖u‖Z,h. Thus L(A⊕B) ≥ L(A), and similarly
L(A ⊕ B) ≥ L(B).

Now suppose L(A) and L(B) are both finite. Let L = max(L(A), L(B)) and let
u ∈ (A ⊕ B) ⊗ (A ⊕ B). Then

‖θA(uA)‖cb ≥
1
L
‖uA‖Z,h and ‖θB(uB)‖cb ≥

1
L
‖uB‖Z,h.

Using (4.2), and then (4.1), we have

‖θ(u)‖cb ≥
1
L

max(‖uA‖Z,h, ‖uB‖Z,h) =
1
L
‖u‖Z,h.

Hence L(A ⊕ B) ≤ L, as required.
Since Mn(A ⊕ B) ∼= Mn(A) ⊕ Mn(B), the assertion about L′(A ⊕ B) follows

easily. �

Corollary 4.5. Let (An)n≥1 be a sequence of C∗-algebras. Let A0 be the c0 direct
sum of the An. Then

L(A0) = sup
n≥1

L(An) (in [1,∞])

and L′(A0) = supn≥1 L′(An).

Proof. For each n, k ≥ 1, Mk(An) is isomorphic to a direct summand of Mk(A0)
and so L(Mk(An)) ≤ L(Mk(A0)) by Proposition 4.4. Hence L(A0) ≥ supn L(An)
(from k = 1) and L′(A0) ≥ supn L′(An). Note that if either of the constants L(A0)
or L′(A0) is 1, then we get the reverse inequalities by definition.

Let us agree that if In is an ideal of An, then I ′n is the ideal of A0 defined via
the restriction on x that xn ∈ In.

Now suppose k ≥ 1 and that 1 ≤ Lk := supn L(Mk(An)) < ∞. It suffices to
show that L(Mk(A0)) ≤ Lk.
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We know that irreducible representations of A0 must be of the form π(x) =
π((xi)∞i=1) = πn(xn) for some irreducible representation πn of An. Thus the prim-
itive ideals of A0 are those of the form P ′

n for Pn ∈ Prim(An). Since each An is a
direct summand of A0, it is easily seen that the Glimm ideals of A0 are those of
the form G′

n for Gn ∈ Glimm(An).
Now let u =

∑�
i=1 ai ⊗ bi ∈ Mk(A0) ⊗ Mk(A0), and for each n ≥ 1 let un =∑�

i=1(ai)n ⊗ (bi)n ∈ Mk(An) ⊗ Mk(An).
Observe that the canonical ∗-isomorphism

x + Mk(I ′n) 
→ xn + Mk(In)

of Mk(A0)/Mk(I ′n) to Mk(An)/Mk(In) induces an isometric isomorphism between
the Haagerup tensor products of these quotients with themselves under which
uMk(I′

n) is mapped to (un)Mk(In).
Now considering G ∈ Glimm(A0) of the form G = G′

n (some n ≥ 1 and Gn ∈
Glimm(An)), we have

‖uMk(G)‖h = ‖(un)Mk(Gn)‖h ≤ L(Mk(An))‖θAn
(un)‖cb

≤ Lk sup{‖(un)Mk(Pn)‖h : Pn ∈ Prim(An)}
≤ Lk sup{‖uMk(P )‖h : P ∈ Prim(A)}
= Lk‖θ(u)‖cb.(4.3)

Hence
‖u‖Z,h = sup{‖uMk(G)‖h : G ∈ Glimm(A)} ≤ Lk‖θ(u)‖cb

and L(Mk(A0)) ≤ Lk. �

Notation 4.6. By an (abstract finite) simplicial complex we understand a collection
C of subsets of {1, 2, . . . , N} closed under taking subsets (E ∈ C, F ⊆ E implies
F ∈ C) and containing all singletons ({i} ∈ C for 1 ≤ i ≤ N). We refer to N as
the number of vertices in C. All complexes we deal with will be connected (given
two vertices i, j, 1 ≤ i, j ≤ N , there is a sequence i0 = i, i1, . . . , im = j so that
{ik−1, ik} ∈ C for 1 ≤ k ≤ m).

For subsets E ⊆ {1, 2, . . . , N} we treat CE (the set of functions from E to C) as
a subspace of C

N , namely the subspace spanned by those standard basis vectors ei

of CN with i ∈ E. (This will be more convenient for us than identifying CE with
C|E|.) We treat CE as a commutative C∗-algebra with pointwise operations and
the supremum norm. We will also use ME for matrices of size |E| × |E| indexed
by i, j ∈ E (with the operator norm from action on �2(E)). Given a function
y = (yi)i∈E ∈ CE , we let diagE(y) be the diagonal matrix in ME with its (i, i) entry
equal to yi for each i ∈ E. Let PE : CN → CE denote the projection (restriction)
PE(y) = (yj)j∈E .

We now define a ‘simplicial spoke algebra’ A(C) associated to a connected sim-
plicial complex as follows. Enumerate the maximal elements of C as E1, E2, . . . , Em

(maximal under set inclusion). Choose m disjoint half-closed rays Rr (1 ≤ r ≤ m)
in the plane (say Rr = {tζr : t ≥ 1}, where ζ1, ζ2, . . . , ζm are distinct points of the
unit circle). Let T =

⋃m
r=1 Rr.

We construct the algebra A(C) as the subset of the functions

x : T →
m⋃

r=1

MEr
(C)
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satisfying

• for τ ∈ Rr ⊂ T , x(τ ) ∈ MEr
,

• the restriction of x to Rr is a continuous function on Rr with values in
MEr

,
• there are scalars λi(x) (1 ≤ i ≤ N) so that the limit as τ ∈ Rr tends to

infinity of x(τ ) is the diagonal matrix diagE((λj(x))j∈E).
By a ‘constant’ element of A(C) we mean an element where x is constant along

Rr for each 1 ≤ r ≤ m. Such an element is determined by λi(x) (1 ≤ i ≤ N). More
specifically, given y ∈ C

N we define x = const(y) to be the element where x(τ ) =
diagEr

(PEr
(y)) when τ ∈ Rr. The map λ : A(C) → CN with λ(x) = (λi(x))N

i=1 is a
left inverse for const; that is, λ ◦ const is the identity.

With pointwise operations and the supremum norm ‖x‖ = supτ∈T ‖x(τ )‖, A(C)
is a unital C∗-algebra. It has a centre consisting of those x where x(τ ) is a multiple
of the identity matrix (of the appropriate size) for each τ ∈ T . Thus, since C
is connected, the centre can be identified with the continuous functions on the
one-point compactification of T .

A(C) has one Glimm ideal G∞ that is not primitive (if N > 1). The minimal
primal ideals containing G∞ are the intersections

⋂
{ker λi : i ∈ Er} (1 ≤ r ≤ m).

Up to *-isomorphism, A(C) is independendent of the enumeration E1, E2, . . . , Em

and the choice of ζ1, ζ2, . . . , ζm. Thus L(A(C)) and L′(A(C)) depend only on C.
Note that the smallest possible (connected) C in cases N = 1 and N = 2 are
exceptional. If N = 1, then A(C) is abelian, and if N = 2 we must have {1, 2} ∈ C
so that m = 1 and every Glimm ideal of A(C) is primal. So in both these cases
L(A(C)) = L′(A(C)) = 1 (see Remark 4.2).

This notation and construction generalises the construction in [10, §2]. The
simplest example of interest occurs when N = 3 and the maximal elements of C are
E1 = {1, 2}, E2 = {3, 2} and E3 = {1, 2}. In this case, the algebra A(C) has the
essential features of the sequence algebra of [4, Example 4.12], with the three rays
R1, R2 and R3 replacing the use of three subsequences.

Lemma 4.7. For A = A(C) a simplicial spoke algebra,

L(A(C)) = inf{C > 0 : ‖v‖h ≤ C sup
E∈C

‖vE‖h∀v ∈ C
N ⊗ C

N},

where N is the number of vertices in C, CN is the N-dimensional commuta-
tive C∗-algebra, and for E ⊆ {1, 2, . . . , N} we use vE to denote the projection
(PE ⊗ PE)(v) ∈ CE ⊗ CE .

