Assigning Typesto Processes
(Extended Abstract)

Nobuko Yoshida
nyli@mcs.le.ac.uk
MCS, University of Leicester, UK

Abstract

In wide area distributed systems it is now common for
higher-order codéo be transferred from one domain to an-
other; the receiving host may initialise parameters and then
execute the code in itslocal environment. In this paper we
propose a fine-grained typing system for a higher-order &
calculus which can be used to control the effect of such mi-
grating code on local environments. Processes may be as-
signed different types depending on their intended use. This
isin contrast to most of the previous work on typing pro-
cesses where all processes are typed by a unique constant
type, indicating essentially that they are well-typed relative
to a particular environment.

Our process type takes a form of an interfacelimiting
the resources to which it has access, and the types at which
they may be used. Allowing resource names to appear both
in process types and process terms, as interaction ports,
complicates the typing system considerably. For the devel-
opment of a coherent typing system, we use a kinding tech-
nique, similar to that used by the subtyping of the system F,
and order-theoretic properties of our subtyping relation.

Various examples of this paper illustrate the use of our
fine-grained typing systemfor distributed systems. Asa spe-
cific applicationwe define a new typed behavioural equiva-
lence for the higher-order Tt-calculus. The expressiveness of
our types enables usto state and prove interesting identities
between typed processes.

1. Introduction

Matthew Hennessy
matthewh@cogs.susx.ac.uk

COGS, University of Sussex, UK

such as [5, 8, 18, 12, 28, 34].

Higher-Order Processes The language we consideuny,,
is essentially a call-by-value-calculus [9] augmented with
thetrcalculus primitives [22]. For example,

c2(x:1) fx 1)

is a process which inputs a value of typen channelc
and applies to it the functioh. This process will be well-
typed only in an environment in which the chanoélas the
capability to input values of type, writtenc: (1), and f
denotes a function of typg — proc); here, as in [26, 37],
we useproc to denote the type of processes.

As usual we allow as values arbitrary abstractions, but
much of the descriptive power aft, comes from the ability
to form values by abstracting over processes. For example
(unit — proc) is the type ofthunked processes; we use
this type so frequently that we will abbreviate itferoc).
Values of this type, of the formi(x:unit).P, will also be
abbreviated tgP). Such values can be exchanged between
processes and subsequently executed, by applying the func-
tion Ay.y(); again for the sake of clarity we usean to de-
note this function. So in (1) above,fis the thunked type
(proc) and f is the functionrun, the process may input a
thunked proces&) on channet and execute it.

In papers such as [3, 21, 26, 27, 33, 37] typing systems
have been suggested which ensure that programs written in
At -related languages are well-behaved. The main judge-
ments normally take the form

MFP:proc

Background In the distributed computing environments indicating that the terni is a well-typed process relative
nowadays, it is common fdrigher-order code to be trans- to the typing environment. Herel is a mapping from
ferred from one domain to another [10, 23, 25]. This is channel names or variables to input/output capabilities or
recognised as dangerous and various schemes have been pudlue types[(c) determines the type of values which chan-
forward to ensure the integrity of systems in the presence ofnel ¢ may transmitfeceive. Thus€?(x: 1) f x” in (1), will
such operations. In this paper we propose a sgtyping be well-typed in any environmeifit which allowsc the in-
system which can be used to control the effect of migrating put capability(proc), assuming of course thdt is also
code on local environments. Our investigation is in terms a well-typed expression of typgroc) — proc, such as

of a higher-order-calculus in which values, including pro- I D {c:(proc), f:{proc) — proc}.

cess terms, can be exchanged along communication chan- However such typing offers limited control to programs
nels [3, 29, 37]. We believe that our typing system can be over the code which they download for execution. To em-
readily adapted to related location based distributed calculiphasise this point let us consider an example. First we de-

0-7695-0725-5/00 $10.00 ® 2000 IEEE

fine the abstractiohw (called aforwarder in [16]) This ability to constrain the effect of imported code
. means that host processes can maintain the consistency of
AXAy (x X2(z: int) Y(Z)) local resources. For exampl ider the followi -

. ple consider the following exam
which repeatedly inputs some value of a type on chan- ple: nesting process types give even further control over
nel x and outputs it immediately on If the channels, b code behaviour.
are assigned suitable types then both the va{kegab
and(Fw(ba)) have typeproc) and thus may bcs;f szﬁr(lt a)lz)ng Freq?y (Ac))(runy | €2x: (Aa))(runx | a(z: int)P))
channek to a process such as where(A,) denotes the typéa: (int)%) and(Ac) denotes
(c: (0a)?). The annotated types ensure that (1) the code
downloaded on the request channet) can only access the
But accepting these processes for execution confers on theesourcec, (2) ¢ can only be used to transmit code which
incoming code differenaiccess rights. In the first case the can at most access resouseand (3) all communications
incoming code is allowed to read from chanaeind write to a will be serviced bya?(z: int)P.
to channelb while in the second case these rights are re-
versed. Typing systems in which code can only be assigne
the undifferentiated typeroc do not provide any mecha-
nism for limiting the effect of incoming code.

C2(X: T) run x 2

hannel abstractions In A1, processes are also allowed
to downloadabstracted code; code in which resource pa-
rameters may be instantiated by the host process before the
code is executed. A simple example is the abstradtion

Typing processes In this paper we extend the typing sys- used above. Consider the server
tems of [37, 26, 12] by allowing processes to have types
which bound the resources which they may use. The basic *S%(2) 2 (Fw)

idea is straightforward. For processes\iy, we will allow \yhich continually supplies the abstractibw to requesting
judgements of the form clients. A specific client, such @&defined by

FEP-(a] si(c) c2(y) (yab),
whereA is a finite environment, mapping channel names
to capabilities. Intuitively this means that relativeltdhe
term P denotes a well-defined process which uaemost
the resources in the domain &f moreover their use is in
accordance with the capifiies given inA. Thus the type [a:(int)! b:(int)?,..]
[A] may be viewed as a procesterface.

For example let\y,, Ay, denote the environments

can downloadrw and instantiate it with particular channels,
such as, b. Thusinthe presence of the serfRwill evolve
to a process which should have a type of the form

Other processes which instanti&te differently will evolve
to processes with different types. For examPliefined by
{a:(int)!,b: (int)?}, {b:(int)",a: (int)’}

. : si{c) c?y) (yba),
respectively wheréint)! and (int)° represent the input _)
and output capabilities of a tyagert. Then, for asuitable ~ Will evolve to a process with a type
we will be able to derive the judgements [b: (int)",a: (int)?,..]

