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Application of Simulated Annealing to the
Biclustering of Gene Expression Data

Kenneth Bryan, Padraig Cunningham, and Nadia Bolshakova

Abstract—In a gene expression data matrix, a bicluster is a sub-
matrix of genes and conditions that exhibits a high correlation of
expression activity across both rows and columns. The problem
of locating the most significant bicluster has been shown to be
NP-complete. Heuristic approaches such as Cheng and Church’s
greedy node deletion algorithm have been previously employed.
It is to be expected that stochastic search techniques such as evo-
lutionary algorithms or simulated annealing might improve upon
such greedy techniques. In this paper we show that an approach
based on simulated annealing is well suited to this problem, and we
present a comparative evaluation of simulated annealing and node
deletion on a variety of datasets. We show that simulated annealing
discovers more significant biclusters in many cases. Furthermore,
we also test the ability of our technique to locate biologically veri-
fiable biclusters within an annotated set of genes.

Index Terms—Biclustering, data mining, gene expression, simu-
lated annealing.

I. INTRODUCTION

N RECENT years, the advent of DNA microarray technolo-

gies has revolutionized gene expression analysis. It is now
possible to monitor the expression of thousands of genes in par-
allel over many experimental conditions (e.g., different patients,
tissue types, and growth environments), all within a single ex-
periment (see Lander [1]). The results from these experiments
are usually presented in the form of a data matrix in which rows
represent genes and columns represent conditions. Each entry
in the matrix is a measure of the expression level of a particu-
lar gene under a specific condition. Thorough analysis of these
datasets aids in the annotation of genes of unknown function and
the discovery of functional relationships between genes. This ul-
timately contributes to the elucidation of biological systems at
a molecular level [2].

Gene expression datasets typically contain thousands of genes
and hundreds of conditions, and mining functional and class in-
formation from such large volumes of data is a far from trivial.
One of the main methods used thus far to investigate the un-
derlying structure of gene expression datasets has been cluster
analysis [3]-[5]. In this approach, genes showing similar ex-
pression activity over the set of conditions are grouped together
into clusters. The premise behind this is that similarly behaving
genes may be coregulated and share a related function; i.e., be-
long to a common pathway or a cellular structure. Conditions
may also be clustered, enabling disease types such as cancers
to be defined in terms of their unique expression profiles [6].
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Gene expression datasets are continually growing in size as
more experiments are carried out, and as experimental capac-
ity improves. As datasets increase size, it becomes less likely
that objects (genes) will retain similarity across all attributes
(conditions), making clustering problematic. Furthermore, it is
not uncommon for the expression of genes to be highly similar
under one set of conditions, and yet independent under another
set [7]. Clustering genes over a subset of similar conditions
would be more beneficial in such cases. This approach has been
termed biclustering and was first introduced to gene expression
analysis by Cheng and Church [8]. Cheng and Church identified
the problem of finding significant biclusters as being NP-Hard
and employed a greedy node deletion algorithm in their search.
The review of biclustering algorithms for biological data analy-
sis presented by Madeira and Oliveira [9] also identifies greedy
search algorithms as a promising approach. Greedy search al-
gorithms start with an initial solution and find a locally optimal
solution by successive transformations that improve some fit-
ness function. Stochastic methods such as simulated annealing
(SA) [10] improve on greedy search due to their potential to
escape local optima (see Section III). In this paper, we present
a biclustering technique based on SA that improves the results
produced by Cheng and Church’s node deletion algorithm (see
Section IT). We carry out a comparative evaluation using both
synthetic and real gene expression datasets, and show that our
SA based approach finds more significant biclusters in each
dataset (see Section V). We then use our SA algorithm to an-
alyze an annotated set of genes with a view to discovering
biologically verifiable biclusters.

