
Priorities in Process Algebras

Rance Cleaveland
Matthew Hennessy

Computer Science Department
Univemity of Suasur

Falmer, Brighton BN1 9QH, ENGLAND

Abstract

An operational semantics for an algebraic theory of concur-
rency is developed that incorporates a notion of priority into
the definition of the execution of actions. An equivalence based
on strong observational equivalence is defined and shown to be
a congruence, and a complete axiomatization is given for finite
terms. Several examples highlight the novelty and usefulness
of our approach.

1 Introduction

Much has been written in recent years about the semantic ba-
sis for communicating processes and reactive systems. [12,9,15]
Intuitively, these are systems which evolve by interacting, or
communicating, with their environment. Systems may perform
a variety of actions, some of which may interact with the en-
vironment in a particular way; communication is modeled in
terms of such interactions.

Most semantic theories for these systems are operational.
Processes are interpreted using labeled transition ayatem,
which are triples of the form (P , + , A c t) , where P is the set
of processes, Act is the set of actions, and -+ is a relation on
P x Act x P defining the behaviour of processes. The state-
ment “ p 2 q” means that process p may evolve to process q by
performing action a. This form of operational semantics has
given rise to a variety of behavioural equivalences on processes
[12,9,6] and has proven to be a convenient way of defining pro-
cess behaviour when actions are all of equal importance. How-
ever, the approach has a well recognized flaw when one tries to
assign more importance to some actions than others. Obvious
examples of actions which require special treatment include
interrupts in hardware systems and time outs in communica-
tions protocols. In addition, certain programming language
constructs, such as the ‘delay” commands in OCCAM [lo]
and ADA 1161 and the disabling construct in LOTOS [4], em-

body the notion of priority between actions. No satisfactory
semantic theory exists for these constructs and for actions with
priority in general.
In this paper we wish to develop such a theory. To do so we

introduce the notion of priority on actions and m o d i the use
of labeled transition systems to develop an operational seman-
tia reflecting these priorities. We then develop and axiomatize
a new behavioural equivalence analogous to the strong obser-
vational equivalence of [12]. We believe that this new semantic
theory provides a sound basis for the language constructs and
actions mentioned previously.

The paper is organbed as follows. In section 2 we give an
example highlighting the problem with existing theories and
introduce the idea of prioritized actions. Section 3 defines the
language we use and gives our new operational semantics. The
language is based on CCS, but our method for giving opera-
tional semantics can equally well be applied to other languages
such as LOTOS [4] and Statecharts [7]. In section 4 we define
a new behavioural equivalence based on strong observational
equivalence, and in section 5 we discuss proof techniques and
give a complete axiomatbation for finite terms and a proof rule
for recursively defined terms. Section 6 gives some examples
emphasbing the novelty of our approach, and the final section
discusses our conclusions and future plans. The proofs of most
theorems are ,omitted; the interested reader is referred to 151.

2 Prioritized Actions

The following example is intended to illustrate the inadequacy
of existing theories in the presence of interrupts, or, more gen-
erally, in the presence of language features which enable and
disable actions. Consider the system of figure 1. Component
C acts aa a counter, while INT is designed to halt C when the
environment issues a shut-down request. In CCS this could be
defined by having an internal connection i between INT and C
which is used when shut-down is performed. In this case the

I93
CH2608-8/88/oooO/0193$01.~ 0 1988 IEEE

UP

down

Figure 1: A two-process system.

definition of the system would be as follows.

SYS e (CIINT)\i

INT += shut-down.z.nil

C + up.Cl +i.nil

Cn+l e up.Cn+o + down.Cn + ;.nil

However, in the standard operational semantics based on la-
beled transition systems the following is a valid possible se-
quence of actions for SYS.

up up shut-down up up ...
Although the action shut-down is performed C,, may choose to
ignore indefinitely the offer of communication from INT along
channel i; the operational semantics merely states that actions
up and i are always possible for C,,. Because of this defect
in the operational semantics, the resulting behavioural theo-
ries (12,9,3,6] give an inadequate account of this system. This
semantic shortcoming is not confined to CCS; any language
whose operational semantics are given in terms of traditionally
defined labeled transition systems will not be able to describe
this system correctly.