M Fw(ab): [Asp] and T+ Fw(ba): [Ap] However it is difficult to see how to give a type to the ab-

These more discriminating types for processes allow pro-stractionFw which ensures tha andS are assigned such

cesses to be, in turn, more discriminating in the type of val- types. Within our current system of types it would be natu-
ues which they will accept. Thus ral to assign td-w a functional type of the form

c?(X: (Dap)) run X (int)! — (int)? > 1

indicates that it is only willing taaccept processes for ex- for some process type. If tis the undifferentiated type
ecution if they at most read from resouraeand write to proc then bothR and S would inherit this uninformative

b. Let us denote!(P) for an output process which sends a type. Otherwiset must assign some definite capabilities to
thunked proces$P) to a channet. Thus, for example, a aandband assuming that typing is preserved under Subject

process Reduction these capabilities would be inheritedRyndS.
cl{Fw(ab)) | c2(X: (Awp)) run x That is, they would have the same capabilities on the two
resources andb, contrary to our requirements.
is well-typed while Our solution is to introduce a new form dépendent
cl(Fw(ba)) | c?(x: (Agp)) runx functional type
(x:0)—=p

is not; the (thunked) proceg$w(ba)) is not acceptable
alongc as it does not conform to theterface decreed by Herea is a channel type and we allow the typéo contain
the hostAgp. occurrences of the channel varialde(These occurrences

0-7695-0725-5/00 $10.00 ® 2000 IEEE

of x in p are bound occurrences {®: o) — p.) Thus the an infinite set of channel mamesN, ranged over bg. b, ...,
abstractiorFw will be assigned the type and an infinite set ofariablesV, ranged over by, y, ... For

the sake of clarity we will sometimes u3eY, ... as vari-
ables, whenever we intend them to be substituted specifi-
where the result type of the process depends on the type ofally by higher order values rather than channels.

the abstracted variables. Channel types are as in [37], in turn an elaboration of
the 10-types of [12, 26]; they take the for{f;, &), a pair
consisting of arinput sort S; and anoutput sort &; these
input/output sorts are in turn either a general value type or

(x: (int)") = (y: (int)?) — [x: (int)’,y: (int)?]

Results In this paper we formulate a fine-grained subtyp-
ing system for the higher-ordercalculus following the ba-

sic ideas mentioned above. This results in a simple, but non- - ; o :
L :) y T, denoting the highest capability, ar, denoting the low-
trivial, extension of the 10-subtyping far-calculus [26] to d g P Y g

the hiah d i Th i1 technical it b est; as explained in [37] the representation of IO-types as a
€ higher-order Setling. the main technical results can etuple [13, 12] makes the integration with the arrow types of
summarised as follows.

theA-calculus more natural. Moreover the 10-types of [26]
1. First, we design a novel notion type for the higher- ~ €an also be represented as a special case of our 10-types,
order recalculus, in which process have types corre- USing the abbreviations given in Figure 1.
sponding tdnterfaces. Because type variables appear There are three kmds of value types: base types, channel
both in program terms and in types (in particular the fyPes as already explained or HO-value types, ranged over
types of processes), the formal definition of what con- by oy. These can be formed using either of the_functlonal
stitutes a valid term and a valid type are interdepen- P& constructorsgy — p or (x:0) — p, wherep in tumn
dent and both in turn require a careful definition of IS €ither a HO-value type or a process type. Process types
even a valid typing environment. An analogous, al- €an either be the constamtoc (also denoted in [26]), or
beit somewhat simpler, situation arises in subtyping & tyPe environmenitA] whereA is a mapping fronN UV
for the polymorphich-calculus [6]. We clarify tech- to cha_nnel_typfes; the formation rules for environments are
nical similarities and differences between the two typ- /S0 given in Figure 1.
ing systems. Although some techniques developed forExampIeZ.l (Types)

the A-calculus are useful in the current setting, novel) _ .
concepts are required for process types. (1) The nil process, with no capabilities, has the tyge

. . : (2) A process which can outpuit ataand inputbool at
2. Second, we propose a typing system in which many) 0b.. 1
. ; b has the type[a: (nat)®, b: (bool)'].
higher-ordertcalculus processes can be assigned)
non-trivial interface types. We prove its soundness (3) A HO process which can output a thunked value of

(Subject Reduction Theorem) and also establisha Type ~ tyPe (2) atc has the typéc: (a: (nat)®, b: (boo1)*)"].
Safety Theorem, which ensures that no well-typed pro- (4) A higher order identity function over thunked values

cess can input higher-order code which does not con- of type (2) has the type
form the local interface of that process. (a:(nat)?,b: (bool)!) — (a:(nat)?,b:(bool)’).

3. Finally we define a new typed behavioural equivalence (5) A dependentfunction whichis applied to some name
for the higher-orderecalculus. Our fine-grained types and constructs a process of typle: (nat)’, a:(nat)"]

enable us to establish general, and useful, processiden- Nas the typéx: (nat)®) — [b: (nat)’, x: (nat)°].

tities. Their application is illustrated on an example Syntax The syntax for terms in the langual®, is given
distributed system. in Figure 2. It is essentially the same as that used in [37]
except that we use the more expressive types, from Fig-

tax and a reduction semanticst,. Section 3 proposes the ure 1. We use the standard notational conventions, for
v example ignoring trailing occurrences of the empty pro-

new typing system ok, and demonstrates its expressive- s)
yping sy M b cessO and omitting type annotations unless they are rele-

ness by typing the example in Section 2. In Section 4, we X .
prove Subject Reduction and Type Safety Theorems. Secvant We also define the notions of free narfrg®) and

tion 5 briefly studies the typed behavioural equalities. Fi- free variablesv(P) of terms Wh'.ch may appear in the_ an-
nally Section 6 concludes the paper with further issues andnotated _types. The formal definitions are ayallable "_1 the
related work. Due to space limitations, the proofs and manyAppenOIIX of [38], but as an example(U2x 11y, ..., X!
examples, including a further application to a distributed)P) =M (U) Ufv(Ta) U... UR(Tn) URV(P) — {X1, ..., ¥n}-

Outlineof thePaper Section 2 introduces the types, syn-

higher-ordenmt-calculus, are left to the full version [38]. Reduction Semantics The termP is called aprogram if
it contains no free variables, i.&(P) = 0. The reduction
2. A Higher-order Process Language semantics is given in terms of a binary relation

Types The collection of types is a straightforward exten- P—Q
sion of that from [37]; The formal definition is given in Fig- between programs and follows the standard approach from
ure 1; this assumes a set of base types sushasandnat, [22, 26, 29]; the formal definition is given in Figure 3 and