Moreover, for each n ≥ 1,

L(Mn(A(C))) = inf{C > 0 : ‖v‖h ≤ C sup
E∈C

‖vE‖h∀v ∈ Mn(CN ) ⊗ Mn(CN )}

where now vE = (P (n)
E ⊗ P

(n)
E )(v) ∈ Mn(CE) ⊗ Mn(CE).

Proof. Fix n ≥ 1. To fix the notation, we take Mn(X) to mean X ⊗ Mn, and the
ampliation φ(n) of a map φ : X → Y to be φ ⊗ idn.

For v =
∑�

j=1 aj ⊗ bj ∈ Mn(CN ) ⊗ Mn(CN ), we can construct

u =
�∑

j=1

const(n)(aj) ⊗ const(n)(bj) ∈ Mn(A(C)) ⊗ Mn(A(C)).
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We note that the map const : CN → A(C) is an embedding of C∗-algebras, hence a
complete isometry to which we can apply Lemma 2.3.

From Theorem 3.5 (or [22, Theorem 1] since we are in a unital algebra), we have

‖u‖Z,h = sup{‖uMn(G)‖h : G ∈ Glimm(A(C))},

and by Proposition 3.6

‖θZ(u)‖cb = sup{‖uMn(P )‖h : P ∈ Prim(A(C))}.

We know that Prim(A(C)) consists of the kernels of representations πτ : A(C) →
MEr

: x 
→ x(τ ) with τ ∈ Rr, 1 ≤ r ≤ m, together with the kernels of the 1-
dimensional representations λi (1 ≤ i ≤ N). For P = kerπτ we know that the
quotient A(C)/P is ∗-algebra isomorphic to MEr

, via π̄τ (x + P ) = πτ (x). We can
compute

(π̄(n)
τ ⊗ π̄(n)

τ )(uMn(P ))

=
�∑

j=1

π̄(n)
τ (const(n)(aj) + Mn(P )) ⊗ π̄(n)

τ (const(n)(bj) + Mn(P ))

=
�∑

j=1

diag(n)
Er

(P (n)
Er

(aj)) ⊗ diag(n)
Er

(P (n)
Er

(bj))

= (diag(n)
Er

⊗ diag(n)
Er

)vEr
.

Thus ‖uMn(P )‖h = ‖vEr
‖h.

On the other hand, for P = ker λi there is at least one r so that {i} ⊆ Er and
then ‖uMn(P )‖h = ‖v{i}‖h ≤ ‖vEr

‖h (for example, by applying Lemma 2.3 to the
projection of CEr onto one coordinate). Hence

‖θZ(u)‖cb = sup
P∈Prim(A(C))

‖uMn(P )‖h = sup
1≤r≤m

‖vEr
‖h

= sup{‖vE‖h : E ∈ C}.(4.4)

(Here we can use Lemma 2.3 to justify the last equality. If E ⊆ Er, then the orthog-
onal projection PE factors through PEr

, and these projections are homomorphisms
of commutative C∗-algebras.)

For G = G∞, we have A(C)/G isomorphic to C
N and ‖uMn(G)‖h = ‖v‖h. To

verify this, let λ̄ : A(C)/G∞ → CN given by λ̄(x + G∞) = λ(x) be the canonical
isomorphism. Let q : A(C) → A(C)/G∞ be the quotient map and observe that
λ̄ ◦ q ◦ const = λ ◦ const is the identity on CN . Thus

v = (λ̄ ◦ q ◦ const)(n) ⊗ (λ̄ ◦ q ◦ const)(n)(v) = (λ̄(n) ⊗ λ̄(n))uMn(G∞),

and ‖uMn(G)‖h = ‖v‖h follows by Lemma 2.3. For other G ∈ Glimm(A(C)) we
have G = ker πτ (some τ ∈ Rr ⊆ T , 1 ≤ r ≤ m) primitive, and in this case we have
shown earlier that ‖uMn(G)‖h = ‖vEr

‖h ≤ ‖v‖h. Thus

(4.5) ‖u‖Z,h = sup
G∈Glimm(A(C))

‖uMn(G)‖h = ‖v‖h.

We can now deduce from (4.4) and (4.5) that L(Mn(A(C))) ≥ Ln(C), where

Ln(C) = inf{C > 0 : ‖v‖h ≤ C sup
E∈C

‖vE‖h∀v ∈ Mn(CN ) ⊗ Mn(CN )}.
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To show L(Mn(A(C))) ≤ Ln(C), consider an arbitrary u∈Mn(A(C))⊗Mn(A(C)).
From uMn(G∞) and the isomorphism λ̄ : A(C)/G∞ → C

N we get

v = (λ̄(n) ⊗ λ̄(n))(uMn(G∞)) = (λ(n) ⊗ λ(n))(u) ∈ Mn(CN ) ⊗ Mn(CN ).

Then we have ‖uMn(G∞)‖h = ‖v‖h because λ̄ is an isomorphism of C∗-algebras.
By Proposition 3.7 (or [22, Proposition 3]) we know ‖θZ(u)‖cb = sup{‖uMn(Q)‖h :

Q ∈ Primal(A(C))}. Since the primal ideals of A(C) which contain G∞ are those
of the form Q =

⋂
i∈E kerλi for E ∈ C, and x + Q 
→ λ̄E(x + Q) := PE(λ(x)) is an

isomorphism A/Q → CE , it follows that ‖uMn(Q)‖h = ‖(λ̄(n)
E ⊗ λ̄

(n)
E )(uMn(Q))‖h =

‖(P (n)
E ⊗ P

(n)
E )(λ(n) ⊗ λ(n))(u)‖h = ‖vE‖. Thus

‖θZ(u)‖cb ≥ sup{‖vE‖h : E ∈ C}.
We deduce

‖uMN (G∞)‖h = ‖v‖h ≤ Ln(C)‖θZ(u)‖cb.

As Ln(C) ≥ 1 and all other Glimm ideals of A(C) are primitive (and primal), we
have

‖u‖Z,h = sup{‖uMn(G)‖h : G ∈ Glimm(A(C))} ≤ Ln(C)‖θZ(u)‖cb.

This establishes L(Mn(A(C))) ≤ Ln(C), and so equality, as claimed. �

Remarks 4.8. (a) The first assertion of Lemma 4.7 may be restated in terms
of norms of Schur multipliers. For v ∈ CN ⊗CN , we can compute ‖v‖h via
Haagerup’s theorem as a cb norm. We embed CN as the diagonal in MN and
then ‖v‖h = ‖(diagN ⊗ diagN )(v)‖h = ‖θ((diagN ⊗ diagN )(v))‖cb. Note
that the operator T = θ((diagN ⊗ diagN )(v)) on MN is a Schur multiplier
and that it is of the form T (x) = T ((xij)N

i,j=1) = (γijxij)N
i,j=1, and so

‖T‖cb = ‖T‖ ([19, Theorem 8.7]). Moreover all Schur multipliers on MN

arise from tensors v ∈ CN ⊗ CN in this way.
As ‖vE‖h for E ⊂ {1, 2, . . . , N} is the norm of the Schur multiplier on

ME which arises by taking those γij where i, j ∈ E, the computation of
L(A(C)) is then equivalent to finding the maximum possible norm of a Schur
multiplier on MN given by γ = (γij)N

i,j=1 under the restriction that certain
submultipliers (arising by taking i, j ∈ E, E ∈ C) have norm at most 1.

(b) One can then see that if there exists a pair (i0, j0) where {i0, j0} is not
contained in any E ∈ C, then the choice of γ with an arbitrary entry in
the (i0, j0) position (and zeroes elsewhere) shows that the maximum is
unbounded. In this case the intersection kerλi0 ∩ kerλj0 is not primal and
G∞ is a Glimm ideal in A(C) that fails to be 2-primal.

(c) Another observation is that given C, if we add some more subsets of {1, 2,
. . . , N} to get a simplex C′ ⊇ C, then L(Mn(A(C))) ≥ L(Mn(A(C′))) by
Lemma 4.7.

5. Lower bounds

Let A be a C∗-algebra and suppose G ∈ Glimm(A) is 2-primal. A finite subset
{P1, P2, . . . , PN} ⊆ Prim(A/G) is called ‘admissible’ if Pi �⊆ Pj for i �= j. Asso-
ciated with any such admissible set, we define a connected simplicial complex by
C = {E ⊂ {1, 2, . . . , N} :

⋂
i∈E Pi ∈ Primal(A)}. We say that such a simplicial

complex is linked to the ideal structure of A.
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Theorem 5.1. Let A be a C∗-algebra and C a simplicial complex linked to the ideal
structure of A. Then L(Mn(A)) ≥ L(Mn(A(C))) for n ≥ 1 and L′(A) ≥ L′(A(C)).