II. BICLUSTERING

In general, biclustering refers to the “simultaneous cluster-
ing” of both rows and columns of a data matrix [11]. Hartigan
pioneered this type of analysis in the seventies using two-way
analysis of variance to locate constant valued submatrices within
datasets. Biclustering may be viewed as a more specific type of
subspace clustering that enforces correlation within a subset of
features (conditions) as well as a subset of objects (genes). This
approach suits the gene expression context, as related genes
are thought to be regulated in a synchronized fashion and over
certain conditions [7]. Therefore, discovering the dominant bi-
clusters within a gene expression dataset may aid the discov-
ery of these coregulated groups. More recently, inspired by
Hartigan’s so called “direct clustering” approaches [12], the
concept was introduced to the area of gene expression analysis
by [8]. Since then, several alternative biclustering approaches
have been taken within gene expression analysis. One approach,
taken by Tanay et al. [13], likens biclustering to the search
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for complete subgraphs within a bipartite graph. They develop
a statistical model of the expression data matrix and propose
an heuristic search based on discovering statistically signifi-
cant subgraphs. Lazzeroni and Owen [14] developed what they
termed a plaid model in which the dataset is represented by a
linear function of variables or /ayers, which correspond to bi-
clusters. Another approach, taken by Kluger et al. [15], involves
decomposing the data matrix into its principle components by
singular value decomposition. The resulting eigenvectors are
then used to reorder the data matrix to reveal the set of bi-
clusters as a checkerboard structure. These approaches are less
intuitive and theoretically quite different from that of [8]. For
a review of the preceeding approaches, the reader is directed
to [9].

Cheng and Church defined a bicluster to be a subset of genes
and a subset of conditions with a high similarity score, where
similarity is a measure of the coherence of genes and conditions
in the subset. A group of genes are said to be coherent if their
level of expression reacts in parallel or correlates across a set of
conditions. Similarly, a set of conditions may also have coherent
levels of expression across a set of genes. Cheng and Church
developed a measure, called the mean squared residue score,
which takes into account both row and column correlations,
and therefore makes it possible to simultaneously evaluate the
coherence of rows and columns within a submatrix. They thus
defined a bicluster to be a submatrix composed of subsets of
genes and conditions with a low mean squared residue score
(the lower the score, the better the correlation of the rows and
columns). The residue score of an entry a;; in a bicluster B(I.J)
(where I is the subset of rows, and .J is the subset of columns
making up the bicluster) is a measure of how well the entry fits
into that bicluster. It is defined as

R(a;;) = a;j —arj —a;g +arg (1)

where a;; is the mean of the ith row in the bicluster, ar; is
the mean of the jth column, and a;; is the mean of the whole
bicluster. The overall mean squared residue score is

1
H(I,J)= ik Z

iel,jed

R(a;;)% 2

The next problem to be tackled is how to locate the low scor-
ing biclusters within a parent data matrix. The deterministic
approach is to sequentially run through all the possible com-
binations of rows and columns of the data matrix and find
the sub-matrices which satisfy a predefined low score, § (the
set of d-biclusters). The most significant biclusters, the largest
d-biclusters, would be of most interest as they capture the rela-
tionships between the largest number of objects. However, the
number of possible submatrices increases exponentially with the
size of the parent matrix, making this task practically impossible
when the matrix exceeds the fairly modest size of a few hundred
elements. Cheng and Church likened the maximum bicluster
search to that of locating a maximum biclique (largest complete
subgraph) within a parent bipartite graph, which has been proven
to be NP-Hard [16]. Biclustering based upon this graph theo-
retic paradigm was more fully developed in other studies [13].

Cheng and Church designed a set of heuristic algorithms to lo-
cate d-biclusters sequentially in a top-down manner by deleting
the row and column nodes from the parent matrix, which most
improved the mean squared residue score. Upon reaching the
¢ threshold, a node addition phase is then carried out to add
rows/columns which may have been missed. Inversely corre-
lated rows, which may represent negatively regulated genes, are
also added at this stage. A subsequent study [17] noted that,
as with other greedy searches, there is a possibility that the
system may become trapped at a locally good solution. It is
thus unlikely that the global maximum, or maximal d-bicluster,
will be found. Applying a stochastic search technique to locate
this global maximum seems to be the next logical step in the
bicluster search problem.