0-7695-0725-5/00 $10.00 ® 2000 IEEE

(Type) a,B,Y,-.. (Environment) (Abbreviation)
Term: p ‘= TU|OH Channel: . _ def
Base: O = unit|nat]|--- A= 0 Auo input only: S) ;f(ss L)
Process: m 1= [A]]|proc G n“r) T outputonly: S =(T,S
HO Value: oy = 0g|oy—p|[(xi0)—=p er erat O|F.xt|Fag nPutoutput S° sy
Channel: o = (5,%) T R s
Value: T ‘= on|o Lo def
Sort: S u= (L.t |T|L thunk typeA) = unit — [A]
Figure 1. Types
(Term) (Identifier) (Literal)
PQ,.. = =V value uv,w,... = | literal LI o= () unit
| O nil | XY,z.. variable | 1,2,3,... number
| P|P parallel | ab,c, ... channel
| ulVy, .. V)P output (Value) (Abbreviation)
| uAX1:Ty,...., % :Ta)P input) . def o
| P replicator VW, ... = uVv,w,... |dent|f|er (P) = A(X:unit)P thunk
va:o)P restriction | A:T)P abstraction ryn €' \(x:unit —m)x
| (vaio)
| PP application
Figure 2. Syntax
(Reduction) given in Figure 3. We also use—to denote the multi-step
] reduction. The main rules af&reduction,), and com-
(B) ()\(x.r)PI)V — P{V/x} munication (com). Both these require a definition of substi-
(app) —L—Q (app) =2 —P _ tution of values for variabl®{V /x}, which we have yet to
PQ—PQ PV — PV define. Complications arise when the value to be substituted

(com)a?(X1:T1, ..., %n:Tn)P | @l(V1,...,Vin)Q

— P{Vl, ...,Vn/Xl, ,Xn}| Q

PP P—P
(par)m (res) (v a:c)P: (va:o)P
(str)PEPF',:gEQ

(Structure Equivalence)

e P=Qif P=Q.

* PIQ=QIP (PIQIR=P[(Q[R) P|O=P

*P =P|«P
e (va:o)0=0
(va:0)P|Q = (va:0)(P|Q) if a¢ n(Q)

(va:o)(vb:0d')P = (vb:d')(va:o)P if a¢ fn(d’)

andb ¢ fn(0)
Figure 3. Reduction

V is a channel name and is best explained with an example:
A(X: (int)™) A(Y : (x: (int)!,a: (int)?))
(runY |x!(1)|a?(2) r(z)) (3)

This function first takes some channel, $aythen takes a
thunked process withlacapability and am-capability, sets
it running and interacts with it via andb. Suppose that it
is applied to the specific channl Intuitively this means
substituting the valué for free occurrences of the bound
variablex in the body of the function. If the substitution
ignores types in the body of the function, we get

A(Y 1 (x:(int)" a: (int)?))(run Y |b(1) |a2z) r!(2))

which is not even a program; it contains an occurrence of
the free variabl. The proper definition of reduction re-
quires thatb is also substituted into the types occurring in
the body of the function, to give the program

A(Y :(b:(int)", a: (int)?))(run Y |b!I{(1) |a?(2) r!(2))

This also makes sense as this now constrains the function to

should be understandable to those familiar with either the be only applied to processes which have@apability.
T-calculus or the\-calculus. It uses the standard structural
equivalence= of the r-calculus; the axioms foe is also

0-7695-0725-5/00 $10.00 ® 2000 IEEE

The formal definition of value substitution into terms,
P{V/x}, is defined inductively on the structure of terms.

T{v/x} =T L{v/x} =1
og{v/x} = OB proc{v/x} = proc
(S, Sn>{V/X} = (SH{v/x},S{v/x}),
(T1, .., {v/x} = (t{v/x},..., ta{v/X})
(o S p){v/x}t = on{v/x}t — p{v/x}
(yro) = p{v/x} = (y:o{v/x}) = p{v/x} (X#Y)
[Al{v/x} = U[w{v/x}:0{v/x}] (w:c€A)

Figure 4. Name Substitution into Types

The following is one instance for an input process:

WV /x}2(x:{V/x}) P{V/x}

u?(x: 1) P{V/x} &'

However this instance uses the substitution of values into

types,1{V/x}. If V is anything other than a channel name

or variable this is the identity. So we need only define the

substitutiort{v/x}, wherev is a channel or channel vari-
able; this is defined in Figure 4.

This definition of substitution into types is for the most
part straightforward, with one exception which can be ex-
plained using the example function (3) above. If this is ap-
plied to the nama we would expect to get the result

A(Y:(a: (int)%))(runY|al(1)|a?(2) r(2))

sinceais allowed to have an input/output capabiltyat)
in the body. In other words the substitution of the nafer
xinthe type(x: (int)!,a: (int)?) should bea: (int)).
This is reflected in the final clause in Figure 4:
[A]{v/x} = U[w{v/x}:0{v/x}] with w:o€A

Herell is an operator on types which intuitively acts like

Interface
Server

Figure 5. Interface Server and Distributed Services

some data and a return address, applies some specified op-
eration to the data and returns the result to the address.
For some given nama, let Succ(a) represent the process
xa?(y, z) Z{(succ(y)), which we write as

Succ(a)<= *a?(y,z) Z(succ(y))

This represents a service (fecc) situated at. A similar
one for the predecessor functiaited, is defined as:

Pred(a)<—= xa?y,2) zl(pred(y))

A client may wish a number of operations to be performed
on given data, in a particular sequence, with some data for
later operations depending on results produced by earlier
operations. This situation is given diagrammatically in Fig-
ure 5. Here there is an Interface (I) between clients and the
collection of services or operations on offer. Now a higher-
orderscript is sent to the interface. This script is executed
locally by the interface, which interacts as necessary with
the various services. This protocol puts the computational
onus on the server and avoids repeated interactions between
clients and services. The server at the interfagey then

a (partial) least upper bound with respect to a yet to be pe defined by:

defined subtyping order on types. The following are simple
examples of] on process types, which may be sufficient to
read this paper; roughly speaking,calculates the union
of the accessibty rights of two processes. (The formal
definition is available in the Appendix in [38].)
[a:(int)']U[b:(int)?] =[a:(int)’,b:(int)"] and
[a:(int)!]U[a:(int)?] = [a:(int)!?]

Servi(reqs,p) <= req?X) Xsp

It takes in a scripX, a process parameterised on service
ports, and applies it to the actual port names of the two lo-
cal services, in this caseand p. Note that these actual

names are not known to clients, thereby, in this case, af-
fording some security protection to the server from clients;

Now we can analyse the substitution on types in the aboveall interaction between clients and the server is through the

example by the following equations.

[x: (int)!, a: (int)°] {b/x}
[X{b/X} (int)']U[a:(int)?] = [b: (int)!,a: (int)?]
[x:(int)!, a: (int)?]{a/x}

[x{a/x} (int)']U[a:(int)?] = [a: (int)!?]
The properties ofl will be discussed in the next section,
when we consider well-typed programs. Note that in gen-
eralll is a partial operator and therefore apriori substitution
is not always defined. However we will see that in properly
typed environments it is always well-defined.

Example 2.2 (Interface server and mobile client code)
A (specific) compute service is a process which given

0-7695-0725-5/00 $10.00 ® 2000 IEEE

interface req.

We give two examples of clients requesting services.
Client (A) wants to increment a numbkrtwice, whereas
the Client (B) wants to evaluate the successor and the pre-
decessor of two different numbergandm in parallel.