The proof is an adaptation of the argument for [10, Theorem 7].

Proof. There is a 2-primal G ∈ Glimm(A) and an admissible subset

{P1, P2, . . . , PN} ⊆ Prim(A/G)

such that C is the associated simplicial complex. Note that as G is 2-primal, every
2-element set {i, j} ∈ C (1 ≤ i < j ≤ N) and so C is certainly connected. Let
J :=

⋂N
j=1 Pj .

For each subset E ⊂ {1, 2, . . . , N} that fails to belong to C there must exist open
neighbourhoods Uj,E of each Pj with j ∈ E that satisfy

⋂
j∈E Uj,E = ∅. For, if no

such neighbourhoods existed there would be a net (Qα)α in Prim(A) converging to
each of the Pj with j ∈ E — showing

⋂
i∈E Pi primal and contradicting E /∈ C [5,

Proposition 3.2]. Let Ui =
⋂

E	i,E /∈C Ui,E , for 1 ≤ i ≤ N . Note that each Ui is an
open neighbourhood of Pi and that for each E /∈ C we have

⋂
i∈E Ui = ∅.

Now there are closed two-sided ideals Ji in A so that Ui = Prim(Ji) (hence
Ui = {Q ∈ Prim(A) : Ji �⊆ Q}). Let

Rj :=
⋂
i 
=j

Pi (1 ≤ j ≤ N).

Let Ij = JjRj for each j. The ideal Ij cannot be contained in J because then
we would have JjRj ⊆ Pj , and since the primitive ideal Pj is necessarily prime,
it would follow that Jj ⊆ Pj or Rj ⊆ Pj . Since Pj ∈ Uj , we have Jj �⊆ Pj . By
primeness of Pj , if Rj ⊆ Pj , then Pi ⊆ Pj for some i �= j (again not so).

Let Ψ: A → A/J denote the quotient map. Let Kj = Ψ(Ij), a non-zero closed
ideal of A/J . Note that KjKk = 0 for j �= k (as RjRk ⊆ J).

For 1 ≤ j ≤ N , choose a positive element dj ∈ Kj of norm one and gj ∈ Ij

positive of norm one with Ψ(gj) = d
1/3
j . Since d

1/3
j d

1/3
k = 0 for j �= k, we can use

[2, Proposition 2.6] to find cj ∈ A+ (1 ≤ j ≤ N) with Ψ(cj) = Ψ(gj) = d
1/3
j and

cjck = 0 for j �= k. Let b′j = cjgjcj ∈ I+
j . Then b′jb

′
k = 0 for j �= k and Ψ(b′j) = dj

(1 ≤ j, k ≤ N).
Let f : [0,∞) → [0,∞) be f(t) = min(t, 1), a uniform limit on any compact sub-

set of [0,∞) of polynomials without constant term. Define bj = f(b′j) by functional
calculus. Then we have bj ∈ I+

j , Ψ(bj) = dj , ‖bj‖ = 1 and bjbk = 0 for j �= k.
Now, if C < L(Mn(A(C))), then by Lemma 4.7 there exists v ∈ Mn(CN ) ⊗

Mn(CN ) with ‖v‖h > C and supE∈C ‖vE‖h ≤ 1. Consider the map φ : CN → A

defined by φ(ej) = bj . Put u = (φ(n)⊗φ(n))(v). As the canonical quotient map from
Mn(A)/Mn(G) to Mn(A)/Mn(J) induces a contraction from Mn(A)/Mn(G) ⊗h

Mn(A)/Mn(G) to Mn(A)/Mn(J) ⊗h Mn(A)/Mn(J), we have

‖u‖Z,h ≥ ‖uMn(G)‖h ≥ ‖uMn(J)‖h = ‖(qJ ⊗ qJ)(u)‖h,

where qJ : Mn(A) → Mn(A)/Mn(J) is the quotient map.
Denote by ΦJ : Mn(A/J) → Mn(A)/Mn(J) the natural identification map (a

∗-isomorphism). Let Y = span{b1 + J, b2 + J, . . . , bN + J} and ψ : CN → Y be the
linear map with ψ(ei) = bi + J .

By Lemma 2.4 (iii),
‖v‖h = ‖(ψ(n) ⊗ ψ(n))(v)‖h
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(the Haagerup norm in Mn(Y ) ⊗ Mn(Y ), but that is the same as the Haagerup
norm in Mn(A/J) ⊗ Mn(A/J) by injectivity of the Haagerup norm). Thus,

‖v‖h = ‖(ψ(n) ⊗ ψ(n))(v)‖h = ‖(ΦJ ⊗ ΦJ )(ψ(n) ⊗ ψ(n))(v)‖h.

One can check in a straightforward way that ΦJ ◦ψ(n) = qJ ◦φ(n) (for example, by
applying both sides to a = ei ⊗ ej,k ∈ Mn(CN ) and using linearity), and so

‖v‖h = ‖(ΦJ ⊗ ΦJ )(ψ(n) ⊗ ψ(n))(v)‖h

= ‖(qJ ⊗ qJ )(φ(n) ⊗ φ(n))(v)‖h

= ‖(qJ ⊗ qJ )(u)‖h ≤ ‖u‖Z,h.

We deduce ‖u‖Z,h > C.
On the other hand, if P ∈ Prim(A), we know E = {j : 1 ≤ j ≤ N, P ∈ Uj} ∈ C,

and so bj +P = 0∀j /∈ E. We define φE : CE → A/P by φE(ej) = bj +P for j ∈ E,
let qP : Mn(A) → Mn(A)/Mn(P ) be the quotient map and let ΦP : Mn(A/P ) →
Mn(A)/Mn(P ) be the natural identification map. We have

(qP ⊗ qP )(u) = (qP ⊗ qP )(φ(n) ⊗ φ(n))(u) = (ΦP ⊗ ΦP )(φ(n)
E ⊗ φ

(n)
E )(vE).

Applying Lemma 2.4 (ii), we have

1 ≥ ‖vE‖h ≥ ‖(φ(n)
E ⊗ φ

(n)
E )(vE)‖h

because ‖bj + P‖ ≤ 1 for i ∈ E. Hence

1 ≥ ‖(φ(n)
E ⊗ φ

(n)
E )(vE)‖h

= ‖(ΦP ⊗ ΦP )(φ(n)
E ⊗ φ

(n)
E )(vE)‖h

= ‖(qP ⊗ qP )(u)‖h = ‖uMn(P )‖h.

Hence sup{‖uP ‖h : P ∈ Prim(A)} ≤ 1, and we must have L(Mn(A)) > C. As
C was arbitrary, we have L(Mn(A)) ≥ L(Mn(A(C))), as required. �

6. Upper bounds

In this section we establish one of our main results, namely that L′(A) is the
supremum of the lower bounds given in Theorem 5.1.

Theorem 6.1. Let A be a C∗-algebra in which all Glimm ideals are 2-primal. Then

L′(A) = sup
C

L′(A(C)),

where the supremum is over all simplicial complexes C that are linked to the ideal
structure of A.

Proof. From Theorem 5.1, we have L′(A) ≥ supC L′(A(C)), and the issue is the
reverse inequality L(Mn(A)) ≤ supC L′(A(C)) (all n ≥ 1). Since the simplicial
complexes linked to the ideal structure of Mn(A) are the same as those linked to
the ideal structure of A, it suffices to prove this for n = 1.

Fix T < L(A) and u =
∑�

j=1 aj ⊗ bj ∈ A ⊗ A so that ‖θZ(u)‖cb ≤ 1 while
‖u‖Z,h > T . From Theorem 3.5, we have

‖u‖Z,h = sup{‖uG‖h : G ∈ Glimm(A)},
and thus there is G ∈ Glimm(A) with ‖uG‖h > T . We know

‖uG‖h = sup tgm(Q(a∗, φ),Q(b, ψ))
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with the supremum over φ, ψ ∈ co((A/G)) (Lemma 2.1). Choose φ, ψ, each convex
combinations of the pure states g1, g2, . . . , gt ∈ P(A/G) with

(6.1) tgm(Q(a∗, φ),Q(b, ψ)) > T.