Intuitively, the desired behaviour of SYS can be captured
if we associate priorities to actions. By assigning a higher
priority to i than to up or down we can ensure that when
SYS reaches the state (Clz.nd)\i, the internal synchronization
on port i must take place next, since it has a higher priority
than any of the other possible actions. This is the basis of our
approach; we modify the usual operational semantics to take
account of priorities and use it to develop what we feel is an
adequate semantic theory of such processes.

3 The Language

The syntax of our language is essentially that of pure CCS,
although later in the paper we introduce additional operators.

For simplicity we assume a two-level hierarchy of priorities;
an action is either prioritized or unprioritized. (We should
point out that there is no theoretical difficulty is extending our
results to sets of actions with a range of discrete priorities.) To
model communication we adopt the usual structure of actions
used in CCS. Let A be a set of action labels, and let A =
Auhu{r}. Additianally, each a E A has a prioritized version,,
- a. Let A be the set of prioritized actions. Then Act = A U A
is our set of actions.

In the remainder of the paper, let a, b E A, b E A and
a,/3 E Act, with X E Act- {r,d. The terms of our language
are defined as follows.

t ..- ..- nil I a.t I tlt I t + t I t\A I t [R] I x I fiz(z.t)

RI it should be noted, is a relabeling, a mapping from Act to
Act preserving r ,cand-and such that R(a) E A and R (d E A.
(Note that we do not require that R (4 = R(a).) We adopt
the usual definitions for free and bound variables, open and
closed terms, and guarded recursion. In what follows, p, q and
r range over closed terms, which we shall often call processes.

The operational semantics of this language is given in two
stages. The firat stage ignores priorities and is called the a

priori operational semantics; the relations are defined by
structural induction on terms in figure 2. This definition takes
no account of the special properties we wish to assign to pri-
oritized actions. The second stage defines the relations -%,
representing the actions which are actually possible. These
relations are defined by:

1. X p S q t h e n p A q ;

2. i fpJqandfornoq' ,bdoesp>q'thenp-%q.

Intuitively, prioritized actions are unconstrained, while unpri-
oritized actions can only happen if no unprioritized actions are
possible. Thus -O defines an operational semantics reflecting
our intuitions about prioritized actions. Formally, we have de-

194

U
Q.9 + a

a 4 a' =+
t J t ' =+
a J a' =+
t J e =+
a ~ a ' , t Z e *
a ~ s ' , t % =+
sJa' ,a# /3 =+
a J a' =+
t J t' =+

s + t J a '
a + t J e
sit J a'lt
slt 4 slt'

slt A s'le

sit s'lt'

a\a a'\B

fiz(2.t) 4 t'[fi(z.t)/z]
a[R] %' s'[R]

Figure 2: The a priori semantics.

fined a labeled transition system (P, -D, Act), where P is the with a 'hole"). In the previous example, the context []\b dis-
set of closed terms. tinguishes a.p+b.q and b.q. Relation -, does contain a largest

congruence, -,", where p -," q if and only if C[p] -, C[q] for
all contexts C. However, there are disadvantages to this type of
definition. It does not give rise to the elegant proof techniques

A variety of behavioural equivalences have been defined on normally associated with bisimulation equivalences, and it
the basis of labeled transition systems. One such equivalence, dependent on the hguistic constructs allowed in the language,
strong observational equivalence, can be defined in t e r m of re- which may not coincide with all programming envi"-ents
lations on processes called bisimulations [14]. Given the labeled that appear in practice.
transition system (P, +, Act) a bisimulation R c p x P is a Given that we desire an equivalence that is a congruence and

symmetric relation satisfying: that can also be defined in terms of bisimulations, we define
another operational semantics based on a new arrow, -. For
convenience, let us say that p is patient if p 5 q for no q. Then
M is defined by the following two clauses.

4 The Behavioural Equivalence

(p, q) E R and p J p' implies q 5 q' for some q'
where (p',q') E R.

Strong observational equivalence, -, is defined as the largest
such bisimulation. It is guaranteed to exist and to be an equiv-
alence relation (141.