CA(req)<:
reqlA(s, p) ((v

CB(req)<:

reqA(s, p) (ved)(sl(n,c)Fu(crig) | pi{m,c)Fu(c rag)))

c)si{k,c)c?(2)

sl(z,c)Fu(cra)))

The forwarders in their bodies are used to relay the final
results to each client on their result channelsfor Client
(A), andrig, rog for Client (B) respectively.

Putting the clients and server together we have the fol-
lowing parallel composition (Figure 5):

Ca(req) | Ce(req) | Servi(reqs, p) | Succ(s) | Pred(p)

After a certain amount of reductionk:+ 2 is returned to
Client (A) onra, andn-+ 1 andm— 1 are returned to Client
(B) onrig androg, respectively.

3. TheFine-Grained Typing System

3.1. Well-formed Types and Environments

In Figure 6 we present a formal system with three forms of
judgements, all interrelated:

[+ Env I" is a well-formed environment
M Fa:tp a is a well-formed type i
r ra<a aisless tham' in I

For convenience we u$et J as a shorthand for any of the

three allowed forms of judgement. The first is designed to .

ensure that an identifier can only be used in the constructio
of a type if it has already beaieclared in the environment.
For example one can not deduce

y: (x:(nat)®), x: (nat)? - Env

because the variableis used in the type associated wijth
before being introduced. However if they are interchanged
then this does constitute a valid environment:
x: (nat)?, y: (x:(nat)®) - Env

This emphasises the fact that our typing system nol
have an interchange rule; in general being able to form a
judgement of the form

rx:1,y:v,IMFJ
will not necessarily imply

rLy: v, x:1,IM"~J

When constructing well-formed environments only
types which are currently well-formed may be used. This
is the purpose of the second form of judgement. So for ex-
ample we can not deduce

r,y:{y:(nat)’) - Env
To do so we would need to be able to deduce
MF(y:(nat)?) : tp
This in turn is not possible, basically becayss not in the
domain off".
In the rules forT - a : tp one is only constrained to

use identifiers which are already declared in the current en-
vironment. In (t-chan), the conditid® > & is necessary

to ensure that readers of a channel receive at most the capa-

bilities given by a sender. There are only two novelties. In
the formation rule for dependent types, (ts@pthe bound

Subtyping also plays a role in the formation of environ-
ments. For example we can not deduce

a:(nat)?, y:(a:(nat)®) +Env

because the capiiby associated witha when forming the
type associated witly is not a subtype of that associated
with ain the current environment. For iocan we deduce

I (nat)? < (nat)™®

The rules for subtyping are a straightforward extension of
those given in [37, 26, 12], apart from the necessity to only
use identifiers declared in the current environment. Func-
tion types are contravariant in their first arguments and co-
variant in their second, while, in (s-chan), channel types are
covariant in the input capability and contravariantin the out-
put. Again the only real novelty is the subtyping rule for
process types, (s-proc); this means the ordering of process
types iscontravariant w.r.t. the ordering of [37, 26].

A series of consistency lemmas about this system of
udgements follows. They are invariably deduced by induc-
ion on the derivations in the standard manner. Remem-
ber informallyX,Y,Z, ... denote variables with higher-order
types, as opposed to channel types.

Lemma3.1 (1) (Renaming)Suppog u ¢ fv(l,v,T,T").
Then T, u:t, "+J implies T, v:1, "{v/u}
J{v/u}.

(2) (Implied JudgementJ, '+ J implies T + Env ad
I, u:t,IFEnv implies T+ 1:tp.

(8) (HO-bound ChangelJ, X:on, I'+J ad TFoy, @ tp
imply T, X:op, '+ J.

(4) (WeakeningAssumel, x: T+ Env ardu & dom(I™).
Then T, '+ J impliesT, u:t, I+ J.

(5) (Multiple Weakening) Assune T, " + Env ard
dom(I")Ndom(I"") =0. Then I', '+ J implies
r,r reaJ.

(6) (Bound WeakeningAssume ' -1 < 1. Then
ru:t,l+J implies T,u:t,I" + J.

(7) (Implied Judgementy +a <o’ implies T - a:tp
ard T o' :tp.

(8) (HO Narrowing)",X:on,"+J implies T, F J.

(9) (Exchange)Assumerl ,u': T + Env. Thenwe have
rutu:v,r"+=J implies T,u:t, u:t,lM+J. O

Note that in general we can not replaXeoy with u: o in

the statements (3) and (8) above since the chammeay

appear freely i’ andJ. This underlines the major techni-
cal difference between our system and the sydtem][6];
several lemmas for type variableshn . [6], do not hold for
channels in our system.

We now turn our attention to the partial join operator

hich plays a crucial role in our definition of substitution,

Definition 3.2 (FBC, cf. [12, 37]) We say that a partial or-

w

variablex is allowed in the construction of the result type der(S,C) is finite bounded complete (FBC) for every finite
p. Secondly the rule (t-proc) ensures a process always has aonempty subse¢ < S, if Shas a lower bound theBhas a
typeA which does not exceed the current environnient greatest lower bound. i

0-7695-0725-5/00 $10.00 ® 2000 IEEE

Well-formed Environment

MEt:tp ugdom(lN)

(e-nil) QO+ Env (e-val) I UTF Env
Well-formed Types
i - Env : ME1i:tp : rES>%
(t-base) F =T “proc, TTiep TS0V Frmy tep . TP FEE ST e
i FFon:tp, p:itp i Ix:okFp:tp i Yue dom(A). I'FT(u) <A(u)
(tabst) 5555 (t-absy) FF(x:0) —p:tp (t-proc) FE[A]:tp
Subtyping
M-S <S2, S$N2<S
nrFatp) FETiitp) rE[A]:tp i VTHE(S,Si)itp (i=1,2)
ChrFaza SOV T<m, T CPSO T A< e CMV TS Sy < (s)
(s-abs) (s-abg) (s-proc) M+[A1]:tp
M-oj, <oy, p<p NFox<o; Mxiorkpr<p2 Yu € dom(A2). = Ag(u) < Ay(u)
FrFon—p<oy—p ME(x:01) = p1< (X:102) — P2 MH[A2] <[Ad]

Figure 6. Well-formed Types and Subtyping

Proposition 3.3 Under an arbitrary well-formed environ-
ment, the subtyping relation over types is a partial order
and finite bounded complete. i

The proof of this proposition, available in [38], is construc-
tive; we give an inductive definition of the required partial
meet operation; this requires a simultaneous definition of
a partial join operationl, the operation we have already
used above.

The next Lemma will be important in the proof of Sub-

are inherited from typing systems for the polymorphic
calculus. Here we have two forms of functional types, each
with its introduction and elimination rules. The novelty oc-
curs with abstraction over channel variables. Intuitively if
a termP has a typep, then a channel abstractidiix: o)P

is a function which become{a/x} when it is applied to

a namea with a typeo. Therefore, we will bind free oc-
currences ok in p in the abstraction rule (Bsy). The
corresponding elimination (Ary) allows dynamic channel
instantiation into types during-reduction. If a ternP has

variable can be replaced by an identifiehghout a judge-
ment, although this reptement may also change the envi-
ronment of the judgement.