III. SIMULATED ANNEALING

Stochastic techniques which accept reversals in fitness have
been shown to improve on greedy approaches by performing
more in-depth searches of the solution space. Recently, evo-
lutionary optimization schemes employing the mean squared
residue function have been used to tackle the bicluster search
problem [18], [19]. These attempts failed to find more signifi-
cant solutions than the Cheng and Church technique in terms of
bicluster size, and instead focused on returning sets of smaller
biclusters with high row variability.

Simulated annealing is a well established stochastic technique
originally developed to model the natural process of crystaliza-
tion [20] and later adopted to solve optimization problems [10].
As with a greedy search, it accepts all changes that lead to im-
provements in the fitness of a solution. However, it differs in its
ability to allow the probabilistic acceptance of changes which
lead to worse solutions; i.e., reversals in fitness. The probability
of accepting a reversal is inversely proportional to the size of
the reversal with the acceptance of smaller reversals, being more
probable. This probability also decreases as the search contin-
ues, or as the system cools, allowing eventual convergence on a
solution. It is defined by Boltzman’s equation

P(AE) e T 3)
where AF is the difference in energy (fitness) between the old
and new states, and 7' is the temperature of the system. In the
virtual environment, the temperature of the system is lowered
after certain predefined number of accepted changes, successes,
or total changes, attempts, depending on which is reached first.
The rate at which temperature decreases depends on the cooling
schedule. In the natural process, the system cools logarithmi-
cally; however, this is so time consuming that many simplified
cooling schedules have been introduced for practical problem
solving. The following simple cooling model is popular:

T(k—1)

(k) = 140

C))
where T'(k) is the current temperature, T'(k — 1) is the previous
temperature, and o dictates the cooling rate, simulated annealing
has been applied to such problems as the well-known traveling
salesman problem [21] and optimization of wiring on computer
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chips [10]. Its application to biclustering gene expression data
is a logical step, given the drawbacks of current approaches.

IV. EXPERIMENTAL METHODS

A. Biclustering Using Simulated Annealing

Several parameters are common to every simulated anneal-
ing implementation. The most crucial parameter is the fitness
function, or how to quantitatively discern whether or not the so-
lution improves after a perturbation. The mean squared residue
score was used as a measure of bicluster fitness in this study. In
simulated annealing, it is also important to ensure that a search
of sufficient depth is performed at each temperature. As men-
tioned in Section III, this is dictated by the predfined number
of attempts or successes that must occur before each reduc-
tion in system temperature. This selection depends upon the
depth and size of the search space as determined by the size
and dimensionality of the dataset. In this study, the number of
successes needed to be achieved before cooling occurs was set
at ten times the number of genes. The number of attempts at
each temperature is ten times this again (this ensures a good
search even if there are not the required number of successes).
So for a dataset of 1000 genes, the system would only lower the
temperature after 10 000 successes or 100 000 attempts. The
rate at which the temperature is lowered, the annealing sched-
ule, was of the type shown in (4) with 0 = 0.1. Consequently,
each subsequent temperature is approximately 0.9 times that of
the previous temperature. Another important parameter is the
initial temperature of the system . If this parameter is set too
high, the system will take too long to converge, and if it is set
too low, the proportion of the search space covered will be much
reduced. It has been found by experiment that, in general, an op-
timal starting temperature is one which allows 80% of reversals
to be accepted [22].