This definition can be applied to (PI -9, Act) to obtain a
new equivalence, -,. Unfortunately, -, is not an adequate be-
havioural equivalence, because it identifies processes that can
intuitively be distinguished. For example,

1. If p 4 q then p

2. If p

q.

q and p is patient then p A q.

As before, prioritized actions are not constrained. However,
unprioritized actions are pre-empted by I; they can only be
performed by patient processes.

Let H be the strong equivalence generated by the labeled

=*P + b4 -, h 4 I transition system (PI C, Act). Then we have the following.

since the only transition available to a.p+b.q is a . p + . q -% q, Theorem 4.1 i s a congruence W i t h respect to the operators

and yet of ccs.
It also turns out that U is a congruence with respect to sev-

since (a.p + b.q)\b may perform an a action while (b.q)\b may eral other language constructs. Of particular interest are the
not. operations corresponding to prioritization of an action (writ-

In CCS terms, -, is not a congruence, since terms that are ten pro for a # 7) and deprioritization of an action (written

-,-equivalent may nonetheless giverise to -,-inequivalent pro- p[a for # rJ. Intuitively, p[a prioritizes all a actions p can
ceases when substituted into a context (a contczt being a term perform, while p[g deprioritiees all a actions p can perform,

195

provided the newly deprioritized action is also available to p.
In particular, properties like

Proving the converse of the previous theorem is somewhat
more involved. Intuitively, the difference between -D and M

arises in their treatments of unprioritized actions in the pres-
ence of external (e.g. non-3 prioritized actions.. Therefore, if
we define a context D[] that deprioritizes all external actions in
an appropriate way, then -0 transitions for D[p] correspond
to 2--0 transitions for p, and we can relate -,” and N. To
this end, let p and q be processes, and let DP,,[] be the context
defined as follows. First, let Su(p) and Sp(p) be the ‘unprior-
itized” and ‘prioritized” sorts, respectively, of p . Now define
the relabeling L,, as

p _Q_ q * pra A qra

hold. Defining these operators precisely is somewhat subtle,
since their semantics must be defined first in terms of the a
priori semantics even though the actions that p may ultimately
perform are not defined until the second stage of the semantic
specification. The required additions to the a priori semantics
are as follows.

a i f a E A
L, , (a) = a ifa E A and Sp(p) U S p (q)

e, otherwise i
1. Prioritization

(a) If p f q and p is patient then pro 4 q[o.

(b) If p 4 q and p is not patient then pro f qru.

(c) If p 5 q and a # Q then pro 5 qra. where c, E A, ch = G, c, # c p if a # p, and 5
S p (p) ~ S p (q) ~ S ~ (p) ~ S u (q) . L,,, essentially maps unpriori-
tized actions in p and q whose prioritized versions also exist in p
and q to unique unprioritized actions with no prioritized coun-
terparts in the processes. Now define S,,, = Sp(p) U S p (q) ,

and let DP,,[] = ([l[Lp,q])[Sp,q, where LS is the obvious gen-
eralisation of the deprioritization operator to sets of actions.

-- 2. Deprioritization

(a) If p 4 q and p is patient then p[gf q[g.

(b) If p 4 q and p is not patient then p [g 4 41%.

(c) If p J q and a # g then p [g z q[g.

Rom these definitions it is easy to see that [a and [g enjoy
the following properties with respect to M, in addition to
the one mentioned above.

This context uniquely deprioritizes actions in p and q.

The definition of Dp,q[] gives rise to an equivalence between
processes in much the same way that the set of all contexts C[]
gives rise to the equivalence -2. Define p -: q to hold exactly

If pro A qra then either p A q or p A q.

If p

when DP,,(p) -, DP,,(q). Clearly, if p -,” q then p -,” q.