Lemma3.4 (Name substitution)Suppose I - I'(u) < o.
ThenT,x:0,"+ Jimplies ', {u/x} - J{u/x}.]

Finally we conclude this section with the following prop-
erty, which relates to the construction of an efficient algo-
rithm of the typing system (cf. [26, 37]).

Proposition 3.5 (Decidability) I" - J is decidable. More-
ove,, if TFaj:tp (i=121,2),thenlT FaUay: tp and
- aimaz: tp are decidable. O

3.2. Type Inference

The typing system is given in Figure 7. The judgements are

of the form:

Mr-P:a atermP hasatypea underl

less tharo to P. Thenais substituted fok in p in (APRy).

The final group(Process), are based on the 10-Typing
systems from [26, 12, 37]. However many of the rules are
sufficient novel to warrant detailed explanation.

Theempty rule, (NIL): A process typg¢A] of represents
an upper bound on the interface or interaction points of a
process. Since an empty proc€dsas no interaction point,
under any well-formed environmeftit is typed as:

FrEO:[]

Theparallel rule, (PAR): Toinferl - Py |Py:mitis suffi-
cient to inferl” - Py:mtandrl” - Py:mtindividually. However,

in the presence of subsumption, there is a more informative
derived version of this rule, which will be frequently used:

FrEPim, TER T
M- P1|P2:T[1|_|T[2

A meta-result of our system ensures that, relative to a par-
ticular environment, the join of process types always exists.

For convenience the inference rules in Figure 7 are dividedp,o output rule, (OuT): Under what circumstances can

into three groups. The firsfCommon), are elementary, al-
though the subsumption rules8y) and (SuBy) will play
a major role in type inferences. The secoffélunction),

0-7695-0725-5/00 $10.00 ® 2000 IEEE

we concludd™ - al(V)P : t? We require the following:

¢ The residuaP should have the required typE,;- P: 1t

. 1. .
(Common) (VAL) WL :Env (Con) I iEnv g

rutlrFu:t MF1:nat
FFP:ip Tkp<yp rFu:o rFo<d
(SuBH) r-pP:p (Suen) r-u:o
. M X:oqg-P:p rNFP:oy—>p MFQ:oy
(Function) (ABSh) FEAX:)P on 5P (APR4) FFPQp
I x:o-P:p r’EP:(xto)—p lNFu:o
(ABSN) FrEAX:O)P: (x:0)—=p (APRN) IEPu:p{u/x}
T :Env MrEPoim M-pP:m MNao-P:m
(Process) (N Frorr PR TrRmrn RE) Trpm RO Trpagpima
Thr U (Tq,...,Tp)° repP:m T U (T, ..., Tn)"
(out) TEVMit Ti=g=mntrViio (IN) TXiTy o XlTn FPITOX T o %0 T
FEuvy, . VP FEU2XiTy, . X Tn)P I T

In (OuT) and (IN), tHr u:omeand F [u:0] < T

In (IN), T, x: T is defined as: (1)1'[,x:0d:efrt|_|[x:0], and (2) i, x: oy e

Figure 7. Typing System foxT,

e The valueV should have a type appropriate to the
channela. That is, there should be some value type T/a=T, L/a=_1,0/a=0g, proc/a=proc

T such thaf” -V : T and (S, S)/a = (S/a,%/a)
o the channeh should have the output capability at the (T1,..,Ttn)/a = (11/a,...,Tr/a)
typet. However this capability oa should be avail- (on—p)/a = on/a—p/a
able from the overall interface of the process,This (x:o)—p)/a = (x:0/a)—p/a
can be represented by the judgeneht[a: (1)°] < . [Al/a = [{u:(o/a)juiceA A u#a}]
However there may be a further requirement. If the value Figure 8. Name Erasing on Types

being output is actually a channel, dawith a typet = o,

then the capability being exported must also be available

from the process interface - [b: o] < 1. To deduce that the procea®x: 1) P has the interfacawe
The general statement of the rule, for multiple output need to establish two facts:

values, is given in Figure 7; it uses the notation defined in . . .
g g e The interfacer can provide the correct capability for

Figure 7 _ the channed; that isttt-r a: (T)!.
mhru:o ¢ The residuaP, having input a value for the variatke
to mean that, relative to the environménthe interface, or has the augmented interfamex: T; however this can
process typegcan provide at least the capabiliyat u. be established in the environmdntaugmented by;
As an example lef\y, be the environment which maps thatisl,x: TP : 1 X:T.

b to the type(int)? anda to the type(A,)™°, allowing it
to transmit thunked values of ty@dg, which mapsb to the
same typéint)°. Then with the output rule, together with
(NIL), we can establish

Here we are using a notatiom;x: 1" defined in Figure 7.
Note “rt,x: 1" denotes U if T is not a channel type. In
(IN), by the first sequence in the antecedent and (Implied
judgement), Lemma 3.1, we knowis well-formed under
Dgp FbI(1)0: [Ap] I". Hence automatically does not occur im. From this, if
Titakes the formjA] for someA, thenx ¢ fv([A]), andP has
atype[A], x: cd:ef[A,x: o] in the second assumption.

As an example lef\; be the environment which majgs
to the capability((int)?)!°. Then one can easily check that

and therefore
DAgp = al(b1(1)0)0: [a: (Ap)°]

Theinputrule, (IN): The rule for prefixing is a straight-

forward generalisation of that in [37]: Act c?(z: (int)®) Z(1) 1 [Ac]
mikr a: (1)’ MXx:THEP:mX:T It may seem strange that this process has been typed to have
rFa2(x:t)P:m at most a capability on the chanrelobviously when it re-

0-7695-0725-5/00 $10.00 ® 2000 IEEE

ceives an input on it willimmediately gain some other ca- Typing the server is slightly different. Here we need
pability. But this input will be sent by some other process, in to let Asery be {req :(tsc), Ar,s: 0s, p: 0s}. Then we can
the presence of which the interface will be increased appro-check that
priately. For example leA be the extension df. which .
mapsd to the output capability,int)°. Then we have Beervt SerV1(1eq.S, p) - [Asen]
Dea F 1(d) : [Acg] Thus the server requires knowledge of the locations of the
od T AT/ - 15 service points, but needs only to be able to send data to
Now we can use the rule AR), or rather its derived variant, them. It also only sends capabilities on the return chan-
(together with a version of Multiple Weakening) to deduce nels. Note also that if we only have a constant process type
Aeg - (c2(z: (int)) Z(1) | cl(d)) : [Acq] proc, as in the previous ty_ping systems for the process cal-
culi [3, 37, 26], then the interface server could input any
The restriction rule, (Res): The restriction operator fynctionAsAp.Q, whereQ an arbitrary process via “req’;