Our simulated annealing biclustering (SAB) algorithm is il-
lustrated in Fig. 1. It begins the search in a top-down manner
with the initial solution x, containing all rows and columns in
the input data matrix M. The current solution z, is then itera-
tively perturbed by deletion or addition of rows or columns to
give a new solution, Zyew. The method for generating Tpey 18
given, and takes into account the ratio of rows to columns in the
current solution and adjusts the probability of a row or column
flip accordingly. So, for example, if there are 100 columns and
ten rows in a current solution, the probability of choosing a row
to flip is 1/10. In the random row flip method, it can be seen
that if the row size of the solution row equals the minimum
row size threshold rowy;,, and if a perturbation calls for a row
to be deleted, it is replaced by another randomly chosen row
from the data matrix. The same also occurs in the equivalently
coded random column flip method. This allows perturbance of
the solution while maintaining the row and column sizes above
their respective minimum size limits. In our implementation, a
minimum solution size of 10 x 10 was chosen. This was deetend
to represent the minimum significant size of a solution in this
study. So, for example, if genes correlate over 10 conditions, it
is likely that they may be related. This minimum solution size
also prevents the search from ending on a trivial bicluster of

Variable definitions: x; : initial solution, x : current solution,
to : initial temperature, t : current temperature, #s, : finish
temperature, rate : temperature fall rate, a : attempts, s :
SuCCesses, deouny - current number of attempts, Scou, : current
number of successes, f : fitness function, M : datamatrix, row,
: rows in current solution, col, : columns in current solution,
FOWpin - minimum row size threshold, col,; : minimum
column size threshold, 6 : mean squared residue threshold.

SAB(f, xo, to, rate, rowpin, Colnin, 5, a, M, §)

1. x < Xxg

2. te 1y

3. while(t > tpin)

4, While(acpun: < @ AND Scpum < a)

5. Xuew < GenerateNewSolution( M, x, roWmin, COlnin)
6. iff (Xnew) < f(x)

7. then x « X0

8. else if exp(—%)> random(0,1)

9. then x « Xe
10. if (f(Xpew) < 0 AND size of X, > size of x)
11. then colyi, < columns in X,
12. then row,,, < rows in X,
13. t « Cool(t,rate)
14. x « NodeAddition(x)
15. return x

GenerateNewSolution(M, x, row,,, colyin)
1. rowy, < rows in x

2. coly < columns in x
3. if(row, > coly)

4 then generate random r € R, range[0,~ ’;’l“
5 if (r=0)
6. then x,.,, < FlipRandomColumn(M, x, colyy, coly)
7 else
8. then x,., < FlipRandomRow(M, x, row,, row,)
9. else if(row, < coly)
10. then generate random r € R, rangel0, r‘{j’fv’x]
11. if r=0)
12. then x,,, < FlipRandomRow(M, x, row,,;,, rowy)
13. else
14. then x,,.,, < FlipRandomColumn(M, x, coly, col,)

15. return X,

FlipRandomRow(M, x, roW i, rowy)

1. choose random row, row,g,q, from M

2. ifrowegua & x

3 then add row,g,q to x to give Xep

4. else if row,gg € x AND row, > rowy,

5. then remove row,q,y from x to give X,

6. else if row,gq € x AND row, = rown,

7 then remove row,q,y from x

8 choose random row, row,gug # rowsgng AND ¢ x
9 add row,ge to x to generate Xy,

10 return X,

Fig. 1. SAB algorithm. The FlipRandomColumn method is not detailed, as it
is equivalent to the FlipRandomRow method.

one row or one column and score 0. After x,,, is generated,
it is scored using the mean squared residue fitness function f.
As discussed in Section II, the lower the mean squared residue
score, the better the row and column correlation of a solution.
This accounts for the less than sign in the if statement on line
six of the SAB code. Lines eight and nine in SAB then cover
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the standard simulated annealing probabilistic acceptance of the
new solution ¢y, as discussed in Section III.