Several properties of Dp,q[] and -,” deserve comment, since
they will be used in the proof of the next theorem. To begin q and p is patient then plg & qLg.

a

If p l g A q[g then either p q and p is patient or with, if P patient then for no 3 and does D ~ , q [P 1 r;

this results from the fact that because p is patient, the deprior-
itization operator in DP,,[] deprioritiees all prioritized actions

In particular, it be noted that if P q;P P 9, and that may initially perform. Aho, if a E A and D,,,[p] L P V p
Dp,q[p‘] then p A p’, since in this case p must be patient. p>7% q (owing to p not being patient) then p r a m q[a. That

Finally, if SP(P‘) C SP(P),~V(P‘) G S V (P) , ~ P (~ ‘) C S P (d l is, an action is prioritized only if it is “visible” with respect

to _. Similarly, an action is deprioritized only if it remains and Su(q’) C Su(q), then D,~,,t[p’] -, D,t,,t[q‘] (and thus
visible with respect to >--Q. p’ -,” q’) if and only if DP,,[p’] -, D,,,[q’]. This follows

from the fact that both D,, and D,I,,I uniquely deprioritze We now have the following result.

Theorem 4.2 is a congruence with respect to priorit&ation actions in P’ and q’* It be noted that if P -% P’ then

and deprioritization. SP (P’) C SP (P) and Su (P’) C su (PI.
We are now able to prove the next theorem.

In the augmented language -: and N turn out to be the
same relation. In one direction the result is straightforward, Theorem 4.4 I f p -,” q then P E

as the following theorem demonstrates.

Theorem 4.3 I f p H q then p -: q.

Proof. Since -p”C-p” it suffices to show that -,” is a bisim-
ulation for (P, M, Act). Clearly -,” is symmetric. Assume

196

A1 x + x = 2

A2 x + y = y + z
A3 z + (y + z) = (z + y) + z
A4 x + nil = x

nil ; ~ ~ E { x , X }
a.(z\X) otherwise

RES2 (...)\A =

RES3 (z+y)\X = (%\A) +(y\X)
RELl nil(R] = nil

REL2 (a.z)[R] = R(a).(z[R])
REL3 (z+y) [R] = z[R] +y[R]

Figure 3: The equational characterisation of N for CCS.

p -: q and p A p’; we must show that there is a q’ such lation construction algorithms for deciding bisimulation equiv-
that q alence [ll] may be adapted to our semantics.

Alternatively, there is a set of equivalence-preserving syn-
tactic transformations based on the well-known ones for strong
bisimulation equivalence [8]; these are listed in figure 3. The

q’ and p‘ -,” q‘. There are three cases.

a = a E A and p is patient. Then DP,t[p] is patient, and
DP,,[p] f Dp,q[p’]. From the properties above it follows
that DP,t[pl -% DP,P[p’l, and this \A and [RI remain valid; however, the
q‘ such that DP~Q[ql -% DP*q[q’l and DP,q[p’l -P DP*qlq’l* presence of 7 introduces the new law p. This is readily seen to

that there is a usual laws for +,

Again from the properties mentioned above, p’ -,” q’, and

it is easy to establish that q & q’.
be satisfied by H because of the preemptive power GE 7. The
interleaving law from [8] also needs a slight modification be-

is impatient. This case is routine because the cause of the presence of two kinds of synchronization actions,
r and L this law appears in figure 3 as INT. Let E denote the
set of equations in figure 3, and let p = E q mean that p can be

a E A. Then P, and hence DP,q[~] , Dp,q[q] and q, muet transformed into q by application of the equations in E. The

be patient. This implies that D,,[p] 4 D,,[p‘], and next theorem says that these equations completely characterize

there is therefope a q‘ such that Dp,q[q] % Dp,q[q‘] and the new finite terms*

Dp,q(p’] -P Dptt[q‘], meaning that p’ -,” q’. Moreover, as Theorem 5.1 For finite CCS terms p, q, p H q if and only if
DP,,,[q] -+ Dp,q[q’], by the above properties it must be
the case that q _(I_ q’.

a E A and
deprioritization in Dp,q[] has no effect.

L? (4

L? (3

LP., (4
=B q.

