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Abstract

In wide area distributed systems it is now common for
higher-order codeto be transferred from one domain to an-
other; the receiving host may initialise parameters and then
execute the code in its local environment. In this paper we
propose a fine-grained typing system for a higher-order π-
calculus which can be used to control the effect of such mi-
grating code on local environments. Processes may be as-
signed different types depending on their intended use. This
is in contrast to most of the previous work on typing pro-
cesses where all processes are typed by a unique constant
type, indicating essentially that they are well-typed relative
to a particular environment.

Our process type takes a form of an interfacelimiting
the resources to which it has access, and the types at which
they may be used. Allowing resource names to appear both
in process types and process terms, as interaction ports,
complicates the typing system considerably. For the devel-
opment of a coherent typing system, we use a kinding tech-
nique, similar to that used by the subtyping of the system F,
and order-theoretic properties of our subtyping relation.

Various examples of this paper illustrate the use of our
fine-grained typing system for distributed systems. As a spe-
cific application we define a new typed behavioural equiva-
lence for the higher-order π-calculus. The expressiveness of
our types enables us to state and prove interesting identities
between typed processes.

1. Introduction

Background In the distributed computing environments
nowadays, it is common forhigher-order code to be trans-
ferred from one domain to another [10, 23, 25]. This is
recognised as dangerous and various schemes have been put
forward to ensure the integrity of systems in the presence of
such operations. In this paper we propose a newsubtyping
system which can be used to control the effect of migrating
code on local environments. Our investigation is in terms
of a higher-orderπ-calculus in which values, including pro-
cess terms, can be exchanged along communication chan-
nels [3, 29, 37]. We believe that our typing system can be
readily adapted to related location based distributed calculi

such as [5, 8, 18, 12, 28, 34].

Higher-Order Processes The language we consider,λπv,
is essentially a call-by-valueλ-calculus [9] augmented with
theπ-calculus primitives [22]. For example,

c?(x : τ) f x (1)

is a process which inputs a value of typeτ on channelc
and applies to it the functionf . This process will be well-
typed only in an environment in which the channelc has the
capability to input values of typeτ, written c : (τ)I, and f
denotes a function of type(τ ! proc); here, as in [26, 37],
we useproc to denote the type of processes.

As usual we allow as values arbitrary abstractions, but
much of the descriptive power ofλπv comes from the ability
to form values by abstracting over processes. For example
(unit! proc) is the type ofthunked processes; we use
this type so frequently that we will abbreviate it tohproci.
Values of this type, of the formλ(x :unit):P, will also be
abbreviated tohPi. Such values can be exchanged between
processes and subsequently executed, by applying the func-
tion λy:y(); again for the sake of clarity we userun to de-
note this function. So in (1) above, ifτ is the thunked type
hproci and f is the functionrun, the process may input a
thunked processhPi on channelc and execute it.

In papers such as [3, 21, 26, 27, 33, 37] typing systems
have been suggested which ensure that programs written in
λπv-related languages are well-behaved. The main judge-
ments normally take the form

Γ ` P : proc

indicating that the termP is a well-typed process relative
to the typing environmentΓ. Here Γ is a mapping from
channel names or variables to input/output capabilities or
value types;Γ(c) determines the type of values which chan-
nel c may transmit/receive. Thus “c?(x : τ) f x” in (1), will
be well-typed in any environmentΓ which allowsc the in-
put capabilityhproci, assuming of course thatf is also
a well-typed expression of typehproci ! proc, such as
Γ � fc : hprociI; f : hproci ! procg.

However such typing offers limited control to programs
over the code which they download for execution. To em-
phasise this point let us consider an example. First we de-
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fine the abstractionFw (called aforwarder in [16])

λx λy (� x?(z :int) y!hzi)

which repeatedly inputs some value of a typeint on chan-
nel x and outputs it immediately ony. If the channelsa; b
are assigned suitable types then both the valueshFw(ab)i
andhFw(ba)i have typehproci and thus may be sent along
channelc to a process such as

c?(x : τ) run x (2)

But accepting these processes for execution confers on the
incoming code differentaccess rights. In the first case the
incoming code is allowed to read from channela and write
to channelb while in the second case these rights are re-
versed. Typing systems in which code can only be assigned
the undifferentiated typeproc do not provide any mecha-
nism for limiting the effect of incoming code.

Typing processes In this paper we extend the typing sys-
tems of [37, 26, 12] by allowing processes to have types
which bound the resources which they may use. The basic
idea is straightforward. For processes inλπv we will allow
judgements of the form

Γ ` P : [∆ ]

where∆ is a finite environment, mapping channel names
to capabilities. Intuitively this means that relative toΓ the
term P denotes a well-defined process which usesat most
the resources in the domain of∆; moreover their use is in
accordance with the capabilities given in∆. Thus the type
[∆ ] may be viewed as a processinterface.