(V a)— reduces the interface of a process. For eXample in such incoming code may harm local resources. [}
an appropriate environment the procesél) can be as-

signed the process type, or interfag¢e; (nat)’]. When
we restrict the channel, to obtain the proces@ aja!(1), 4. Type Soundness

all a capabilities will be removed from the intade; the 4.1. Subject Reduction

restricted process has the empty interfateThe general The results in Lemma 3.1 have natural generalisations to
rule is formulated as (Rs) whereTt/a denotes the result oyr typing systeml + P : a. The details are available in

of erasing all occurrences affrom 1. This erasure opera- [38], but here we show one instance, Channel Narrowing.
tor on types is defined formally in Figure 8. For example,

[a:(nat)?]/a=]], and[b:(a: (nat)®)?]/a= [b:{)°]. Lemma4.1 Assumea ¢ fn(P). ThenT a:o,I"’ FJ:a
Hence, in appropriate environments,a)al(1) has a type implies I',T'/at-J:a/a, ad I,a:0,l"+P:a implies

[] and(va)b!(al(1)) has a typéb: ()°]. r.r'/akP:a/a O
Example 3.6 We revisit Example 2.2. First the successor The following result which states, informally, that well-
service is annotated as: typedness is preserved by substitution of appropriate values

for variables, is the key result underlying Subject Reduc-
tion. This also guarantees that substitution, which usis
where the types ensure that this process only receives théts definition, is always defined when applied to well-typed
output capability on the return chanrel Let A;, be an terms.

environment defining these return channels; in this case it o _
mapsra, r1s andrzs to the same typéint)°. Let og be a Lemma4.2 (Substitution Lemmapssumel -V :1. Then

type (int, (int)®)° andts: be a type for scripts: rx:1,l"FP:a implies T,T'{V/x} - P{V/x}:a{V/x}.
(s:0s) = (P:0s) — [S:0s, P: Os, A] Theorem 4.3 (Subject Reduction)

Succ(a)<= *a?(y: int,z: (int)?) Z(succ(y))

So these are abstractions which, when applied to appropri- ¢ -P:1 ad P=P imply I+~ P 1.

ate names, generate processes which can at most use those

names for output, together with the return channels, alsofor ® /f T=P:p and P—P', then[=P :p. =
output only. Using subsumption we can form the judgement 4.2. Type Safety

S:0s, P:0s, Ar b Pat[s:0s pi0s A] Our typing system is an extension of that for #healculus

whereP, denotes the body of the script sentdy, namely from [9] and that for thet-calculus from [26]; consequently

(ve)sl(k, c)c?(2) sl(z, c)Fu(cra). By channel abstraction we it guarantees the absence of the typical run-time errors asso-
therefore have ciated with these languages. Rather than duplicate the for-

mulation of these kinds of errors, which involves the devel-
opment complicatethgging notation, here we concentrate
That is the value sent by the client is indeed typed as a scripton the novel run-time type errors which our typing system
Now let Ay denote the environmertreq : (Tsc)®, A} can catch.
Then we can form the judgement Intuitively I' = P : 11 should mean that, assuming the en-
) vironmentl", the proces® satisfies thenterface . If tis
Do Ca(req) - [Aq] the undifferentiated typproc then, viewed as an interface,
and a similar judgement can be made @. it provides no information. However if it has the fofA]
This judgement gives detailed information about the re- this means tha® can useat most the resources mentioned
sources known to the clients. For example it says that thein A; moreover these resources can only be used according
clients do not need to know the locations of the actual inter- to the capabilities they are assignediinA simple formal-
faces of the various services; indeed it only needs to knowisation of this intuitive idea is given in Figure 9, using a
that of the server, req, together with the return channels. unary predicat® =% The first two clauses are the most

A FA(S:05,P:0s).Pa: Tse

0-7695-0725-5/00 $10.00 ® 2000 IEEE

a?2X1:Te, . X Tn)P 28 ifMH[a: (ty,...,T) < T
al(Vy, ..., VoP 8o ifnotwithl -V

st.rEla:(tg,...,)] <1

Pi—wa:o’ er Pﬂer OrQrJer Pﬂer

(va:o)p Lava, P|Q LT « P LI

Figure 9. Run-time errors

significant. The first says that, relative lio P violates the
interfacertif it can input on the channel but the interface
1t does not assign any input capabilitydpthe second is
similar, but for output. Combining these rules, we can also

o satisfiesP; Ry P, implies Py i < P> U and

Pllo < PollowherePll &3P PP AP =

(vE)(@aAx)R|R) with a¢ {€}. Similarly forP |} .
Let ~I; denote the correspondirsgong relation. O
We can establish expected identities such as:

Proposition 5.2 (1) (Garbage collectior ~, 0.
(2) (Beta-reductionfAx.P)V ~I; P{V/X}. i

Note (1) is a more general garbage collection law than the
standard one defined with the conditimiP) = 0; for ex-
ample, we can provey aj(a?(X) 0]al(b?(Y) P)) is equiva-
lent toO.

Next we show our fine-grained types also allow us to
give a simple, and clean, definition ifggers which have

derive the following communication runtime error between Proven to beimportantin the theory of the higher-order pro-

input and output:

a?(X1:TL, . X Tn)P | @l(Ve, ..., Vi) Q 10

if there is not| such that™ -1 <1 andl FV; : 1{. The

cesses, as well as tmecalculus [26, 29].

Definition 5.3 We saya is (only) used as drigger in P
underl if there existd such thaf - P:[A],andifa:c€ A,
theno = &. O

meaning of the above error is easily understood when WENote that the above definition is considerably simpler than

consider the following example:

a?(x:(A)) Plal(R) QLB if TI/R:[A].

This says if the input process gets the prodessich does
not conform the interfacef”, then a runtime error occurs.

Theorem 4.4 (Type Safety) If [+ P:mthenP L0, O

5. Typed Behavioural Semantics

that given in [26] (c.f. Definition 5.3.1, pp.433).

Proposition 5.4 (Higher-order replication)Assune a is
only used asatrigge inP, Q ardR unde . Then:

(va:o)(P|Q| *a?(X1:T1,...,%:Tn).R)
~r(vaio) (Pl xa X1, .., %: Tn).R)
[(va:o)(Q|*a?2(X1:T1,..., % Tn).R) O

Again this is a non-trivial generalisation of the correspond-
ing result in [29], Theorem 4.3.3; thera™is only allowed

Types constrain the behaviour of processes and their envii0 appear syntactically as output subjects. The following
ronments and consequently have an impact on when theirfqrwarder equallt_y is one useful extension from [16] to the
behaviour should be deemed to be equivalent. Typed be-Nigher-order setting.

havioural equivalences have already been investigated forProposition 5.5 (Forwarder [16]) Assume a is used asa

various process calculiin papers such as[19, 14, 26, 27, 36] trigger inP, b+ a and Fw is the forwarder defined in Section
We contend that the existence of the fine-grained process; - (a:0)(P| Fu(ab)) ~; P{b/a}. o.

types facilitates the development of typed behavioural theo-
ries; more importantly they enable us to state and prove gen-

Finally we illustrate the usefulness of these general

eral theorems about these equivalences which are extremelydentities by applying them to the analysis of the system
useful for establishing identities. Due to space limitations discussed in Example 3.6. L8ys denote:

in this section we merely outline our results in this area.
A family of relationsR over process terms, ranged over

(vregs,p)(Calreq)| Ca(req)| Servi(regs, p)| Succ(s) | Pred(p))

by closed type environments and process types, is said to béntuitively in this closed system the two clients make three

atypedrelationif P, R,r-[P,, impliesl F Py : tandl - P, : Tt.

