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A causality problem in the time-dependent scattering of classical waves from point scatterers is pointed
out and analyzed. Based on an alternative model, the leading pole approximation of the exact scattering
matrix of the square-well potential, transparent expressions for the time- and position-dependent Green
function in a disordered medium are derived.
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Wave propagation in complex media is a large and inter-
disciplinary field of research with many unsolved problems
that are scientifically challenging and technologically im-
portant [1]. Electromagnetic and acoustic waves are mass-
less and described by a “classical” wave equation which
is second order in the time derivative, whereas “quantum”
particle waves are governed by the Schrödinger equation
which is first order in ≠�≠t. Scalar classical waves at a
fixed frequency v are thus equivalent to a particle wave at
energy E � v2. The analogies between the classical and
quantum problems indeed lead to many cross fertilizations
since solutions obtained in one field can be carried over
to the other. For example, the discovery of localization
of classical waves in random media [2] was stimulated by
earlier work on electron localization [3]. Disordered sys-
tems have to be treated by statistical methods, for example,
by an ensemble average over the configurations of ran-
domly distributed model scatterers. The (diagrammatic)
perturbation theory for potential disorder in metals [4] has
been helpful in understanding classical wave propagation,
including (weak) wave localization [5]. An essential in-
gredient in these calculations is a mathematically simple
yet physically meaningful and well-behaved model for the
disorder. The point (d-function) scatterer is often the ba-
sic building block for classical and quantum problems, be-
cause of its simple scattering amplitude. The associated
ultraviolet divergence must be regularized, however [5,6].

Most previous studies of classical waves in complex
systems have been limited to monochromatic, steady-state
wave fields, but the propagation of short pulses containing
a broad band of frequencies is of considerable interest as
well. Concrete challenges are provided by seismic waves
excited by earthquakes or artificial explosions in terms of
first arrival times [7] and the waves which trail behind (the
so-called “coda”) [8]. The power spectrum of the coda has
received theoretical attention [9], also in the framework
of random matrix theory [10]. Random matrix theory of
transport, until now mainly applied to quantum problems
[11], identifies the “geometrical” or “universal” features of
an observable that do not depend on the microscopic details
of the system. Alternatively, however, one may pursue a
microscopic approach trying to answer, for instance, what
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sort of information about the geophysical complexity of the
subsurface can be distilled from the total seismic trace. To
this end, models and approximations must be found which
are well-behaved and sufficiently accurate over the whole
complex frequency plane. In this Letter, we point out that
point defects interacting with classical waves are respon-
sible for wrong analytical properties of the scattering ma-
trix in the frequency domain equivalent to noncausality in
the time domain, which appears to have escaped attention
in the literature. We propose a different model that has
all the practical advantages of point scatterers but gives a
causal response with the additional bonus that an ultravio-
let cutoff is not needed. For simplicity, we limit attention
in the following to scalar fields referring to [6] for a dis-
cussion of point scatterers for vector fields. After treating
the simple one-dimensional (1D) problem, we turn to the
practically more interesting three-dimensional (3D) space.
The usefulness of the new model is illustrated by a calcu-
lation of the amplitude coda in a random medium with a
low density of weak scatterers.

Let us consider a classical scalar field in 1D with spa-
tially varying celerity (wave velocity) c�x�. The 1D prob-
lem corresponds to a layered system with planar sources
and without lateral disorder, which is relevant as an ap-
proximation for, e.g., the seismics of rock sediments [12].
The wave potential fi�x; v� at a given frequency v is then
governed by the eigenvalue equation:Ω

2
≠2

≠x2 1 V �x, v�
æ
fi�x; v� � Ei�v�fi�x; v� , (1)

introducing the frequency dependent “scattering potential”,

V �x, v� �
v2

c2
0

µ
1 2

c2
0

c�x�2

∂
, (2)

which is “attractive” �V , 0� when the local celerity c�x�
is smaller than the reference celerity c0 (as for air bub-
bles in water) and “repulsive” �V . 0� when c�x� . c0
(as for liquid mercury in water). The physical quantity
of interest is the retarded Green function or point source
propagator (h is a positive infinitesimal):
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G�x, x0; v� �
X

i

fi�x; v�fi�x0; v��

v2

c2
0

2 Ei�v� 1 ih sgn�v�
, (3)

which is an observable for classical fields. A useful con-
cept is the scattering matrix which connects the amplitude
of incoming and outgoing amplitudes of a given scattering
region [13]. In 1D, the scattering matrix has rank 2 and
eigenvalues S�, for the even channel � � s and the odd
channel � � a.

Let us consider a point model scattering potential
Vd�x, v� � g�v�c0�2d�x� with a scattering strength
parametrized by g. A straightforward calculation gives

Sd
s �v� � 2

v 1 iGd

v 2 iGd

; Sd
a � 1 , (4)

where Gd � 2c0�g. The reflected amplitude from a pulse
at time t0 � 0 and x0 � L observed at time t and the same
position x � L can be obtained by contour integration,
collecting the pole at v � iGd:

G�L, L; t� �
Z dv

2p

c

2iv

1
2

�Ss 2 Sa�eiv2L�c0 e2ivt,

(5)

�

c0

2 eGd�t22L�c0�Q�t 2
2L
c0

�

2
c0

2 eGd�t22L�c0�Q� 2L
c0

2 t�

)
for

Ω
Gd , 0
Gd . 0

, (6)

where Q is the step function. Clearly, the result is well
behaved when the scattering potential is attractive �Gd ,
0�, but violates causality for a repulsive scatterer, since the
reaction appears before the action.