For example let∆ab; ∆ba denote the environments

fa : (int)I;b : (int)Og; fb : (int)I;a : (int)Og

respectively where(int)I and (int)O represent the input
and output capabilities of a typeint. Then, for a suitableΓ
we will be able to derive the judgements

Γ ` Fw(ab) : [∆ab ] and Γ ` Fw(ba) : [∆ba ]

These more discriminating types for processes allow pro-
cesses to be, in turn, more discriminating in the type of val-
ues which they will accept. Thus

c?(x : h∆abi) run x

indicates that it is only willing toaccept processes for ex-
ecution if they at most read from resourcea and write to
b. Let us denotec!hPi for an output process which sends a
thunked processhPi to a channelc. Thus, for example, a
process

c!hFw(ab)i j c?(x : h∆abi) run x

is well-typed while

c!hFw(ba)i j c?(x : h∆abi) run x

is not; the (thunked) processhFw(ba)i is not acceptable
alongc as it does not conform to theinterface decreed by
the host,∆ab.

This ability to constrain the effect of imported code
means that host processes can maintain the consistency of
local resources. For example consider the following exam-
ple: nesting process types give even further control over
code behaviour.

�req?(y : h∆ci)(run y j c?(x : h∆ai)(run x j a?(z : int)P))

whereh∆ai denotes the typeha : (int)Oi andh∆ci denotes
hc : h∆aiOi. The annotated types ensure that (1) the code
downloaded on the request channelreq can only access the
resourcec, (2) c can only be used to transmit code which
can at most access resourcea, and (3) all communications
to a will be serviced bya?(z :int)P.

Channel abstractions In λπv processes are also allowed
to downloadabstracted code; code in which resource pa-
rameters may be instantiated by the host process before the
code is executed. A simple example is the abstractionFw

used above. Consider the server

� s?(z)z!hFwi

which continually supplies the abstractionFw to requesting
clients. A specific client, such asR defined by

s!hci c?(y) (y a b);

can downloadFw and instantiate it with particular channels,
such asa; b. Thus in the presence of the serverR will evolve
to a process which should have a type of the form

[a : (int)I;b : (int)O; : : :]

Other processes which instantiateFw differently will evolve
to processes with different types. For exampleS defined by

s!hci c?(y) (y b a);

will evolve to a process with a type

[b : (int)I;a : (int)O; : : :]

However it is difficult to see how to give a type to the ab-
stractionFw which ensures thatR andS are assigned such
types. Within our current system of types it would be natu-
ral to assign toFw a functional type of the form

(int)I ! (int)O ! π

for some process typeπ. If π is the undifferentiated type
proc then bothR and S would inherit this uninformative
type. Otherwiseπmust assign some definite capabilities to
a andb and assuming that typing is preserved under Subject
Reduction these capabilities would be inherited byR andS.
That is, they would have the same capabilities on the two
resourcesa andb, contrary to our requirements.

Our solution is to introduce a new form ofdependent
functional type

(x :σ)! ρ

Hereσ is a channel type and we allow the typeρ to contain
occurrences of the channel variablex. (These occurrences
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of x in ρ are bound occurrences in(x : σ)! ρ.) Thus the
abstractionFw will be assigned the type

(x : (int)I)! (y : (int)O)! [x : (int)I;y : (int)O ]

where the result type of the process depends on the type of
the abstracted variables.

Results In this paper we formulate a fine-grained subtyp-
ing system for the higher-orderπ-calculus following the ba-
sic ideas mentioned above. This results in a simple, but non-
trivial, extension of the IO-subtyping forπ-calculus [26] to
the higher-order setting. The main technical results can be
summarised as follows.

1. First, we design a novel notion oftype for the higher-
orderπ-calculus, in which process have types corre-
sponding tointerfaces. Because type variables appear
both in program terms and in types (in particular the
types of processes), the formal definition of what con-
stitutes a valid term and a valid type are interdepen-
dent and both in turn require a careful definition of
even a valid typing environment. An analogous, al-
beit somewhat simpler, situation arises in subtyping
for the polymorphicλ-calculus [6]. We clarify tech-
nical similarities and differences between the two typ-
ing systems. Although some techniques developed for
the λ-calculus are useful in the current setting, novel
concepts are required for process types.

2. Second, we propose a typing system in which many
higher-orderπ-calculus processes can be assigned
non-trivial interface types. We prove its soundness
(Subject Reduction Theorem) and also establish a Type
Safety Theorem, which ensures that no well-typed pro-
cess can input higher-order code which does not con-
form the local interface of that process.