Now take the kernels of the GNS representations πgr
associated to gr (1 ≤ r ≤ t)

and let P1, P2, . . . , PN be those that are minimal with respect to inclusion within
this finite set of kernels.

Choose one irreducible representation πi : A → B(Hi) with ker πi = Pi (1 ≤ i ≤
N). If there is any r where πgr

is not equivalent to any of π1, π2, . . . , πN , then we
can choose some i (1 ≤ i ≤ N) with gr(Pi) = 0. Then by [16, 3.4.2 (ii)], gr can
be weak*-approximated by pure states 〈πi(·)ξ, ξ〉. It follows that we can maintain
(6.1) and replace φ, ψ by states of the form

φ =
N∑

i=1

ni∑
s=1

αi,s〈πi(·)ξi,s, ξi,s〉,

ψ =
N∑

i=1

ni∑
s=1

βi,s〈πi(·)ξi,s, ξi,s〉,

where αi,s ≥ 0,
∑N

i=1

∑ni

s=1 αi,s = 1, there are similar conditions on βi,s and
ξi,s ∈ Hi are unit vectors.

Let Fi denote the span in Hi of {ξi,s, πi(a∗
j )ξi,s, πi(bj)ξi,s : 1 ≤ j ≤ �, 1 ≤ s ≤ ni},

and we also use Fi for the orthogonal projection : Hi → Fi. Let n be the least
common multiple of dim(Fi) (1 ≤ i ≤ N), and for each i fix a unitary isomorphism
F̃i : Fi → �2dim Fi

= Cdim Fi . Let ηi,s = F̃i(ξi,s) ∈ �2dim Fi
which we also consider to

be inside �2n (so that ηi,s ∈ �2n is a unit vector). Let ωi,s be the vector state on
Mn = B(�2n) corresponding to ηi,s.

Consider the completely positive map Ci : A → Mn given by

Ci(x) = (F̃iFiπi(x)FiF̃
∗
i )(ki)

where ki = n/ dimFi and the superscript denotes the ampliation (Ci(x) is a block
diagonal matrix with the same block repeated ki times). Observe that

ωi,s(Ci(aj)Ci(ak)∗) = 〈Ci(a∗
k)ηi,s, Ci(a∗

j )ηi,s〉
= 〈F̃iFiπi(ak)∗FiF̃

∗
i ηi,s, F̃iFiπi(aj)∗FiF̃

∗
i ηi,s〉

= 〈Fiπi(ak)∗Fiξi,s, Fiπi(aj)∗Fiξi,s〉
= 〈Fiπi(ak)∗ξi,s, Fiπi(aj)∗ξi,s〉
= 〈πi(ak)∗ξi,s, πi(aj)∗ξi,s〉
= 〈πi(aja

∗
k)ξi,s, ξi,s〉.(6.2)

Similarly

(6.3) ωi,s(Ci(bj)∗Ci(bk)) = 〈πi(b∗jbk)ξi,s, ξi,s〉.

Define a linear completely positive map α : A → Mn(CN ) = C
N ⊗ Mn by

α(x) =
N∑

i=1

ei ⊗ Ci(x)
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and let w ∈ Mn(CN ) ⊗ Mn(CN ) be given by w = (α ⊗ α)(u) =
∑�

j=1 α(aj) ⊗
α(bj) =

∑�
j=1 cj ⊗ dj (say). To show ‖w‖h > T we consider the two states φ′, ψ′ ∈

S(Mn(CN )) given by

φ′

(
N∑

i=1

ei ⊗ xi

)
=

N∑
i=1

ni∑
s=1

αi,sωi,s(xi),

ψ′

(
N∑

i=1

ei ⊗ xi

)
=

N∑
i=1

ni∑
s=1

βi,sωi,s(xi).

Using (6.2) we can verify

φ′(cjc
∗
k) = φ′(α(aj)α(ak)∗) = φ′

(
N∑

i=1

ei ⊗ Ci(aj)Ci(ak)∗
)

= φ(aja
∗
k)

and, using (6.3), ψ′(d∗jdk) = ψ(b∗jbk). It then follows that

tgm(Q(c∗, φ′),Q(d, ψ′)) = tgm(Q(a∗, φ),Q(b, ψ)) > T

and hence ‖w‖h > T .
Now consider the simplicial complex (linked to the ideal structure of A) C = {E ⊂

{1, 2, . . . , N} :
⋂

i∈E Pi ∈ Primal(A)}. Our aim is to verify that L(Mn(A(C))) > T
by use of Lemma 4.7.

For E ∈ C, we consider wE ∈ Mn(CE) ⊗ Mn(CE), which we write as

wE = (P (n)
E ⊗ P

(n)
E )(w) =

�∑
j=1

P
(n)
E (cj) ⊗ P

(n)
E (dj) =

�∑
j=1

cEj ⊗ dEj .

We rely on the fact that (by Lemma 2.1)

(6.4) ‖wE‖h = sup tgm(Q(c∗E, Φ′),Q(dE, Ψ′))

where the supremum is over Φ′, Ψ′ ∈ S(Mn(CE)). Because of Lemma 4.7, we will
be done if we show ‖wE‖h ≤ 1.

Therefore we consider arbitrary fixed specific Φ′, Ψ′ ∈ S(Mn(CE) = S(CE⊗Mn).
We can write Φ′ as a convex combination

Φ′

(∑
i∈E

ei ⊗ xi

)
=
∑
i∈E

γiΦi(xi)

for Φi ∈ S(Mn). We can then express each Φi as a convex combination of n vector
states Ωi,s(x) = 〈xζi,s, ζi,s〉 to get

Φ′

(∑
i∈E

ei ⊗ xi

)
=
∑
i∈E

n∑
s=1

γi,sΩi,s(xi)

(γi,s ≥ 0,
∑

i∈E

∑n
s=1 γi,s = 1). Let K =

⋂
i∈E Pi ∈ Primal(A), and define a

completely positive contraction αE : A/K → Mn(CE) by

αE(x + K) =
∑
i∈E

ei ⊗ Ci(x) = P
(n)
E (α(x)).
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Note then that cEj = P
(n)
E cj = P

(n)
E α(aj) = αE(aj + K), and similarly dEj =

αE(bj + K). We now define a positive linear functional Φ on A/K by Φ = Φ′ ◦αE .
It clearly satisfies ‖Φ‖ ≤ 1 and we claim

Q(c∗E, Φ′) = (Φ′(αE(aj + K)αE(ak + K)∗))�
j,k=1 ≤ (Φ(aja

∗
k + K))�

j,k=1

(an inequality of positive semidefinite � × � matrices). As convex combinations
of positive semidefinite matrices are positive semidefinite, this claim reduces to
showing

(〈(Ci(aja
∗
k) − Ci(aj)Ci(ak)∗)ζi,s, ζi,s〉)�

j,k=1 ≥ 0

(for i ∈ E, 1 ≤ s ≤ n). If we let µi,s = F̃ ∗
i ζi,s ∈ Fi ⊂ Hi, then we have

〈(Ci(aja
∗
k) − Ci(aj)Ci(ak)∗)ζi,s, ζi,s〉

= 〈πi(aja
∗
k)µi,s − πi(aj)Fiπi(ak)∗µi,s, µi,s〉

= 〈πi(aj)(Ii − Fi)πi(ak)∗µi,s, µi,s〉
= 〈(Ii − Fi)πi(ak)∗µi,s, πi(aj)∗µi,s〉
= 〈(Ii − Fi)πi(ak)∗µi,s, (Ii − Fi)πi(aj)∗µi,s〉

(where Ii is the identity operator in Hi). From this it is clear that the matrix with
these entries is positive.

In a similar way we express Ψ′ as a convex combination, and define Ψ(x + K) =
Ψ′(αE(x)). We get an inequality of positive semidefinite matrices again,

Q(dE, Ψ′) = (Ψ′(αE(bj + K)∗αE(bk + K)))�
j,k=1 ≤ (Ψ(b∗jbk + K))�

j,k=1,

and ‖Ψ′‖ ≤ 1.
Now we can use monotonicity of tgm to get

tgm(Q(c∗E, Φ′),Q(dE, Ψ′))

≤ tgm
(
(Φ(aja

∗
k + K))�

j,k=1, (Ψ(b∗jbk + K))�
j,k=1

)
≤

√
‖Φ‖‖Ψ‖‖uK‖ ≤ 1.