We now consider proof rules for recursive terms. The de-
0 velopment of the standard results is complicated somewhat by

the fact that the basic a priori moves, 3, are defined by struc-
tural induction on (open) terms instead of by the more usual
inductive definition. This is necessary because the clauses in
the definition of 4 for the prioritization and deprioritiration

5 Proof Techniques

In this section we briefly sketch the proof techniques we have
for deriving equivalences. Because H is defined as a bismula- operators have negative antecedents and therefore cannot be
tion equivalence a natural and often effective way of proving used in an inductive definition specified as the least relation
p H q is to exhibit a bisimulation R (with respect to M) satisfying a collection of clauses. One consequence of this is
which contains the pair (p, 9). Indeed, the well-known bieimu- that we must confine ourselves to guarded recursions, since in

I97

forth

o k r i - r ! check

back

X += back.X’ + i.0k.z.X

X’ -e forth.X+ i.0k.z.X’

C .e= check.&C

SYS -e (XlC)\i

Figure 4 A two-process system.

the more general case certain desirable properties of recursively
defined processes-such as f i(z . t) N t[fi(z.t)/z]-do not hold. called ‘unique fixed point induction.”
This restriction, however, is a standard one adopted in the lit- Theorem 5.4 If
erature and is indeed a reasonable one. The relevant property
of guarded expressions, which we leave to the reader to verify,

The final result we show is a form of induction that is often

then f iz(z. t) .

is the following. Assume that z is guarded in t. Then, 6 Examples

t[u/z] 4 r r is t‘[u/z] and t J t’. (1)

Another useful property, which is trivial to prove, is:

(p 5 r q 5 r) implies p N q . (2)

More generally, let R be any bisimulation in the a priori se-
mantics (P, +, Act) . Then

(p , q) E R implies p N q. (3)

This follows easily from the fact that such an R is also a bisim-
dation in the actual operational semantics (P, M, Act) .

With these results we can derive many of the expected prop
erties of the fixed point operator. The first states that f i(z . t)
is indeed a fixed point of the equation z N t.

In this section we present two examples that illustrate the use-

fulness of our approach. The first example defines a system
consisting of two processes: a process X that flips back and
forth between two states and a process C that checks that the
first process is running properly. The implementation of this
rystem in our language appeam in figure 4.

One desirable property of this system would be that each
check action is followed by an ok, an acknowledgement that
X is running. In pure CCS, this is not the case; indeed, the
(infinite) sequence of actions

check back forth back forth ...
is possible, owing to the fact that X is not required to synchro-
nise with C after C performs a check. In our framework, this
cannot happen, since i is prioritized. In fact, it is the case that

Theorem 5.2 f i (z . t) z t[fiz(z.t)/z]. Sys N Spec,

It is possible to extend N to open terms in a natural way. Let where spec is defined as

a substitution a be a mapping from variables to P, and for a

term t let ta represent the obvious (closed) term. Then define
t H U to hold exactly when for all substitutions U , tu N ua.
The next result states that this extended H- behaves properly TO prove this, let SYS’= (x’Ic)\i. It suffices to show that

Spec e bac k.Spec ’ + c hec k.7. ok..r.Spec

Spec’ forthSpec + check.7.ok.L.Spec’.

with respect to fi considered as an operator on terms.

Theorem 6.S If t N U then f i (2 . t) H fi(z.u). Sys’ = Spec’.

sys = spec

198

Sys = [back.(X'IC) + i .((ok.z.X)IC) + check.(Xl~.~.C)] \ i by Int

=

= back.[(X'IC)\d +
back.[(X'IC)\d + check.[(Xll.i.C)\d by RES3, RES2 and A4

check.[[back.(X'lz.i.C) + i.((ok.z.X)Ig.JC) + z.(Xli.C) + E.((ok.z.X)li.C)]\A by INT

back.[(X'lC)\d + check.[z.((ok.z.X)Ii.C)\d by P, RES3, RES2 and A4 =

Figure 5: A fragment of the proof that Sys = E Spec.

Using the unique fixed point rule, it is sufficient to show that

Sys = back.Sys '+ chcck.z. ok.z.Sys

Sya' = forth.Sys + check.z.ok.Z.Sys'.

Figure 5 contains a fragment of the proof of (4) using the ax-
ioms of figure 3 as rewrite rules. Readers familiar with similar-
style proofs from [14] should have no trouble completing this
proof.