3. Finally we define a new typed behavioural equivalence
for the higher-orderπ-calculus. Our fine-grained types
enable us to establish general, and useful, process iden-
tities. Their application is illustrated on an example
distributed system.

Outline of the Paper Section 2 introduces the types, syn-
tax and a reduction semantics ofλπv. Section 3 proposes the
new typing system ofλπv and demonstrates its expressive-
ness by typing the example in Section 2. In Section 4, we
prove Subject Reduction and Type Safety Theorems. Sec-
tion 5 briefly studies the typed behavioural equalities. Fi-
nally Section 6 concludes the paper with further issues and
related work. Due to space limitations, the proofs and many
examples, including a further application to a distributed
higher-orderπ-calculus, are left to the full version [38].

2. A Higher-order Process Language

Types The collection of types is a straightforward exten-
sion of that from [37]; The formal definition is given in Fig-
ure 1; this assumes a set of base types such asunit andnat,

an infinite set of channel ornames N, ranged over bya;b; :::,
and an infinite set ofvariables V, ranged over byx;y; ::. For
the sake of clarity we will sometimes useX ;Y; : : : as vari-
ables, whenever we intend them to be substituted specifi-
cally by higher order values rather than channels.

Channel types are as in [37], in turn an elaboration of
the IO-types of [12, 26]; they take the formhSI;SOi, a pair
consisting of aninput sort SI and anoutput sort SO; these
input/output sorts are in turn either a general value type or
>, denoting the highest capability, or?, denoting the low-
est; as explained in [37] the representation of IO-types as a
tuple [13, 12] makes the integration with the arrow types of
theλ-calculus more natural. Moreover the IO-types of [26]
can also be represented as a special case of our IO-types,
using the abbreviations given in Figure 1.

There are three kinds of value types: base types, channel
types as already explained or HO-value types, ranged over
by σH . These can be formed using either of the functional
type constructors,σH ! ρ or (x : σ)! ρ, whereρ in turn
is either a HO-value type or a process type. Process types
can either be the constantproc (also denoted� in [26]), or
a type environment[∆ ] where∆ is a mapping fromN[V
to channel types; the formation rules for environments are
also given in Figure 1.

Example 2.1 (Types)

(1) The nil process, with no capabilities, has the type[ ].

(2) A process which can outputnat at a and inputbool at
b has the type[a : (nat)O;b : (bool)I ].

(3) A HO process which can output a thunked value of
type (2) atc has the type[c : ha : (nat)O;b : (bool)IiO ].

(4) A higher order identity function over thunked values
of type (2) has the type
ha : (nat)O;b : (bool)Ii ! ha : (nat)O;b : (bool)Ii.

(5) A dependent function which is applied to some namea
and constructs a process of type[b :(nat)I;a :(nat)O ]
has the type(x : (nat)O)! [b : (nat)I;x : (nat)O ].

Syntax The syntax for terms in the languageλπv is given
in Figure 2. It is essentially the same as that used in [37]
except that we use the more expressive types, from Fig-
ure 1. We use the standard notational conventions, for
example ignoring trailing occurrences of the empty pro-
cess0 and omitting type annotations unless they are rele-
vant. We also define the notions of free namesfn(P) and
free variablesfv(P) of terms which may appear in the an-
notated types. The formal definitions are available in the
Appendix of [38], but as an examplefv(u?(x1 : τ1; :::;xn :
τn)P) = fv(u)[ fv(τ1)[ :::[ fv(τn)[ fv(P)�fx1; :::;xng:

Reduction Semantics The termP is called aprogram if
it contains no free variables, i.e.fv(P) = /0. The reduction
semantics is given in terms of a binary relation

P�!Q

between programs and follows the standard approach from
[22, 26, 29]; the formal definition is given in Figure 3 and
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(Type) α;β;γ; ::: (Environment) (Abbreviation)

Term: ρ ::= π j σH

Base: σB ::= unit j nat j � � �
Process: π ::= [∆ ] j proc
HO Value: σH ::= σB j σH ! ρ j (x :σ)! ρ
Channel: σ ::= hSI;SOi
Value: τ ::= σH j σ
Sort: S ::= (τ1; :::; τn) j> j ?