In order to shed light on this artifact, let us consider
a finite square-well insertion of thickness d and celerity
c centered at the origin and embedded into the infinite
medium with celerity c0:

V�x, v� �
v2d

c2
0

µ
1 2

c2
0

c2

∂

3
Q�d�2 2 x� 2 Q�x 2 d�2�

d
. (7)

In the limit of vanishing d, the last factor approaches the d
function. For a finite scattering amplitude in this limit j1 2

c2
0�c2j must scale similar to d21, which is possible when

c ø c0. When c . c0, the scattering strength necessarily
vanishes when d ! 0. A repulsive point scatterer can be
realized only by an imaginary celerity in the insertion,
which causes the noncausality.

Obviously, a better behaved model which retains the
attractive features of the point scatterer is necessary. We
show now that a single pole approximation of the scattering
matrix [13] satisfies these requirements. The eigenvalues
of the S matrix for the potential (7) reads

Ss�a � 6e2ivd�c0
�0�1 2 e2ivd�c� 7 �1 2 �2

0�e2ivd�c

1 2 �2
0e2ivd�c

,

(8)
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where �0 � �c 2 c0���c 1 c0� is the reflection coefficient
of an isolated celerity discontinuity [14]. The denomina-
tors of both Ss�a vanish at

vn � n
pc

d
1 i

c

d
logj�0j � nV0 1 iG . (9)

All resonances (or quasinormal modes [15]) are equally
broadened by G and define the product representation of
the scattering matrix (with the proper global phase factor)
[16]:

Ss�a�v� � 2e2ivd�c0
v 1 iG
v 2 iG

3
Ỳ
n�1

�v 1 iG�2 2 �nV0�2

�v 2 iG�2 2 �nV0�2 . (10)

For the attractive (repulsive) scatterer the residues vanish
when n is odd (even) for � � s and n is even (odd) for
� � a. The poles are always in the lower half of the
complex frequency plane as required by causality.

We can now introduce an approximation in which only
the purely imaginary pole is taken into account, which is
formally justified for long time scales Dt � t 2 2L�c0 ¿

d�c and high reflectivities 1 2 �2
0 ø 1. For an attractive

scatterer,

S2
s � 2e2ivd�c0

v 1 iG
v 2 iG

; S2
a � 1 , (11)

whereas for the repulsive scatterer the roles of the odd and
even scattering channels are reversed. The time-dependent
reflection amplitude is now well behaved:

G6�L, L; t� � 7Q

µ
t 2

2L
c0

∂
j�0j

c�d�t2�2L�c0��1c�c0 .

(12)

Let us now turn to the 3D problem. The s-wave scat-
tering matrix of a point scatterer at the origin V ��r , v� �
g�v�c0�2d��r� reads [5]

Sd
0 �v� � 2

v 1 i
4pc

g � c2
0

v2 2
1

k�2 �

v 2 i
4pc

g � c2
0

v2 2
1

k�2 �
, (13)

where �k��21 �
p

2gkc and kc is a high momentum cut-
off which is necessary to regularize the point scatterer
model. Clearly, Sd

0 is unitary for attractive scatterers only
�g , 0� and does not have the correct analytical properties
for all g. This does not disqualify point scatterers for stud-
ies of low celerity insertions and monochromatic illumina-
tion, but they are clearly unsuitable for pulsed, broadband
sources. We can find a remedy along the lines sketched
above for 1D using a spherical square-well scatterer with
diameter d and velocity c. The higher-angular momentum
channels are of higher order in vd�c0 and can therefore be
disregarded when Dt ¿ d�c0. The s-channel eigenvalue
of the S matrix reads [13]

S0�v� � 2e2ivd�c0

µ
1 1

2i
c0

c cotvd
2c0

2 i

∂
. (14)
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For repulsive scatterers, its poles are at v
1
0,n � 2npc�d 1

iG with G �
c
d logj�0j. Taking into account only the low-

est, evanescent mode,

S1
0 �v� � 2e2ivd�c0

v 1 iG
v 2 iG

. (15)
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For attractive scatterers, there is no purely imaginary pole
since v

2
0,n � �2n 1 1�pc�d 1 iG and the lowest ap-

proximation involves two poles:

S2
0 �v� � e2ivd�c0

�v 1 iG�2 1 � pc
d �2

�v 2 iG�2 1 � pc
d �2 . (16)

The similarities and differences between 1D and 3D are
notable. The exact propagator in time,
DG��0�L, L; t� � 2
c0