Note that the relation is parameterised by not only environ-
mentl” but also interfacet. The following definition uses

the notation from [17, 26, 36].

Definition 5.1 Let m,r-[denote the largest typed relation

which:

e is a typed congruence

« is closed under reductions: whene®R; Q, P ——P'
implies, for someY, Q ——Q and PR Q.

0-7695-0725-5/00 $10.00 ® 2000 IEEE

specific requests of the distributed server. So we have:

S
~Te (vreqs p)(Calred)| Servi(reqs, p)| Suca(s)| Pred(p))
| (vreas, p)(Ca(red | Servi (reqs, p)| Suco(s)| Pred(p))
Nr-r[rA!<k—|— 2> | rBl!<n—|— 1> | r32!<m— 1>

The first equation is an instance of Proposition 5.4 (since by
Tsc Which annotates variabl¢ in Serv,(reqs, p), we can
checksandp are used as a trigger in the server). Note that
s and p appear as values, hence they may be used both as
output subjects and objects in the interface server; therefore

our generalised version of this theorem is required. The There s asimilar loss of information in typing restricted
second equation requires Proposition 5.2. processes(va)P. For example the procegs a)b!(al(1))
Further investigation of our typed equivalences is an in- can be assigned, in an appropriate environment, the type
teresting research topic, particularly in its application to the [b:{)°] which intuitively says thab can output a (thun-
refinement of the context equality of [29]. ked) process which has the empty interface. This type is of
limited interest when used in context. For example consider

(va)bl{al(1)) |b?2(X : T) run X

Here essentially the only the possibility fois the type
(proc). But we should be able to say thatan output a
Distributed Higher-order -calculus Type Safety The- (thunked) process which contains sommknown channel
orem means that our typing system can be used to ensur@ame of type(nat)?, and the input type associated with
various kinds ohost security; that is, protecting hosts from p should be able taccommodate such constraints. Some
untrusted imported code. In the full version of this paper, form of existential quantification over types may be appro-
[38], we discuss this issue more explicitly, by extending priate butintegrating such a construct into the type language
our typing system to the distributed versioniat,, given is also a non-trivial task.
in [37]. Once more the expressiveness of our fine-grained
types means that, for example, channel locality, [37], can
easily be enforced; specifically there is no requirement to
annotate higher-order values as besagdable. A similar

6. Conclusion

This Section concludes the paper with extensions, further
issues and related work. For more details, see [38].

Related work We have already made reference to the ex-
tensive literature on typing for the-calculus and related
processes. In developing our fine-grained type system we

problem appears with type systems for thealculus in- have been guided by the polymorphiecalculus [9, 6],
volving arrow and reference types, [24]. We hope that an Where type variables play an important role; as with our
extension of our scheme to higher-order functional sharedchannel names they may appear, and be bound, both in
variables (i.e. passing environmentscas types) will also terms and types. However there is an essential technical
be useful in this setting. difference: channel instantiation in our system can result

in dynamic changes to the types annotating a term. Chan-
More type constructors One beneficial pointof ourtyp- nels are exchanged as values between processes but they
ing system is that it is relatively straightforward to ex- also appear as interaction points in the types of processes.
tend our set of types with many of the standard con- On the other hand, type variables of the polymorpkic
structs from the literature for both thecalculus and the calculus are instantiated by types (m) whereas in our
recalculus; these include recursive types [4, 21, 33, 26], case channel variables occurring in types are instantiated
record types [9, 32], polymorphictypes [6, 27], linear/affine by channels, not by types. This feature necessitated the de-
types [19, 5, 13, 36], and dynamic types [2, 28]. An ex- yelopment of new concepts of well-formed type, subtyping,
tension of our capability based typing systems to more ad-well-formed substitution, etc., independent of those devel-
vanced distributed primitives, especially to constructs in- gped in the context of the-calculus.
VOIVing SeCUrity [1, 11, 15, 35] would be more Challenging. Pierce and Sangiorgi [27] recenﬂycw]'osed a p0|ymor-
Type limitations One limitation of our typing system is phictecalculus and used a refined typed behavioural equi_v-
that, while name variables in types can be abstracted byale_nce to reason about concurrent abstract data types. Since
channel dependency typ¢g: o) — p of the channel- the_|r polymorphlctypes are based on those of the po_Iymor-
abstractiom\(x: o) P, a similar abstraction is not allowed PhicA-calculus (that is they abstract ougpe variables via
when we bound name variables by input pref®x: o) P. the operatos), they are quite (_Jllfferentfrom ours. I_n part|(_:-
The result is that there is a loss of information in many of Ular they do not address the issue of assigning fine-grained
the types we can assign to processes. A typical example idYP€S 0 processes. _ _
the process?(x) b!(x!(v)). In the current system this can For sequential computations, Tofte and Talpin have de-
only be assigned a process type in wHidtas the capabiliy ~ Veloped the effect typing system [31], and Tang and Jou-
to output values of the undifferentiated tyfyeroc). velot developed its subtyping system [30]. This was re-
Clearly some form of channel abstraction would be C€ntly applied to Facile by Kirli [18F. One may think our
needed to give a more informative type but it is difficult to dePendency types correspond to her region polymorphism.
see how this might be formulated. One problem here is that, Fowever, again her typing system is different from ours
unlikeB-application, value receptionisndeterministic. In ~ Since she adds the original effect system to the functional
the composed term types; hence all process has a constant typi¢ and chan-
nels cannot carry nested effects. More precisely, the effect
a?(x) bl{xI(v)) | al{c) | al(d) types in [31, 30] are used to represent the region allocation

the particular channet,ord which is bound txdepends on ~ OF €ffects of values during-reduction, while our process
which message is delivered to the waiting process. IndeedtyPes are used to represent interaction effects between con-

the residual, after receivmg anpUt' may take one of the 1Kobayashi, Nakade and Yonezawa also applied the effect typing sys-
(incomparable) typelb: (c:0)°] or [b: (d:0)°]. tem to a concurrent logic programming in [20].