Hence, in view of (6.4), ‖wE‖ ≤ 1∀E ∈ C. Since ‖w‖h > T , by Lemma 4.7, we have
L(Mn(A(C))) > T . As T < L(A) is arbitrary, we have L′(A(C)) ≥ L(A). �

As a simple consequence of Theorem 6.1 we now obtain another of the main
results of this paper.

Theorem 6.2. If A and B are C∗-algebra where Prim(A) and Prim(B) are home-
omorphic, then L′(A) = L′(B).

Proof. Let Φ: Prim(A) → Prim(B) be a homeomorphism. The set Glimm(A) is
defined in terms of the topology of Prim(A), and we can see immediately that
P1, P2 ∈ Prim(A) contain the same Glimm ideal of A (that is, are not separated by
functions in Cb(Prim(A))) if and only if Φ(P1) and Φ(P2) contain the same Glimm
ideal of B. Moreover P1 ⊆ P2 ⇐⇒ P2 is in the closure of {P1} ⇐⇒ Φ(P1) ⊆
Φ(P2).

It follows that {P1, P2, . . . , PN} is an admissible subset of Prim(A) if and only
if {Φ(P1), Φ(P2), . . . , Φ(PN )} is an admissible subset of Prim(B).

For a non-empty subset E ⊆ {1, 2, . . . , N}, we have
⋂

i∈E Pi ∈ Primal(A) if and
only if there is a net in Prim(A) convergent to each Pi (i ∈ E). Applying Φ we
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see that the simplicial complexes linked to the ideal structure of A are identical to
those that are linked to B. The result follows from Theorem 6.1. �

Corollary 6.3. Let A be a C∗-algebra. Then L′(A) = L(A ⊗K(H)) (for H sepa-
rable infinite dimensional).

Proof. Since P 
→ P ⊗K(H) is a homeomorphism of Prim(A) onto Prim(A⊗K(H))
(see remarks in the Introduction), it follows that the Glimm ideals of A ⊗ K(H)
are those of the form G̃ =

⋂
{P ⊗K(H) : P ∈ Prim(A/G)}, where G ∈ Glimm(A).

Clearly G ⊗ K(H) ⊆ G̃. On the other hand any primitive ideal of A ⊗ K(H)
containing G ⊗ K(H) has the form P ⊗ K(H) for some P ∈ Prim(A). Let a ∈ G,
T ∈ K(H) with T �= 0, and let π be an irreducible representation of A with kernel
P . Then π(a)⊗ T = (π ⊗ id)(a⊗ T ) = 0, and hence G ⊆ P . Thus G̃ = G⊗K(H).

An argument similar to the proof of Proposition 4.3 then shows L(Mn(A)) ≤
L(A ⊗ K(H)) for each n. Hence L′(A) ≤ L(A ⊗ K(H)). On the other hand, by
Theorem 6.2, L(A ⊗K(H)) ≤ L′(A ⊗K(H)) = L′(A). �

Note that it follows that L(A) = L′(A) if A is a stable C∗-algebra, but we will
exhibit examples in Examples 7.12 (iii), Proposition 7.13 and Corollary 7.14 where
L(A) �= L′(A).

7. Examples and combinatorial bounds

In this section, we develop some bounds for L(A) (and L′(A)) in terms of explicit
combinatorial properties of the primal ideals of A containing individual Glimm
ideals. In the light of Theorem 6.1, one particular aim is to find estimates for L(A)
and L′(A) in the case where A is a simplicial spoke algebra A(C). While exact values
in the range (1,∞) seem challenging to establish, we give a family of examples for
which L(A) is very close to

√
n but L′(A) = n − 1 (n ≥ 3). It then follows that

infinitely many values of L(A) (and L′(A)) do arise. We show in addition that
these constants can be arbitrarily close to 1 (while not equal to 1). Even when all
Glimm ideals of A are 2-primal (so that θZ is injective) we can have L(A) = ∞.

Examples 7.1. (i) Fix N > 2 and 2 ≤ k < N . Let CN,k be the simplicial complex
consisting of all subsets of {1, 2, . . . , N} of cardinality at most k. Via the earlier
remarks in Remarks 4.8 (a), we can give a lower bound for L(A(CN,k)).

It is clear that the norm of a Schur multiplier operator T : MN → MN given by
Tx = (γijxij)N

i,j=1 is at least maxi,j |γij | (by taking x = ei,j to have 1 in the (i, j)
entry and zeros elsewhere).

To get an inequality in the opposite direction, note that T = θ
(∑N

i=1 ai ⊗ bi

)
,

where ai = ei,i and bi =
∑N

j=1 γijej,j . Then

‖T‖ = ‖T‖cb =

∥∥∥∥∥
N∑

i=1

ai ⊗ bi

∥∥∥∥∥
h

≤
(∥∥∥∥∥

N∑
i=1

aia
∗
i

∥∥∥∥∥
∥∥∥∥∥

N∑
i=1

b∗i bi

∥∥∥∥∥
)1/2

≤
√

N max
i,j

|γij |.

The constant
√

N is optimal because we can take γij = ζij , where ζ = exp(2πι/N)
is a primitive Nth root of unity. For this choice, we can apply the multiplier to the
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unitary matrix x = (ζ̄ij/
√

N)N
i,j=1 and get

Tx =
(

1√
N

)N

i,j=1

=
√

N

(
1
N

)N

i,j=1

of norm
√

N (as it is
√

N times a projection).
If E is a projection onto k of the coordinates, then E(γij)N

i,j=1E
∗ is a k × k

matrix with unimodular entries. Hence it has a Schur multiplier norm at most
√

k.
By Lemma 4.7, this leads to the lower bound L(A(CN,k)) ≥

√
N/k.

If we modify the example to replace the diagonal entries γii by 0, we can check
that ‖Tx‖ ≥ (N − 1)/

√
N with the same x (because the constant vectors are

eigenvectors of Tx with this eigenvalue). The k × k multipliers E(γij)N
i,j=1E

∗ now
have norm at most

√
k − 1. So, if k ≤ N/2 we get a better estimate, L(A(CN,k)) ≥

(
√

N − 1/
√

N)/
√

k − 1.
(ii) Let C be an arbitrary simplicial complex on {1, 2, . . . , N} which contains all

2 element subsets {i, j} (1 ≤ i, j ≤ N) (so that the Glimm ideal G∞ is 2-primal).
Then L(A(C)) ≤

√
N .

This inequality follows from Lemma 4.7, Remarks 4.8 (a) and the observations
above about norms of Schur multipliers. If we consider a Schur multiplier T with
matrix (γi,j)N

i,j=1 and v ∈ C
N ⊗ C

N as in Remarks 4.8 (a), then |γr,s| ≤ ‖vE‖h

for r, s ∈ E. Hence maxi,j |γi,j | ≤ max{‖vE‖h : E ∈ C}, and it follows that
‖v‖h = ‖T‖cb = ‖T‖ ≤

√
N maxE ‖vE‖h. Thus L(A(C)) ≤

√
N by Lemma 4.7.

(iii) From (i) and (ii) we now have examples such as A = A(CN,2), where L(A) <

∞ and yet L(A) can be arbitrarily large; we have
√

N/k ≤ L(A(CN,k)) ≤
√

N (for
2 ≤ k < N) and

√
N − 1/

√
N ≤ L(A(CN,2)) ≤

√
N for N ≥ 4.

We show below (Theorem 7.10) that L′(A(CN,2)) = N − 1, but our proof goes
via identifying the best constant for a seemingly elementary inequality concerning
operator norms of matrices.

Definition 7.2. For C a simplicial complex on {1, 2, . . . , N}, we define another
constant LC(C) to be the supremum

LC(C) = sup{‖a‖ : a = (ai,j)N
i,j=1 ∈ MN , max

E∈C
‖aE‖ ≤ 1},

where aE = (ai,j)i,j∈E ∈ ME .

It may be helpful to observe that in Examples 7.1 above, we are using the
relationship between L(A(C)) and Schur multiplier norms (rather than operator
norms) of matrices.

Our immediate goal is to compute LC(CN,2) = N −1 and then to show in general
that L′(A(C)) ≤ LC(C). Finally, to establish L′(A((CN,2))) = N − 1 we will need
to construct a further example.

