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ABSTRACT

This paper introduces a novel way to leverage the implicit geometry
of sparse local features (e.g. SIFT operator) for the purposes of
object detection and segmentation. A two-class Bayesian scheme
is used as a framework, and the likelihood is derived from the
real-valued classification of machine learning algorithm Gentle
AdaBoost, whose output is transformed to a probabilistic distri-
bution using either of two models investigated; Log-Sigmoid or
Bi-Gaussian. The main contribution is a novel scheme for the in-
jection of prior contextual spatial information. This occurs on a
uniquely designed Markov Random Field defined by Delaunay Tri-
angulation of the feature points. Our experiments show that this
framework is useful for object detection and segmentation, and we
achieve good, mostly invariant results in these tasks.

Index Terms— Object detection, Bayes procedures, Delaunay
triangulation, Feature extraction, Geometric modeling

1. INTRODUCTION

Sparse, local feature-based object detection has become very pop-
ular, with Lowe’s SIFT (Scale Invariant Feature Transform) [1] re-
maining a commonly-used interest operator for such tasks. Recent
work in the field has leveraged the relative geometric contexts of
these sparse features in classification. Popular approaches involve
training probabilistic part-based models [2, 3], “vocabulary” cluster-
ing [4, 5] or feature merging [6]. Part-based models, while effective,
are training-complex and clustering can be sensitive to the number
of clusters and clustering method used. Star Graph-like geometric
models [3, 5, 6] and Pairwise Spatial Relations [7] have also been
used. These models define spatial relationships between features ex-
plicitly (i.e. as a semi-rigid, global model), which is interesting when
we consider that the typical interest point operator cannot guarantee
100% feature “repeatability” (i.e. detection of completely identical
feature sets across images capturing different instances of an object).

We propose an alternative technique that can group sparse ob-
ject features implicitly, without the need for an explicit geometry,
part representation or clustering. The idea is that we expect features
to occur in a particular, but loose spatial configuration. Faces, for
example, are generally contiguous regions in images, as are back-
grounds. We present a traditional Bayesian modeling of this idea.
But uniquely, the likelihood is produced by a machine learning algo-
rithm, while spatial inference occurs over a Markov Random Field
(MRF) modeled on a special graph created by Delaunay Triangula-
tion of the sparse feature points. The MRF is only concerned with

This work was funded by the Irish Research Council for Science, En-
gineering and Technology (IRCSET) and partly by Adobe Systems Incor-
porated. Thanks to David Simons of Adobe Systems, and Francois Pitié of
Trinity College Dublin, for their contribution to this work.

978-1-4244-1764-3/08/$25.00 ©2008 IEEE

2388

the “local” context of features, so we are not imposing a rigid, global
structure on the feature geometry. Therefore feature repeatability be-
comes less critical, and the inherent invariance of each feature can
be preserved. The result is a fairly accurate, mostly invariant object
localization, coupled with a rough segmentation.

2. SPATTIAL INFERENCE ON A DELAUNAY GRAPH

Consider that a test image produces K local (e.g. SIFT) features,
and we wish to classify f(z,) = fx, at image location z,, as positive
(i.e. belonging to object such as a face), or negative (i.e. belonging
to background). According to Bayes rule, the probability that f
belongs to either class is

Pkl fi) o< p(frllx) p(lx|Lx) M
likelihood  prior

where I, = I(z,) € {1,0} is a labeling as positive or negative
respectively. L, = L(z,) is the spatial “neighborhood” of labels
around z, .

The likelihood represents a connection between the observed
feature point and the label that is assigned, while the prior quanti-
fies knowledge about the label field before observation. It is here
that contextual spatial information is introduced to the solution, and
an MREF is used as the prior in the usual way, although it is defined
on a uniquely designed Delaunay graph.

2.1. Obtaining the Likelihood

The likelihood would normally be obtained by proposing some para-
metric model in feature space, such as a Gaussian distribution for
each class. This would lead naturally to yet another Bayesian clas-
sifier for the problem. However, given the success of recent object
detection schemes based on machine learning algorithms [6, 7], we
propose here to use the output of such a classifier to determine the
likelihood.