0-7695-0725-5/00 $10.00 ® 2000 IEEE

current processes. Hence an integration of the effect typing
system of the\-calculus and the 10-subtyping system of
the r-calculus would have difficulty in expressing the kind [16]
of constraints guaranteed by our typing system.

De Nicola, Ferrari and Pugliese studied a subtyping sys-[17]
tem for a language based on Linda [7], and showed that it
is used to control the mobility of agents. In their language, [1g]
each located process is equipped with different caipials
(read, input, our, eval and newloc) rather than the unique[;g)
process type, which is similar to our framework. However
their calculus is based on CCS rather than thealculus
and our form of process types based on |O-subtyping and
A-subtyping are not considered in their formulation.

[20]

21
Acknowledgements We thank Kohei Honda, Dilsun 1211

Kirli, Naoki Kobayashi, Didier Rmy, Vasco Vasconcelos,

; . 22
and anonymous referees for their comments and dISCUS-[]
sions. 23]

[24]
References
[1] Abadi, M., Secrecy by Typing in Security Protocols, [25]

TACS 97, LNCS 1281, pp.611-638, Springer-Verlag, 1997.

[2] Abadi, M., Cardelli, L., Pierce, B. and Plotkin, G., Dynamic
Typing in a Statically Typed Languag@OPLAS, 13(2),
pp.237-268, 1991.

[3] Amadio, R., Translating Core Facile, ECRC Research Re-
port 944-3, 1994.

[4] Amadio, R. and Cardelli, L., Subtyping Recursive Types,
TOPLAS, 15(4), pp.575-631, 1993.

Cardelli, L. and Godon, A., Typed Mobile Ambients,
POPL’99, pp.79-92, ACM Press, 1999.

Cardelli, L., Martini, S., Mitchell, J. and Scedrov, A., An ex-
tension of system F with subtypinignfo. & Comp., 109(1):4-
56, February 1994.

De Nicola, R., Ferrari, G. and Pugliese, R., Klaim: a Kernel
Language for Agents Interaction and Miitl, IEEE Trans.
on Software Engineering, Vol.24(5), 1998.

Fournet, C., Gonthier, G., &vy, J.-J., Maranget, L., and

[26]
[27]
(28]

[29]
5]
[6] [30]

[31]
[7]
[32]

(8]

33

Rémy, D., A Calculus for Mobile AgentsCONCUR' 96, [33]
LNCS 1119, pp.406—-421, Springer-Verlag, 1996.

[9] Gunter, C.,Semantics of Programming Languages. Struc- [34]

turesand Techniques, MIT Press, 1992.

Java, Sun Microsystems Inc., http://www.javasoft.com/.

Heintze, N. and Riecke, J., The SLam Calculus: Program- [35]

ming with Secrecy and IntegrityPOPL'98, pp.365-377.

ACM Press, 1998.

[12] Hennessy, M. and Riely, J., Resource Access Control in Sys-[36]
tems of Mobile Agents, CS Report 02/98, University of Sus-
sex, http://www.cogs.susx.ac.uk, 1998.

[10]
[11]

[37]
[13] Honda, K., Composing Processé¥)PL’'96, pp.344-357,
ACM, 1996.
[14] Honda, K., A Theory of Types for the pi-calculus, [38]

pp.112, Typescript. November, 1998. Available at

http://www.dcs.gmw.ac.uk/~ kohei.
[15] Honda, K., Vasconcelos, V. and Yoshida, N, Secure Infor-

0-7695-0725-5/00 $10.00 ® 2000 IEEE

mation Flow as Typed Process Behavide8DP' 00, LNCS
1782, pp.180-199, Springer, 2000.

Honda, K. and Yoshida, N., Combinatory Representation of
Mobile Processe®OPL’ 94, pp.348-360, ACM Press, 1994.
Honda, K. and Yoshida, N., On Reduction-Based Process Se-
mantics.TCS, pp.437-486, No.151, North-Holland, 1995.
Kirli, D., A static type system for detecting potentially trans-
missible functions, ECOOP Workshop MOS’99, 1999.
Kobayashi, N., Pierce, B. and Turner, D., Linearity and the
pi-calculus POPL’ 96, ACM Press, 1996.

Kobayashi, K., Nakade, M. and Yonezawa, A., Static analy-
sis of communication for asynchronous concurrent program-
ming languagesSAS 95, LNCS 983, Springer, 1995.

Milner, R., PolyadiatrCalculus L ogic and Algebra of Spec-
ification, Springer, 1992.

Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mo-
bile Processesnfor. & Comp., 100(1), pp.1-77, 1992.

Necula, G., Proof-carrying codeOPL’ 96, ACM, 1996.
O’Hearn, P., Power, J., Takeyama, M., and Tennent, D., Syn-
tactic control of interference reviseMFPS 97, ENCS, EI-
sevier, 1997.

ObjectSpace Inc. ObjectSpace Voyager
http://www.objectspace.com/voyager.

home page,

Pierce, B.C. and Sangiorgi. D, Typing and subtyping for mo-
bile processed/SCS, 6(5):409-454, 1996.

Pierce, B.C. and Sangiorgi. D, Behavioral Equivalencein the
Polymorphic Pi-calculus?OPL’ 97, ACM Press, 1997.

Riely, J. and Hennessy, M., Trust and partial typing in open
systems of mobile agent80OPL’99, ACM Press, 1999.
Sangiorgi, D., Expressing Mobility in Process Algebras:
First Order and Higher Order Paradigms. Ph.D. Thesis, Uni-
versity of Edinburgh, CST-99-93, 1993.

Tang, Y.-M., and Jouvelot, P., Effect systems with subtyping,
PEPM’ 95, ACM Press, 1995.

Tofte, M. and Talpin, J.-P., Region-based memory manage-
ment,Info. & Comp., 132(2)109-176, 1997.

Vasconcelos, V., Typed concurrent objecEBCOOP’ 94,
LNCS 821, pp.100-117. Springer-Verlag, 1994.

Vasconcelos, V. and Honda, K., Principal Typing Scheme for
Polyadicr-Calculus CONCUR 93, LNCS 715, pp.524-538,
Springer, 1993.

Vasconcelos, V., Lopes, L. and Silva, F., Distribution
and Mobility with Lexical Scoping in Process Calculi,
3rdHLCL, ENTCS16(3), Elsevier, 1998.

\Volpano, D. and Smith, G., Secure information flow in a
multi-threaded imperative teyuage, pp.355-368R0PL’ 98,
ACM, 1998.

Yoshida, N., Graph Types for Monadic Mobile Processes,
FST/TCS 16, LNCS 1180, pp. 371-386, Springer, 1996.

Yoshida, N. and Hennessy, M., Subtyping and Locality in
Distributed Higher Order Process€30ONCUR' 99, LNCS
1664, pp.557-573, Springer, 1999.

The full version of this paper, CS Technical Re-
port 02/99, University of Sussex, Available at:
http://www.mcs.le.ac.uk/nyoshida, Nov, 1999.