Lemma 7.3. Suppose H, K are Hilbert spaces and we have orthogonal decomposi-
tions H = H1 ⊕H2 ⊕ · · · ⊕HN and K = K1 ⊕K2 ⊕ · · · ⊕KN . Fix 1 ≤ k ≤ N . For
each subset E ⊂ [N ] = {1, 2, . . . , N} of cardinality |E| = k suppose xE ∈ B(H, K)
is an operator of norm ‖xE‖ ≤ 1 satisfying

xE

(⊕
i∈E

Hi

)
⊆

⊕
i∈E

Ki,

xE(Hj) = {0} if j ∈ [N ] \ E.
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Then ∥∥∥∥∥∥
∑

E⊂[N ],|E|=k

xE

∥∥∥∥∥∥ ≤
(

N − 1
k − 1

)
.

Note that the hypotheses may be stated as saying that xE has a block matrix
xE = (xE,i,j)N

i,j=1 with respect to the given decompositions of H and K that
satisfies xE,i,j = 0 if either i /∈ E or j /∈ E.

In the special case where N = 3, k = 2 and the subspaces Hi and Ki are 1
dimensional, we can state the conclusion as follows. If we have three 3×3 matrices
of the form

x =

⎛⎝ 0 0 0
0 x2,2 x2,3

0 x3,2 x3,3

⎞⎠ , y =

⎛⎝ y1,1 0 y1,3

0 0 0
y3,1 0 y3,3

⎞⎠ , z =

⎛⎝ z1,1 z1,2 0
z2,1 z1,2 0
0 0 0

⎞⎠ ,

then
‖x + y + z‖ ≤ 2 max(‖x‖, ‖y‖, ‖z‖).

Observe that if ‖x‖ = ‖y‖ = ‖z‖, then this inequality improves on what the triangle
inequality gives.

Proof of Lemma 7.3. Take a unit vector ξ ∈ H, which we write as ξ =
∑N

i=1 ξi for
ξi ∈ Hi. Write ξE =

∑
i∈E ξi, θE = xEξ (for E ⊂ [N ] with |E| = k), and note that

as θE = xEξE we have ‖θE‖2 ≤ ‖xE‖2‖ξE‖2 ≤
∑

i∈E |ξi|2. Thus∥∥∥∥∥
(∑

E

xE

)
ξ

∥∥∥∥∥
2

=

∥∥∥∥∥∑
E

θE

∥∥∥∥∥
2

=
N∑

i=1

∥∥∥∥∥∑
E	i

θE,i

∥∥∥∥∥
2

,

where we write θE =
∑

i∈E θE,i with θE,i ∈ Ki. Thus using the triangle and
Cauchy-Schwarz inequalities, and counting the number of E with i ∈ E for fixed i,
we get ∥∥∥∥∥

(∑
E

xE

)
ξ

∥∥∥∥∥
2

≤
N∑

i=1

(
N − 1
k − 1

)∑
E	i

‖θE,i‖2

=
(

N − 1
k − 1

)∑
E

∑
i∈E

‖θE,i‖2

=
(

N − 1
k − 1

)∑
E

‖θE‖2

≤
(

N − 1
k − 1

)∑
E

‖ξE‖2

=
(

N − 1
k − 1

)2 N∑
i=1

‖ξi‖2 =
(

N − 1
k − 1

)2

.

The result follows. �

Lemma 7.4. Fix 0 ≤ t ≤ 1 and k ≥ 2. Let Tt : Mk → Mk be the Schur multipli-
cation operator on Mk given by the matrix γ = (γi,j)k

i,j=1, where γi,j = 1 for i �= j
and γi,i = t. Then ‖Tt‖ ≤ 1 + (1 − t)(1 − 2/k).
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Proof. When t = 0, [10, Example 2] says ‖T0‖ = 2(1 − 1/k). For t = 1, T1 is the
identity on Mk and has norm 1. As Tt = (1 − t)T0 + tT1 we have

‖Tt‖ ≤ 2(1 − t)(1 − 1/k) + t = 1 + (1 − t)(1 − 2/k). �

Proposition 7.5. For 2 ≤ k < N , LC(CN,k) =
2N

k
− 1.

Proof. Consider a matrix a = (ai,j)N
i,j=1 (with complex entries ai,j ∈ C) satisfying

supE∈CN,k
‖aE‖ ≤ 1.

Let b = (bi,j)N
i,j=1 be defined by bi,i = ((k − 1)/(N − 1))ai,i and bi,j = ai,j for

i �= j. From Lemma 7.4 with t = (k − 1)/(N − 1), 1 − t = (N − k)/(N − 1), we
have that, for |E| = k, ‖bE‖ ≤ 1 + (1 − 2/k)(N − k)/(N − 1).

By Lemma 7.3,

‖a‖ =

∥∥∥∥∥∥ 1(
N−2
k−2

) ∑
|E|=k

bE

∣∣∣∣∣∣
≤

(
N−1
k−1

)(
N−2
k−2

) (1 + (1 − 2/k)
N − k

N − 1

)
=

N − 1
k − 1

(
1 + (1 − 2/k)

N − k

N − 1

)
= 2

N

k
− 1.

Hence LC(CN,k) ≤ 2N

k
− 1.

To show equality, consider a, where ai,i = 2
k − 1 and ai,j = 2/k for i �= j. When

|E| = k, aE is the k×k matrix 2pk−Ik with rows and columns of zeros added, where
pk ∈ Mk is the rank one projection with entries 1/k. As 2pk − Ik = pk − (Ik − pk)
is unitary, we have ‖aE‖ = 1 when |E| = k.

When we apply a to the vector ξ with all coordinates 1 we get

aξ =
(

2
k
− 1 + (N − 1)

2
k

)
ξ =

(
2N

k
− 1
)

ξ.

Thus ‖a‖ ≥ 2N

k
− 1. �

Proposition 7.6. Let H =
⊕N

i=1 Hi be a Hilbert space direct sum, x ∈ B(H)
and C be a simplicial complex on {1, 2, . . . , N}. We write x = (xi,j)N

i,j=1 as a
block N × N matrix with entries xi,j ∈ B(Hj , Hi), and for E ⊆ {1, 2, . . . , N}, let
xE = (χE(i)χE(j)xi,j)N

i,j=1 (where χE means the characteristic function of E).
Then

‖x‖ ≤ LC(C) max
E∈C

‖xE‖.

Proof. We assume for convenience that maxE∈C ‖xE‖ = 1. For unit vectors ξ, η ∈
H, we aim to estimate |〈xη, ξ〉| by LC(C). Let ξ =

∑N
i=1 ξi, η =

∑N
i=1 ηi for

ξi, ηi ∈ Hi (1 ≤ i ≤ N).
Define ξ′i = ξi/‖ξi‖ (unless ξi = 0, in which case we take ξ′i ∈ Hi to be any unit

vector). Similarly define η′
i to be the unit vector in the direction of ηi. Then we



COMPLETELY BOUNDED MAPPINGS 1421

have orthogonal vectors {ξ′i : 1 ≤ i ≤ N} and {η′
i : 1 ≤ i ≤ N}, η =

∑N
i=1 ‖ηi‖η′

i,
1 = ‖η‖2 =

∑N
i=1 ‖ηi‖2, and similarly for ξ. For any scalars α = (αi)N

i=1 ∈ �2N we

have
∥∥∥∑N

i=1 αiη
′
i

∥∥∥2 =
∑N

i=1 |αi|2. Let ai,j = 〈xi,jη
′
j , ξ

′
i〉 and take a = (ai,j)N

i,j=1 ∈
MN .

Now if E ∈ C and αE = (αi)i∈E ∈ �2E , βE = (βi)i∈E ∈ �2E , then

|〈aEαE , βE〉| =

∣∣∣∣∣∣
〈 ∑

i,j∈E

ai,jαjβi

〉∣∣∣∣∣∣
=

∣∣∣∣∣
〈

x

(∑
i∈E

αiη
′
i

)
,
∑
i∈E

βiξ
′
i

〉∣∣∣∣∣
≤

⎛⎝∑
i∈E

|αi|2
∑
j∈E

|βj |2
⎞⎠1/2

(using ‖xE‖ ≤ 1). Hence ‖aE‖ ≤ 1 for E ∈ C, and so ‖a‖ ≤ LC(C).
Hence

|〈xη, ξ〉| =

∣∣∣∣∣∣
N∑

i,j=1

ai,j‖ηj‖‖ξi‖

∣∣∣∣∣∣ = ∣∣〈a(‖ηj‖)N
j=1, (‖ξi‖)N

i=1

〉∣∣ ≤ ‖a‖ ≤ LC(C).