This might seem strange, but consider the output of a real-valued
AdaBoost classifier, such as the GML implementation of Gentle Ad-
aBoost (also called GentleBoost) [8] which we use for our experi-
ments. It is a point-wise classifier which yields a real-valued mea-
sure of “confidence” that we assume is related to the likelihood of
Il = 0orl =1 at each site. Specifically, GentleBoost labels feature
fr according to the rule

1 forcy >h
Iy = 2
F {0 forcy < h @

where ¢, € R is a soft classification, and h is a hard labeling
threshold. The greater the margin z;, = |cx — h/, the more confident
we can be about [j.
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After feature classification with GentleBoost, the distribution
ck..x must be adapted to probability space. We propose two models
that will transform these values into two-class likelihood distribu-
tions. The first naively assumes no class overlap in the distribution
of confidence values. This Log-Sigmoid (L-S hereafter) model is
defined as

ﬁ forl, =1
pO(fk”k) = te 1 3

Tre=Cem forly, =0

The Bi-Gaussian (B-G hereafter) model, which accounts for class
intersection in the confidence distribution, is defined as

1 _(Ck_cu ) —
(fille) = (op)V2m v/ forly =1 )
PolJkltk L__e=(eh=Cun) forl, =0
(on)V2r k

where c,,, and c,,,, 0p and o, are the means and standard de-
viations obtained by GentleBoost classification of the positive and
negative training features respectively.

2.2. Modeling the Prior

The assignment of MRFs to sparse feature points is interesting. Our
novel approach connects the points in a graph via Delaunay Trian-
gulation, as can be seen in Fig. 1 (a). We can compute a feature
point’s Delaunay neighbors of degree n from this graph, allowing us
to experiment with varying neighborhood sizes. Figs. 1 (b) and (c)
demonstrate this idea. We can model the prior probability as

Pa(lk|Li) oc exp =) Aklls # I} &)
sES

where [s are the labels of all sparse features linked to fi by
Delaunay connections. We choose to weight each term by Agx =
(1 4 1/dsk), where d is the Euclidean distance from f, to each
neighbor, fs. We exclude edge-crossing penalization from this prior,
since objects can have some internal edges (e.g. faces have nose,
mouth and eyes).

We seek to maximize the posterior probability associated with
each feature point. This is equivalent to minimizing the energy, Fx,
since E(p) = —log(p(..)). Eqn. 1, simplified and expressed in
terms of log energy becomes

Ex(l=1,0) = Ap, An{Ex(po) + aEx(pqg)} (6)
E}i(l =1,0) = Ap, An{Ex(pg) + aFEk(pq) } @)

where Ej(po) and Ex(pg) are the likelihood energies (either
modeled by L-S or B-G), and Ej(pq) is the prior energy. A, and
A, reflect the ratios of total energy associated with the positive and
negative classes, and « signifies the relative influence of prior to
observed knowledge. We compute the posterior using Iterated Con-
ditional Modes (ICM) [9]. The ICM process works by minimizing
the defined Gibbs Energy at each feature site, iteratively converging
to a local minimum over all sites.

2.3. Rough Segmentation

Our Bayesian classification activates a tight network of positive fea-
ture points, fp, on the object. We experiment with object segmen-
tation by centering normalized Gaussian masks on each f,, having
variance v, proportional to the scale, w,,, of each feature. Apply-
ing a global threshold, ¢,, to the test image yields a rough object
segmentation, M.
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(a) Delaunay Triangulation of SIFT points

7

byn=1 c)n=2

Fig. 1. Feature points connected on a Delaunay graph, and n = 1
and n = 2 degree MRF neighbors of a feature point, where the point
being evaluated is central to the neighborhoods.