To allow the comparison of SAB with the node deletion al-
gorithm, some way is needed to return biclusters of a chosen &
value. This is detailed in lines 10—12 of the SAB. Upon reaching
a solution with a score equal or lower than J and larger in size,
the minimum row and column limits are reset to that size. As the
search continues, these opposing provisos of increased size and
less than or equal to d-score keeps the current solution around
the d-threshold while allowing room for growth in size of the J-
bicluster. To align SAB and the Cheng and Church node deletion
approach, their node addition is performed after the SAB search.
This adds any missed rows or columns and, importantly for SAB
alignment, adds inversely correlated rows which may represent
negatively regulated genes. Cheng and Church masked each
d-bicluster solution with randomly imputed numbers from the
same range as the dataset. This prevents the bicluster from being
rediscovered by the deterministic node deletion algorithm. We
use the same method of masking discovered solutions. Typically,
using the preceeding parameters and for a dataset of 3000 genes
and 20 conditions, the search takes about 60 min to converge on
a bicluster solution. As a result of the masking of solutions, this
convergence time is reduced for subsequent bicluster searches.

B. Datasets Used

Cheng and Church chose a yeast cell cycle dataset! in their
study. This dataset contains 2884 genes and 17 conditions. We
used this dataset and two additional real datasets to compare our
SAB algorithm with node deletion. The first additional dataset
contains 27 conditions and 2774 genes.? It is derived from a
study on scleroderma, a potentially serious skin disorder which
affects epithelial cells [23]. This dataset contains gene expres-
sion data from both normal and affected patients. The second
additional dataset of 3051 genes and 38 conditions, represent-
ing different classes of lymphoma, was distilled from a larger
dataset [24] using techniques described in [25] to enrich the
dataset with genes with the highest variance across conditions.
A synthetic dataset was also used to compare the algorithms.
The attraction of a synthetic dataset is that all the major biclus-
ters can be defined and embedded in the data. The success of
bicluster discovery can then be more quantitively measured. We
have developed a synthetic dataset construction technique, and
believe it to be a more faithful rendering of reality than previous
approaches [26]. A dataset of size 100 x 100 was constructed.
Biclusters were generated using real gene profiles from the yeast
dataset as templates. Firstly, an expression level shift was added
to the template gene profile vector. The amount of shift is chosen
randomly for each additional artificial profile and maintained
within a user defined range. This resulting spread mirrors the
expression level variations which occur in vivo, and also makes
individual expression profiles more discernable within the bi-
cluster. As it stands, the bicluster has a perfect score of 0. Some
error needs to be introduced to reflect the in vivo model. Each

1 http://arep.med.harvard.edu/biclustering/yeast.matrix
Zhttp://genome-www.stanford.edu/scleroderma/data.shtml
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Fig. 2. [Illustration of template profile and generated profile. S represents the
shift applied to the profile and E, represents the correlation error applied to
each value.

expression value in each artificial profile is then augmented by
a correlation error (E,) such that

E,=0(x)-€-r, (5)

where o (x) is the standard deviation of the template gene profile
(this scales the error for the particular template), € is a user
defined constant in a range [0,1] (this variable dictates the level
of error and the quality of the biclusters), and r; is a random
variable in a range [—1, 1] (this enables the expression level of
the generated profile to be greater or less than the template).
Given that the original gene profile template is defined as

S Tn} (6)
the newly constructed correlating profile will be given as

Y={x1+(S+E1),...,2n + (S+ E,)} 7

X:{l'l,..

where x represents a particular expression value, .S is the shift
applied to the vector, and F is the correlation error applied to
each correlating expression value. An illustration of the tem-
plate profile and a generated profile is shown in Fig. 2. All five
biclusters, were constructed of sizes 10 x 10, 20 x 10, 10 x 20,
and two 10 x 10 overlapping biclusters, and embedded in a
background randomly generated within the same range as the
biclusters (0-600).