The second example uses priorities in a slightly different
fashion. Here we present a development of the alternating bit
protocol [l] that is correct in pure CCS when the medium may
lose messages but is incorrect when the medium is reliable. We
show how the introduction of priorities resolves this anomaly.
We should note that the use of priorities here is only partially
successful. The inadequacy of the example is discussed more
fully after its presentation, but the problem arises from the
fact that only the prioritized internal move can preempt un-
prioritized actions.

The alternating bit protocol provides a means of ensuring
reliable communication over half-duplex lines. In this pro-
tocol, the sending and receiving processes alternate between
two states in response to the receipt of messages (in the case
of the receiving process) and acknowledgements (in the case
of the sending process). Senders and receivers may also time
out while waiting for acknowledgements and messages, respec-
tively. A full account of the protocol may be found in [l].

Figure 6 presents the development (in pure CCS) of the pro-
tocol in the context of a lossy medium. It can be proven correct
- after every send action, the only next possible non-r action
is a receiue, and vice versa, and the system does not deadlock
(i.e. wind up in a state where no actions are possible). How-
ever, if we replace Mlorry with M,,je, a medium that does not
lose messages, the protocol is no longer correct. Consider the
definition of Mlafe.

Mraje + S0.K-Mra~e + S1.K.Maaje

Since every a-action is followed by an r-action, this medium
delivers every message it receives for sending. With MIaje re-
placing Mlorry, however, Sys may deadlock; the state

is reachable via the sequence of actions

send r r r ,

and no actions are possible from chis state. Intuitively, this
problem results from the fact that the receiver & can elect to
time out (by executing its r action) even though a message is
available for it to receive from the medium.

Using prioritized actions, this situation can be prevented.
By prioritizing all actions except the r actions in SA, Si, Ro
and RI (the time-out actions), interactions with the medium
that are possible are required to happen; the above state is
therefore not reachable, and the protocol will behave correctly.
In fact, one can prove that Sys H Spec, where Spec is defined
as follows.

Spec + send.r.r.Spec'+ L.Spec

Spec' += receive.r.r.Spec + .r.Spec'

Figure 7 presents a tabular representation of a relation whose
symmetric closure is a bisimulation containing (Sya, Spec).

It is worth noting here that our implementation of the al-
ternating bit protocol uses busy waiting. That is, So, SI, Rb
and Ri each offer Jend and receive actions in the context of 1-
loops. It is certainly more natural to imagine implementing the
protocol without this busy waiting; however, in this case, pri-
oritizing all actions except the 7's corresponding to time-outs
does not fix the anomaly that results from the substitution of a
safe medium for a lossy one. The reason is that in our seman-
tics, only prioritized internal actions have preemptive power;

I99

Subscripted a and r actions denote sends and receives to and from the medium, respectively.
r represents the time out action in the Ri and Si.

receive

Figure 6: The alternating bit protocol.

Spec) 8

-- r.r.Spec'),
.r.Spec'),
Spec'),
-- r.r.Spec),

Spec) I

- r.Spec) I

-- r.r.Spec'),
- r.Spec') I

Spec') I

-- r.r.Spec),
- r.Spec) }

Figure 7: A relation whose symmetric closure is a bisimulation.

prioritized external (i.e. non-r] actions cannot ovemde non-
prioritized actions. Thus, a process can time-out when the
versions of SO, SI , It$ and Ri without busy waiting offer a send
or rcceiug even though these actions are prioritised.

This phenomenon merits more study; one idea to get around
it would be to extend the language with a special type of pri-
oritized actions having the preemptive power of E, This would
imply that these special actions could not be restricted or de-
prioritized, as otherwise =! would cease to be a congruence.
Nevertheless, such actions could play a useful role, for example,
as the external actions used in specifications. In the example
of the alternating bit protocol, if the send and receive actions
were of this type the ploops representing busy waiting could
be eliminated.

7 Conclusions

In this paper we have developed an operational semantics
for processes having actions that take priority over other ac-
tions. Using the semantics as a basis we have developed a
behavioural equivalence based on strong observational equiva-
lence and shown that it is a congruence, and we have presented
a complete axiomatization of the equivalence for finite terms
and a development of proof rules for recursive proof rules. We
have also developed several examples that show the usefulness
of our approach.