3. EXPERIMENTAL SETUP

We choose the Caltech-4 face database [2] to test our algorithm.
Although this database is not regarded as being particularly chal-
lenging [10], we can certainly use it to highlight some of the pros
and cons of our Bayesian framework. The database is comprised
of multi-sized images with varying lighting, including subjects with
beards, glasses, some occlusion and cartoons.

We split the set of 435 images into training and test sets. The
218 training images are manually cropped for our supervised train-
ing approach. We create our own ground truth masks for remaining
217 test images which are “stricter” than the official Caltech ones
- encapsulating the outlines of the faces with ellipses. We evaluate
both our rough object segmentation and detection rate with these
masks. We take 550 unmodified images from the Caltech back-
ground database as the negative training set. The default parame-
ters specified in [1] are used to obtain around 40, 000 positive and
142,000 negative 128-element SIFT descriptors from the training
sets. GentleBoost is then trained with these features using 400 itera-
tions of boosting.

During testing, we compare the rough segmentation mask, M,
and ground truth mask, Mg for each image. Fig. 2 (b) show a merg-
ing of the two masks pertaining to Fig. 2 (a). White pixels indicate
true positive areas, and gray pixels reveal false positive or false neg-
ative areas, outside or within Mg respectively. A circle centered on,
and with area equivalent to M), is useful for visualizing detections.

3.1. Experiments

‘We compare the performance of the L-S and B-G likelihood models
for object detection and segmentation in two experiments:

1. Varying the degree of the Delaunay neighborhood, n = [1 :
5], with &« = [0 : 20 : 100] (see Eqns. 6 and 7) to investigate
the power of our unique spatial prior.

2. Testing the invariance of our model over image rotations of
[0 : 60 : 300]° and scalings of [0.6 : 0.2 : 1.4] times original
image size.
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The other parameters are fixed at t, = 0.6, v, = (30 * wp),
h = —1.5,Ap = 1 and A, = 2 (see Sec. 2). We have previously
investigated the significance of these variables, but do not discuss
these experiments here. Further results and graphs, along with the
training, test and ground truth images are available from our web-
page: www.deirdreoregan.com/OD_ICIP08.html.

3.2. Test Metrics

In terms of object detection, we define the criterion for a True De-
tection, T'D, similarly to [5, 6]. %T D, is the percentage of times
this criterion is met in an experiment with the set of 217 test images.

area(Mp N Mg:)

0.5 TD 8
area(Mp U Mg:) o = ®)
%TD= #ID ()

Since our detector does not evaluate windows, we cannot mea-
sure false positives as a percentage of all windows evaluated. In-
stead, we propose the metric of False Detection Area, F'D A, leading
to the alternative evaluation of %F D A over the entire test set.

FDA = area{M, N (Mg UTDM)} (10)
Y27 FDA;
%FDA = 2?17 areaf(l\/lgtj U;"D]Wj)"'} (11)

where T'D M is the True Detection Mask of any 7'D recorded
for the image. The area under more than one 7' D per test image j is
added to FDA;.

Object segmentation results are evaluated by the metrics sug-
gested in [4]. Formulated in terms of our own experiments, Recall,
R, and Precision, P, are defined as

217 y
>3 area(lvlpj ﬁlvlgtj)
Z?l7 m”ea(]\/lgt,j)

R =

12)

2?17 a'rea(]\lpj ﬂ]\lgtj)

P =
Y317 area(Mp; NMge;)+FDA,;

13)

4. RESULTS

Figs. 3 (a) and (b) graph object detection results for the two likeli-
hood models. We plot %71 D versus %F D A over all test images for
neighborhood size, n varying with o from Eqns. 6 and 7. Fig. 3 (c)
plots R versus 1 — P, showing object segmentation results for B-G
only.

Fig. 4 reveals the performance of both models in invariance tests
with fixed n = 3 and o = 20. The leftmost column shows the test
image scaling, and the other entries average scores over all tested
rotations. Breakdowns of all results are available on our webpage
mentioned in Sec. 3, along with R versus 1 — P results for invariance
tests.