V. EVALUATION OF BICLUSTERING USING
SIMULATED ANNEALING

Three questions are dealt with in this section. Firstly, we
investigate whether SAB can retrieve solutions closer to the
global maximum than Cheng and Church’s node deletion (ND)
approach, i.e., larger §-biclusters. We then investigate, using a
synthetic dataset, the ability of SAB to discover all the bicluster
signals within a dataset. Lastly, we use an annotated dataset to
investigate whether biclusters discovered by SAB reflect in vivo
functional modules, i.e., whether SAB can discover biologically
verifiable biclusters.
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Comparison of Biclustering Algortihms (Yeast Data)
&= CCND CCND2 SAB
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Fig.3. (a) Comparisons of Cheng and Church’s node deletion algorithm (ND),
our adjusted node deletion algorithm (ND2) and simulated annealing bicluster-
ing (SAB) using the yeast dataset over d-scores of 300, 200 and 100. (b) The
second biclusters found by CCND2 and SAB.

A. Comparative Evaluation With Node Deletion

Cheng and Church carried out node deletion on the previ-
ously mentioned yeast dataset and used a mean squared residue
threshold () of 300 (as determined by (2)). The SAB algorithm
was applied to the same yeast dataset. In this study, § thresholds
of 300, 200, and 100 were set, and the size of the discovered
biclusters compared in each case. SAB produces biclusters of
at least ten columns (conditions) in width. To ensure that the
column size of the resultant biclusters does not bias the results,
an adjusted node deletion algorithm (ND2) is also run where
in the column size of resultant biclusters is set to ten. This is
achieved in ND2 by prioritizing column deletion until the mini-
mum threshold of 10 has been reached whereupon row deletion
alone is carried out. Fig. 3(a) shows the size of the first bicluster
found by ND, ND2, and SAB over the various ¢ thresholds for
the yeast dataset. Fig. 3(b) shows the second bicluster discovered
when the first was masked with random numbers, as described
in Section IV. SAB performed better than ND and ND2 on
the yeast data for all d-scores, locating larger §-biclusters in all
cases. The results for all three data sets are shown in Table I.
The numbers shown in bold mark the best biclusters. Biclus-
ters in italics are taken from a significantly larger dataset (after
masking a smaller bicluster 1 solution) and cannot be compared

TABLE I
COMPARISON OF BICLUSTERS DISCOVERED
IN EACH REAL DATASET

ND | ND2 | SAB || ND | NDZ [ SAB

) Bicluster 1 Bicluster 2
300 15165 15750 | 16460 9012 | 3930 | 8320
Yeast 200|| 8463 9540 10360 4972 | 2630 | 3860
100|| 2520 2700 2940 1260 830 1390
300 13590 | 18260 | 18230 4320 | 6780 | 6310
Scleroderma| 200 || 7296 12920 | 13210 7876 | 3290 | 4030
100|| 2730 5170 5140 1570 830 850
300 1344 3320 3220 518 1740 | 1810
Lymphoma | 200 1032 2510 2460 300 1370 | 1200
100 851 1780 1790 136 1050 810

TABLE II

BICLUSTERS RECOVERED FROM SYNTHETIC DATASET

Biclusters Solutions Recovered (rows X columns)
Embedded Node Deletion SAB
A(10x10) 3x2(6%) 10x 10(100%)
B(20x 10) 21x9(90%) 21x10(100%)
C(10x20) 8% 15(60%) 11x17(94%)
D(10x10) 4x6(24%) 10x 10(100%)
E(10x10) 6x10(60%) 10x 1(0100%)

with neighboring values in the second bicluster column. SAB
performed better than ND, discovering larger §-biclusters in all
cases. The ND2 algorithm performed better than the original
ND, but even so, SAB still performed better in most cases. It
can be seen that SAB performs better than ND2, discovering a
larger first bicluster in four out of nine cases, and draws in an
additional three cases. SAB performed best in discovering the
second biclusters in six out of nine cases over the three datasets.