8pL2

∑
�0Q

µ
t 2

2L 2 d
c0

∂
2 Q

µ
t 2

2L
c0

∂
4c0c

�c 1 c0�2

X̀
n�0

Q

µ
t 2

2L 2 d
c0

2
�n 1 1�d

c

∂∏
,

(17)

is then approximated for c . c0 as

DG1
��0�L, L; t� � 2

c0

8pL2

∑
Q

µ
t 2

2L

c0

∂
1 Q

µ
t 2

2L 2 d

c0

∂
�2�

�c�d� �t2��2L2d��c0�	
0 2 1�

∏
(18)

�d!0
2

c0

4pL2
Q

µ
t 2

2L
c0

∂
�

�c�d� �t2�2L��c0�
0 , (19)

and c , c0 as
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��0�L, L; t�� 2
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8pL2 Q

µ
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c0
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1

c0

8pL2 Q

µ
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c0

∂

3

Ω
1 1
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p
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∑
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d
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∂∏æ
(20)

�d!0 c0

2pL2
Q
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t 2

2L
c0

∂
logj�0j
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j�0j

�c�d� �t2�2L2d��c0� sin

∑
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d

µ
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2L
c0

∂∏
. (21)
In Eqs. (19) and (21), the exponential phase factors in
Eqs. (15) and (16) have been approximated by unity. In
Figure 1 we compare the exact reflection amplitudes (17)
with the two approximations. The envelope of the response
is quantitatively well represented by the lowest pole ap-
proximation. The subsequent neglect of the phase shift
is a rather crude approximation for a single scatterer, but
should be allowed in a many-scatterer configuration to be
considered next.

Let us now turn to the response of a disordered medium.
The approximate scattering matrices derived above are di-
rectly related to the t-matrix eigenvalues t� � c0�S� 2

1��2iv, which are proper partial sums in a perturbation
theory of disordered systems with nonoverlapping scatter-
ers [5]. In the limit of a low density n of randomly dis-
tributed scatterers the interference between waves multiply
scattered by different sites may be disregarded. When all
scatterers are the same, the ensemble averaged Green func-
tion in wave vector �q and frequency space reads (in 3D)


G�q; v��21 �

µ
v

c0

∂2

2 q2 2 nt0 , (22)

For repulsive scatterers we employ the approximation (19).
Transformation into time and position space gives


G�r; t�� � 2
Q�t 2 r�c0�

2pr

Z `

0

dv

2p
cos�vt 2 jRekjr�

3 e2jImkjr , (23)
where k �
p

�v�c0�2 2 nt0 is the “renormalized” wave
vector. In the weak scattering limit, which holds for time
scales Dt ¿ jGj21


G�r; t�� � 2
e2�2pnc3

0�G2�t

4pr
3 �d�t 2 r�c0� 1 Q�t 2 r�c0�C�r; t�� ,

(24)

where the delayed signal or amplitude coda reads

C�r; t� �
1

pt

Z `

0
dx

"
cos

√
x 2

r

c0t

s
x2 2

4pnc3
0 t2

G

!

2 cos

µ
x 2

r
c0t

∂#
. (25)

This integral can be solved analytically for the first arrival:

C�c0t; t� �
1

2pt

"
sin

s
4pnc3

0

jGj
t

2

s
4pnc3

0

jGj
t cos

s
4pnc3

0

jGj
t

2
4pnc3

0

jGj
t2 Si

s
4pnc3

0

jGj
t

#
. (26)

The amplitude is (Lambert-Behr) exponentially damped
by the imaginary part of the t-matrix. The time-delayed
signal plotted in Fig. 2 originates from multiple scatter-
ing effects on the real part of the refractive index which
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FIG. 1. Time dependence of the amplitude originating from a
pulsed source and reflected by a spherical square-well potential
in the s channel: (a) high velocity and (b) low velocity scatterer
of diameter d. Dt � 0 corresponds to the nominal arrival time.
The insets show the velocity profile in units of c0 and the radius
of the scatterer. Full curves denote the exact results, dashed
curves correspond to the lowest pole approximation, and in the
dotted curves the phase shift has been disregarded.

is equivalent with a reduced effective celerity. It depends
characteristically on the microscopic parameters of the sys-
tems, viz. the density, size, and the celerity (contrast) of the
scatterers. Note that the long-lived incoherent fluctuations
which arrive at the detector after diffusion (the intensity
coda) contribute only to the intensity 
G2�r; t��, which is
not discussed here.

In conclusion, we have revealed the inappropriateness
of point scatterers for time-dependent classical wave scat-
tering. An alternative model in terms of a lowest-order
pole expansion is simple and well behaved. The propa-
gator of a homogeneously disordered medium is calcu-
lated with the alternative model. A delayed signal or
coda is found, which depends on the microscopic pa-
rameters of the scatterers. These results support specu-
lations that the coda contains important information about
a disordered medium that might be relevant for imaging
applications.
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FIG. 2. Time-delayed signal in the coherently propagated am-
plitude C�r � l, t� according to Eqs. (23) and (24) in a dis-
ordered medium with different scattering parameters Gt � 5
(full curve), 10 (dashed line), 15 (dotted line), where l � c0t �
G2��4pnc2

0� is the mean free path, n is the density of scatter-
ers, and G is the imaginary part of the single-scatterer resonance
frequency.
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