4.1. Influence of the Prior

When the prior (spatial) energy has no influence (i.e. « = 0), we can
achieve a reasonable detection rate. When o > 0 however, the value
of n can influence a degradation (n < 2) or improvement (n > 2) in
results, whereas the actual value of «v is less critical. Neighborhood
size n = 3 works well for both models, but B-G performs best over-
all achieving %TD = 87.6% and %FDA = 0.03% withn = 3
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(a) Circled True Detection (b) Comparing M, to Mg

(c) Negative B-G energy

(g) Final positive labels

(h) Final negative labels

Fig. 2. A detection and segmentation, the point-wise B-G likelihood
and spatial energies, and posterior feature labels dilated for clarity.

and oo = 20. The importance of the spatial energies is very clearly
seen when juxtaposed with the B-G modeled likelihood energies in
Figs. 2 (c-f). It is obvious that the final labeling, seen in Figs. 2 (g)
and (h), has been positively influenced by inclusion of the prior.

Note that %7T'D in Figs. 2 (a) and (b) plummets while %F D A
soars for n > 4. This is probably due to the fact that area(M,;)
becomes too large to be counted as T'D (see Eqn. 8). These large,
missed detections are then accumulated in % F D A. This hypothesis
is supported by Fig. 3 (c), where we see that as n and « increase, seg-
mentation R improves as P takes an increasing hit. In the absence of
spatial energy, B-G seems more robust than L-S. Furthermore, B-G
with @ = 20 and n = 3 or n = 4 has the best trade-off between R
and P.

4.2. Invariance of the Framework

It is clear from Fig. 4 that our framework is robust to a image scaling
within a range, but not completely scale invariant. We attribute this
to fixing the size of the Delaunay MRF neighborhood, n. Perhaps
we could vary the extent of n relative to the scale of the feature being
evaluated, or combine results over a range of n instead. This is an
interesting problem for future work. Although not reflected in Fig. 4,
similar results are observed over rotations at a fixed image scale, so
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Fig. 3. Comparison of the different likelihood models in detection tests, B-G evaluated for object segmentation, and various circled True

Detections using B-G in invariance tests.

our framework is rotation invariant. L-S performs best in one test
with a result of %T'D = 89.4% and %F DA = 0.01% at a rotation
of 300° and image scale 1.2.

L-S likelihood B-G likelihood
Scale | %TD | %WFDA | %TD | %WFDA
0.6 52.3 0.09 53.2 0.09
0.8 75.0 0.05 75.3 0.05
1 83.6 0.03 83.4 0.03
1.2 88.6 0.02 87.3 0.06
1.4 85.7 0.02 86.0 0.02

Fig. 4. Detection invariance test results for both likelihood models

5. CONCLUSION

We have devised a way to inject geometric context into a Bayesian
solution for the classification of sparse local object features with the
aim of object detection and segmentation. By connecting the feature
points on a graph formed by Delaunay Triangulation, we can obtain
aunique MRF neighborhood for each point, allowing us to infer spa-
tial energies. Interestingly, we have derived likelihood energies from
a point-wise machine learning algorithm, and investigated two meth-
ods of modeling the object and background likelihood distributions.

Our Log-Sigmoid (L-S) and Bi-Gaussian (B-G) likelihood mod-
els perform moderately at simple feature classification. Augmented
with a spatial prior, however, the framework becomes much more
powerful, yielding good object detection and segmentation results
that are largely rotation and semi-scale invariant. As a less naive
likelihood model, B-G seems to perform slightly better than L-S, but
itis clear that inclusion of contextual spatial inference is significantly
more important than the choice of likelihood model.

Improving robustness to variations in scale would allow for eval-
uation of the system’s performance on more challenging tasks. We
hypothesize that full scale invariance is achievable through further
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research on the assignment of MRFs via Delaunay Triangulation or
some other meshing scheme, highlighting potential further work in
this area. We contribute this interesting problem to the field of local
feature-based object detection and localization.
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