Much research remains to be done in order to show that
our approach to priorities is indeed of general interest and a p
plicability, We have already indicated that a process algebra
with prioritked actions should also contain associated com-
binators such as proritization and deprioritization and that
certain other characteristics such as "strongly prioritized" ac-
tions are desirable. In general, what is a reasonable set of new
combinators? We would also like to develop and axiomathe a
weak observational equivalence or testing equivalence based on
our semantics; the interaction of prioritization and abstraction
from internal details may prove to be difficult. Another related
line of research is to examine the semantics of programming
language constructs that incorporate notions of prioritiration,
like those mentioned in the introduction.

An alternative approach to priorities in process algebras may
be found in 12). There the emphasis is on equational reason-
ing; more specifically, the authors examine the consistency of
sets of equations obtained by adding to existing equational the-
ories additional equations that the authors feel prioritisation

operators should satisfy. Their approach is purely algebraic in
the sense that they do not give an operational semantics or
behavioural equivalence that u n d e r k their theory.

References

[l] Bartlett, K.A., R.A. Scantlebury and P.T. Wilkinson.
"A Note on Reliable Full-Duplex Transmission over Half-
DuplexLinks." Communications of the ACMl2, n. 5, May
1969, pp. 260-261.

[2) Baeten, J.C.M, J.A. Bergstra and J.W. Klop. "Syntaxand
Defining Equations for an Interrupt Mechanism in Pro-
cess Algebra." Technical Report CS-R8503, Department
of Computer Science, Center for Mathematics and Com-
puter Science, Amsterdam, February 1985.

[3] Bergstra, J.A., and J.W. Klop. "Process Algebra for Syn-
chronous Communication." Information and Control 60,
1984, pp. 109-137.

[4] Brinksma, E. "A Tutorial on LOTOS." Proceedings of
IFIP Workshop on Protocol Specification, Testing and
Verifieation VI M. Diaa, ed., pp. 73-84. North-Holland,
Amsterdam, 1986.

[5] Cleaveland, R. and M. Hennessy. "Priorities in Process Al-
gebras." Technical Report 2/88, Department of Computer
Science, University of Sussex, March 1988.

[S] DeNicola, R. and M. Hennessy. "Testing Equivalences for
Processes." Theoretical Computer Science 24, 1984, pp.
83-113.

(71 Harel, D. "Statecharts: A Visual Formalism for Complex
Systems." Science of Computer Programming 8, 1987.

[8] Hennessy, M. and R. Milner. "Algebraic Laws for Nonde-
terminism and Concurrency." Journal of the ACM 32, n.

1, January 1985, pp. 137-161.

191 Hoare, C.A.R. Communicating Sequential Processes.

Prentice-Hall International, London, 1985.

LO] INMOS Limited. OCCAM Programming Manual. Prentice-
Hall International, London, 1984.

U] Kanellakis, P.C. and S.A. Smolka. "CCS Expressions,
Finite State Processes, and Three Problems of Equiva-
lence." Technical Report, Department of Computer Sci-
ence, Brown University, 1983.

20 1

1121 Milner, R. A Calculus of Communicating Systems. Lecture
Notes in Computer Science 92. Springer-Verlag, Berlin,
1980.

(131 Milner, R. ‘A Complete Inference System for a Class of
Regular Behaviours.” Journal of Computer and System
Sciences 28, n. 3, June 1984, pp. 439-468.

[141 Milner, R. “Calculi for Synchrony and Asynchrony.” The-
oretical Computer Science 25, n. 3, July 1983, pp. 267-310.

1151 Pnueli, A. ‘Linear and Branching Structures in the Se
mantics and Logics of Reactive Systems.” Lecture Notes in
Computer Science 194, pp. 14-32. Springer-Verlag, Berlin,
1985.

[la] U.S. Department of Defense. ‘Reference Manual for the
Ada Programming Language.” ANSI/MIL-STD 1815 A,
January 1983.

202