B. Bicluster Retrieval in Synthetic Data

It has been shown in the previous section that SAB has the
ability to retrieve more significant biclusters than node deletion.
However, it is difficult to know how successful SAB, is in re-
covering all the significant signals in this real data. To test this
aspect of SAB, we decided to use a synthetic dataset constructed
in the manner described in Section IV-B. We then carried out
a comparative evaluation of SAB and node deletion using this
dataset, and measured their abilities to recover the five embed-
ded biclusters. From Table II, it can be seen that both node
deletion and SAB discovered five bicluster signals within the
synthetic dataset, but SAB retrieves substantially more of the
embedded biclusters.

C. Biological Interpretation

A further way to evaluate SAB is to use a fully annotated
dataset. To our knowledge, this precise approach to bicluster
evaluation has not been used before in the literature. Of
the 2884 genes in the yeast dataset, 550 can be annotated
from the online database called the Kyoto Encyclopaedia of
Genes and Genomes, KEGG.? Ideally, the biclusters in such
a dataset, would then reflect in vivo groups of genes known
to be functionally related. Because of the smaller size of the

3http://www.genome.jp/kegg/genes.html
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TABLE III
KNOWN FUNCTIONAL MODULES (FM) FOUND BY SAB
IN THE ANNOTATED GENE DATASET

Bic. [# Genes Dominant FM Genes in FM P-value
1 81 Ribosomal Proteins(96) 61 <1x1071
Glycolysis/Glucogenisis(26) 5 0.17
2 59  |Basal Transcription Factors(10) 6 1.08 x 1077
Nucleotide Metabolism(81) 16 23 %1073

annotated dataset, a d-score of 100 was chosen as the mean
squared residue threshold. In Table III, it can be seen that the
first bicluster discovered from this annotated dataset is rich
in genes from the ribosomal functional category. The second
bicluster contains transcription factors and genes involved in
nucleotide metabolism. These genes are the main regulators
of protein production and gene expression in the cell. The
statistical significance of discovering each functional category
is given in terms of p-values, as formulated in [27]. Further
biclusters contained correlating genes but no dominating
known functional categories, so they are not listed. This may
be partly due to the incomplete nature of the dataset, as only
the annotated genes were used from the yeast data.

VI. CONCLUSION

Using SAB, we have shown that stochastic methods have
the potential to give improved results for the bicluster search
problem. SAB discovers more significant biclusters than Cheng
and Church’s original node deletion approach. The biclusters
discovered by SAB are considered more significant as they
have the same level of row/column correlation as those dis-
covered by Cheng and Church (as measured by 4), but are larger
in size. One could also search for biclusters of the same size
and lower §-score. However, this approach would yield infor-
mation on fewer genes/conditions, and direct comparison with
Cheng and Church’s results would not be possible. SAB also
performs better when compared to our improved version of the
node deletion algorithm. Furthermore, we have shown that SAB
discovers more complete biclusters than node deletion when us-
ing the synthetic dataset. When applied to the annotated yeast
dataset, SAB discovers biclusters which represent recognizable
classes of genes. In the annotated dataset, SAB discovered just
two biclusters which had an overrepresentation of known func-
tional groups. Apart from the incompleteness of this annotated
dataset, as mentioned in Section V-C, this may be due to the
manner in which SAB searches for biclusters. SAB works in
top-down manner with the mean squared residue function pro-
moting the deletion of rows/columns which do not fit in with
the trends in the dataset. As a result, biclusters may be biased
toward core regulatory genes which govern the general state of
gene expression the cell. Outlying biclusters would tend to have
their ill-fitting rows/columns deleted early on in the search. Ev-
idence of this can be seen in the nature of the classes of genes
in biclusters 1 and 2 from the annotated set. Perhaps this bias
could be harnessed to discover regulatory genes within gene
expression data. Although a bottom-up search approach using
the mean squared residue as a fitness function would probably
not find such large biclusters, it would, perhaps, promote more
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variability in the classes of genes it discovers. In future research,
we intend to use simulated annealing in a bottom-up search in
a bid to discover smaller, more natural biclusters which may
better reflect the natural state or organization in an organism.
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