�

Proposition 7.7. For C a simplicial complex on {1, 2, . . . , N},

L′(A(C)) ≤ LC(C).

Proof. From Lemma 4.7 we have an expression for L(Mn(A(C))), upon which we
base our argument. We can consider CE ⊂ CN as the elements of CN supported on
E, which is a *-isomorphic (non-unital) embedding of commutative C∗-algebras.
We also consider CN ⊂ MN via the diagonal, so that if ei,i ∈ MN denotes the
diagonal matrix with 1 in the (i, i) entry, then f = (f1, f2, . . . , fn) ∈ C

N corre-
sponds to

∑N
i=1 fiei,i and g = (gi)i∈E ∈ C

E corresponds to
∑

i∈E giei,i. Subject
to these identifications we can write PE(f) as the product pEf = fpE , where
pE =

∑
i∈E ei,i ∈ MN is a projection.

For a ∈ C
N ⊗ Mn = Mn(CN ), we consider a as an element a ∈ MN ⊗ Mn and

then identify P
(n)
E (a) (notation as in Lemma 4.7) with (pE ⊗ In)a = a(pE ⊗ In).

Fix v =
∑�

j=1 aj ⊗ bj ∈ Mn(CN ) ⊗ Mn(CN ), with the aim of showing ‖v‖h ≤
LC(C) maxE∈C ‖vE‖h. As before, we make use of the fact that ‖v‖h is the cb
norm of the elementary operator T = θ(v) on MN ⊗Mn, via injectivity of ‖ ·‖h and
Haagerup’s theorem. We can also see that ‖vE‖h = ‖TE‖cb, where TE : MN⊗Mn →
MN ⊗ Mn is

TE(x) =
�∑

j=1

((pE ⊗ In)aj)x((pE ⊗ In)bj).
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We also know (from [19, Proposition 8.11]) that ‖T‖cb = ‖T (m)‖ with m = nN ,
where T (m) is the elementary operator on Mn(MN ) ⊗ Mm

∼= MnNm given by

T (m)(x) = (T ⊗ idm)(x) =
�∑

j=1

(aj ⊗ Im)x(bj ⊗ Im).

We consider x ∈ MnNm of norm 1 and seek to estimate ‖y‖ for y = T (m)(x).
We write

xE = (pE ⊗ In ⊗ Im)x(pE ⊗ In ⊗ Im)
and

yE = (pE ⊗ In ⊗ Im)y(pE ⊗ In ⊗ Im).
It is important to observe that the notation yE accords with the notation of Propo-
sition 7.6 if we take Hi to be the range of p{i} ⊗ In ⊗ Im (1 ≤ i ≤ N). Note also
that ‖xE‖ ≤ ‖x‖ ≤ 1. We can compute, using the shorthand p̃E = pE ⊗ In ⊗ Im,

yE = p̃E

⎛⎝ �∑
j=1

(aj ⊗ Im)x(bj ⊗ Im)

⎞⎠ p̃E

=
�∑

j=1

((pE ⊗ In)aj ⊗ Im)p̃Exp̃E((pE ⊗ In)bj ⊗ Im)

= T
(m)
E (xE).

We deduce ‖yE‖ ≤ ‖TE‖cb‖xE‖ ≤ ‖vE‖h. Thus ‖y‖ ≤ LC(C) maxE∈C ‖vE‖h by
Proposition 7.6.

As x was arbitrary of unit norm, we have

‖v‖h = ‖T‖cb = ‖T (m)‖ ≤ LC(C) max
E∈C

‖vE‖h.

Thus L(Mn(A(C))) ≤ LC(C) (by Lemma 4.7), and so

L′(A(C)) = sup
n

L(Mn(A(C))) ≤ LC(C).

�

Corollary 7.8. For N > k ≥ 2, L′(A(CN,k)) ≤ 2N

k
− 1.

Proof. From Proposition 7.7 and Proposition 7.5 L′(A(CN,k)) ≤ LC(CN,k) =
2N

k
− 1. �

Proposition 7.9. For N >k≥2, L′(A(CN,k))≥L(MN (A(CN,k))) ≥ (N−1)/(k−1).

Proof. By Lemma 4.7 it is sufficient to exhibit a tensor v ∈ MN (CN ) ⊗ MN (CN )
such that ‖v‖h ≥ N −1 and sup ‖vE‖h ≤ k−1 (with the supremum over E ∈ CN,k).

Let ei,j ∈ MN be the matrix with 1 in the (i, j) position and zeros elsewhere. We
consider C

N as being embedded in MN via the diagonal {ei,i : 1 ≤ i ≤ N}, and then
MN (CN ) = C

N ⊗MN ⊆ MN ⊗MN . Let v =
∑

1≤i,j≤N,i 
=j(ei,i⊗e1,j)⊗(ej,j ⊗ei,1).
We consider the elementary operator T = θ(v) ∈ B(MN ⊗ MN ) = B(MN2).

Consider the operator x =
∑

1≤i,j≤N ej,i ⊗ ei,j ∈ MN ⊗ MN :

x∗x =
∑

i,j,r,s

ei,jes,r ⊗ ej,ier,s =
∑
r,s

er,ses,r ⊗ es,rer,s =
∑
r,s

er,r ⊗ es,s = IN ⊗ IN ,
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and so ‖x‖ = 1. We compute

Tx =
∑
i 
=j

(ei,i ⊗ e1,j)x(ej,j ⊗ ei,1)

=
∑

i 
=j,r,s

(ei,i ⊗ e1,j)(es,r ⊗ er,s)(ej,j ⊗ ei,1)

=
∑

i 
=j,r,s

ei,ies,rej,j ⊗ e1,jer,sei,1

=
∑
i 
=j

ei,iei,jej,j ⊗ e1,jej,iei,1 =
∑
i 
=j

ei,j ⊗ e1,1.

The matrix
∑

i 
=j ei,j ∈ MN has eigenvalue N − 1 on the vector (1, 1, . . . , 1) ∈ C
N .

It follows that ‖Tx‖ ≥ N − 1. Thus ‖T‖ ≥ N − 1, and so ‖v‖h = ‖T‖cb ≥ N − 1.
When we look at

vE = (P (N)
E ⊗ P

(N)
E )(v) = ((PE ⊗ idN ) ⊗ (PE ⊗ idN ))(v)

for E ∈ CN,k, we see that

vE =
∑

i,j∈E,i 
=j

(ei,i ⊗ e1,j) ⊗ (ej,j ⊗ ei,1),

and we verify that ‖vE‖h ≤ k − 1, as follows. It suffices to consider E of the
maximal possible cardinality k:

‖vE‖2
h

≤

∥∥∥∥∥∥
∑

i,j∈E,i 
=j

(ei,i ⊗ e1,j)(ei,i ⊗ e1,j)∗

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

i,j∈E,i 
=j

(ej,j ⊗ ei,1)∗(ej,j ⊗ ei,1)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i,j∈E,i 
=j

(ei,i ⊗ e1,1)

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

i,j∈E,i 
=j

(ej,j ⊗ e1,1)

∥∥∥∥∥∥
= ‖(k − 1)IE ⊗ e1,1‖ ‖(k − 1)IE ⊗ e1,1‖ = (k − 1)2

(where IE =
∑

i∈E ei,i). �

Theorem 7.10. For N ≥ 3, L′(A(CN,2)) = N − 1.

Proof. The result follows from Corollary 7.8 and Proposition 7.9. �

Corollary 7.11. Let A be a C∗-algebra and n ≥ 2. Suppose that each G ∈
Glimm(A) is 2-primal and satisfies |Prim(A/G)| ≤ n. Then L′(A) ≤ n − 1.

Proof. From the hypotheses each simplicial complex C linked to the ideal structure
of A will have N = 1 or CN,2 ⊆ C. As in Notation 4.6, L′(A(C)) = 1 if N = 1 (or
N = 2). If N > 1, we then have L′(A(C)) ≤ L′(A(CN,2)) = N − 1 ≤ n − 1 (using
Remark 4.8 (c). From Theorem 6.1 we get L′(A) ≤ n − 1. �

Examples 7.12. (i) The special case A(CN,k) with k = N − 1 was considered in
[10]. A note in [10, Remark 3] implies that

L(A(CN,N−1)) ≥ 1/

(
1 − 1

(N − 1)2

)
> 1 (N ≥ 3).
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From Corollary 7.8 we have

L(A(CN,N−1)) ≤ L′(A(CN,N−1)) ≤ 1 +
2

N − 1
.

Thus, among the values L′(A(CN,N−1)), there are infinitely many distinct values
tending to 1 (from above). The same is true of the values L(A(CN,N−1)).

The complexes CN,N−1 are extremal in a certain sense. If C is any simplicial
complex on {1, 2, . . . , N} other than the power set, then L(A(CN,N−1)) ≤ L(A(C))
by Remark 4.8 (c). If a C∗-algebra A contains a Glimm ideal G that fails to be
N -primal (for some N ≥ 3), we have L(A(CN,N−1)) ≤ L(A) and L′(A(CN,N−1)) ≤
L′(A). This follows from Theorem 5.1 if G is 2-primal. If G is not 2-primal, then
L′(A) ≥ L(A) = ∞ by Remark 4.2.

(ii) If N > k ≥ 2N/3 (and N ≥ 3), then L′(A(CN,k)) ≤ 2 by Corollary 7.8.
(iii) Recalling L(A(CN,2)) ≤

√
N from Remarks 7.1 (i), we have L(A(CN,2)) <

L′(A(CN,2)) = N − 1 (for N > 2).

We now give examples for which L(A) ≤ 2 < L′(A) = ∞.

Proposition 7.13. Let C be the simplicial complex

C = BN,k−1 = {E ⊂ {1, 2, . . . , N} : 1 /∈ E or |E \ {1}| ≤ k − 1}

and A = A(C) (where N > k ≥ 2). Then L′(A) ≥ L(MN (A)) ≥
√

N−1
k−1 while

L(A) ≤ 2.

Proof. The stated lower bound for L(MN (A)) follows from the argument in the
proof of Proposition 7.9 with v replaced by v =

∑N
i=2(ei,i ⊗ e1,1) ⊗ (e1,1 ⊗ ei,1).

By Lemma 4.7 and Remarks 4.8 (a), establishing the upper bound for L(A(C))
can be reduced to a question about Schur multipliers. Assume T is a Schur mul-
tiplier on MN given by Tx = (γijxij)N

i,j=1 and assume that the restricted Schur
multipliers TE on ME have norms bounded by 1 for each E ∈ BN,k−1. In particu-
lar for E0 = {2, 3, . . . , N} we have ‖TE0‖ ≤ 1 and for E = {1, i} with 2 ≤ i ≤ N ,
we have ‖TE‖ ≤ 1 which implies |γ11| ≤ 1, |γ1i| ≤ 1 and |γi1| ≤ 1. Expressing Tx
as⎛⎜⎜⎜⎝

γ11x11 0 · · · 0
0 γ22x22 · · · γ2Nx2N

...
...

. . .
...

0 γN2xN2 · · · γNNxNN

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
0 γ12x12 · · · γ1nx1n

γ21x21 0 · · · 0
...

...
. . .

...
γN1xN1 0 · · · 0

⎞⎟⎟⎟⎠ ,

and using the fact that the norm of the second summand is the maximum of the
�2 norms of the first row and first column, it follows that ‖Tx‖ ≤ 2‖x‖. �

Regarding Proposition 7.13, note that if (N−1)/(k−1) > 4, then L′(A) > L(A).

Corollary 7.14. With the notation of Proposition 7.13, let A be the c0 direct sum
of A(BN,1) (N = 3, 4, . . .). Then L(A) ≤ 2 while L′(A) = ∞.

Proof. By Corollary 4.5 and Proposition 7.13, L(A) ≤ 2 and L′(A) = ∞. �

In fact it is also true that the unitisation A1 of the algebra A in Corollary 7.14
satisfies L′(A1) = ∞. We can establish a variant of Corollary 4.5 for the unitisa-
tion of the direct sum, with a somewhat similar proof, and this allows us to show
L′(A1) = ∞.
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If we recall from Corollary 6.3 that L′(A) = L(A ⊗ K(H)), then we see that
L(A⊗K(H)) = ∞ but L(A) ≤ 2, even though A and A⊗K(H) have homeomorphic
primitive ideals spaces.

Proposition 7.15. Let A be a C∗-algebra such that each Glimm ideal is 2-primal.
Assume G ∈ Glimm(A) and there exists 3 ≤ k ≤ N , P1, P2, . . . , PN ∈ Prim(A/G)
so that

• Pi �⊂ Pj for i �= j; and
• no intersection of k of P1, P2, . . . , PN is primal.

Then

(i) L(A) ≥
√

N/(k − 1), and
(ii) L′(A) ≥ L(MN (A)) ≥ (N − 1)/(k − 2).

Proof. The relevant simplicial complex C = {E ⊆ {1, 2, . . . , N} :
⋂

i∈E Pi ∈
Primal(A)} is contained in CN,k−1. So by Theorem 5.1, Remarks 4.8 (c) and Ex-
amples 7.1 (i) we have L(A) ≥ L(A(C)) ≥ L(A(CN,k−1)) ≥

√
N/(k − 1).

Similarly L(MN (A)) ≥ L(MN (A(CN,k−1))) ≥ (N−1)/(k−2) by Proposition 7.9.
�

Using Proposition 7.15, we can now determine L(A) and L′(A) for certain group
C∗-algebras.

Example 7.16. (i) Let n ≥ 3 be an odd integer and let G = Wn be the “universal”
simply connected, two-step nilpotent Lie group studied in [8, section 2]. Let zn

be the centre of the Lie algebra of G. For f ∈ z⊥n , the annihilator of zn in the
dual of the Lie algebra, let πf be the corresponding irreducible representation of
C∗(G). It follows from [8, Corollary 2.8 (i)] that every Glimm ideal of C∗(G) is
2-primal (and hence θZ is injective for A = C∗(G) by Theorem 3.8 (i)). We shall
construct a sequence (fj)j≥1 in z⊥n such that, for each N ≥ n + 1, no n + 1 of
f1, . . . , fN lie in an affine hyperplane in z⊥n . It will then follow from [8, Theorem
2.7 (ii)] that, for each N ≥ n + 1, no n + 1 of kerπf1 , . . . , kerπfN

have primal
intersection. Hence, by Proposition 7.15, L(C∗(G)) ≥

√
N/n for all N ≥ n + 1,

and so L′(C∗(G)) = L(C∗(G)) = ∞.
To construct the sequence (fj)j≥1, we may begin by taking f1 =0 and {f2, f3, . . . ,

fn+1} to be any basis for z⊥n . Now suppose that N ≥ n+1 and that f1, . . . , fN have
been constructed with the required property. Then, in choosing fN+1, we simply
have to avoid

(
N
n

)
affine hyperplanes in z⊥n .

(ii) Let GN (N ≥ 3) be the ‘thread-like’ nilpotent Lie groups (see, for example,
[12, 6, 8]). The group G3 is the continuous Heisenberg group. The group G4 also
has the property that every Glimm ideal of its C∗-algebra is primal [6]. However,
this property fails for GN with N ≥ 5 (see [6] and [8, Theorem 3.1]). For N ≥ 5, it
follows from [12] (see also [8, Theorem 3.9 (iii)] and [9, Theorem 3.2]) that there are
uncountably many primitive ideals of C∗(GN ) which have the property that they
belong to the same Glimm class as the C∗-kernel of the trivial representation and
no N − 1 of them have primal intersection. It follows from Proposition 7.15 that
L′(C∗(GN )) = L(C∗(GN )) = ∞. This is already apparent in the case where N > 4
and N ≡ 0 mod 4 because the relation of inseparability on ĜN is not transitive
[8, Corollary 3.10] and so C∗(GN ) has a Glimm ideal that is not 2-primal. On the
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other hand, if N is odd (N ≥ 5), then it follows from [8, Theorem 3.9] and the
discussion for G7 on [8, p. 289] that every Glimm ideal of C∗(GN ) is 2-primal.
It is an interesting open question as to whether every Glimm ideal of C∗(GN ) is
2-primal in the case where N ≡ 2 mod 4.
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