Channel:
∆ ::= /0 j ∆;u :σ

General:
Γ ::= /0 j Γ;x : τ j Γ;a :σ

input only: SI
def
= hS;?i

output only: SO
def
= h>;Si

input/output: SIO
def
= hS;Si

thunk type:h∆i def
= unit! [∆ ]

Figure 1. Types

(Term) (Identifier) (Literal)

P;Q; ::: ::= V value
j 0 nil
j P jP parallel
j u!hV1; :::;VniP output
j u?(x1 : τ1; :::;xn : τn)P input
j �P replicator
j (ν a :σ)P restriction
j PP application

u;v;w; ::: ::= l literal
j x;y; z; ::: variable
j a;b;c; ::: channel

(Value)

V;W; ::: ::= u;v;w; ::: identifier
j λ(x : τ)P abstraction

l; l 0; ::: ::= () unit
j 1;2;3; ::: number

(Abbreviation)

hPi
def
= λ(x :unit)P thunk

run
def
= λ(x :unit! π)x ()

Figure 2. Syntax

(Reduction)

(β) (λ(x : τ)P)V �! PfV=xg

(appr)
Q�!Q0

PQ�! PQ0
(appl) P�! P0

PV �! P0 V

(com)a?(x1 : τ1; :::;xn : τn)P j a!hV1; :::;VniQ

�! PfV1; :::;Vn=x1; :::;xng j Q

(par) P �! P0

P jQ�! P0 jQ
(res) P �! P0

(ν a :σ)P�! (ν a :σ)P0

(str) P� P0 �!Q0 �Q
P�!Q

(Structure Equivalence)

� P� Q if P�α Q.
� P jQ � Q jP (P jQ) jR � P j (Q jR) P j0 � P
�P � P j �P

� (ν a :σ)0 � 0
(ν a :σ)PjQ � (ν a :σ)(PjQ) if a 62 fn(Q)
(ν a : σ)(ν b : σ0)P � (ν b : σ0)(ν a : σ)P if a 62 fn(σ0)
andb 62 fn(σ)

Figure 3. Reduction

should be understandable to those familiar with either the
π-calculus or theλ-calculus. It uses the standard structural
equivalence� of the π-calculus; the axioms for� is also

given in Figure 3. We also use!!to denote the multi-step
reduction. The main rules areβ-reduction, (β), and com-
munication (com). Both these require a definition of substi-
tution of values for variablePfV=xg, which we have yet to
define. Complications arise when the value to be substituted
V is a channel name and is best explained with an example:

λ(x : (int)IO):λ(Y : hx : (int)I;a : (int)Oi)

(run Y jx!h1i ja?(z) r!hzi) (3)

This function first takes some channel, sayb, then takes a
thunked process with ab-capability and ana-capability, sets
it running and interacts with it viaa andb. Suppose that it
is applied to the specific channelb. Intuitively this means
substituting the valueb for free occurrences of the bound
variablex in the body of the function. If the substitution
ignores types in the body of the function, we get

λ(Y : hx : (int)I;a : (int)Oi)(run Y jb!h1i ja?(z) r!hzi)

which is not even a program; it contains an occurrence of
the free variablex. The proper definition of reduction re-
quires thatb is also substituted into the types occurring in
the body of the function, to give the program

λ(Y : hb : (int)I;a : (int)Oi)(run Y jb!h1i ja?(z) r!hzi)

This also makes sense as this now constrains the function to
be only applied to processes which have ab-capability.

The formal definition of value substitution into terms,
PfV=xg, is defined inductively on the structure of terms.
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>fv=xg=> ?fv=xg=?
σBfv=xg = σB procfv=xg = proc

hSI;SOifv=xg = hSIfv=xg;SOfv=xgi,
(τ1; :::;τn)fv=xg = (τ1fv=xg; :::; τnfv=xg)
(σH ! ρ)fv=xg = σHfv=xg! ρfv=xg

((y :σ)! ρ)fv=xg = (y :σfv=xg)! ρfv=xg (x 6= y)
[∆ ]fv=xg = t[wfv=xg :σfv=xg ] (w :σ2 ∆)

Figure 4. Name Substitution into Types

The following is one instance for an input process:

u?(x : τ) PfV=xg
def
= ufV=xg?(x : τfV=xg) PfV=xg

However this instance uses the substitution of values into
types,τfV=xg. If V is anything other than a channel name
or variable this is the identity. So we need only define the
substitutionτfv=xg, wherev is a channel or channel vari-
able; this is defined in Figure 4.

This definition of substitution into types is for the most
part straightforward, with one exception which can be ex-
plained using the example function (3) above. If this is ap-
plied to the namea we would expect to get the result

λ(Y : ha : (int)IOi)(run Y ja!h1i ja?(z) r!hzi)

sincea is allowed to have an input/outputcapability(int)IO

in the body. In other words the substitutionof the namea for
x in the typehx : (int)I;a : (int)Oi should beha : (int)IOi.
This is reflected in the final clause in Figure 4:

[∆ ]fv=xg= t[wfv=xg :σfv=xg ] with w :σ2 ∆

Heret is an operator on types which intuitively acts like
a (partial) least upper bound with respect to a yet to be
defined subtyping order on types. The following are simple
examples oft on process types, which may be sufficient to
read this paper; roughly speaking,t calculates the union
of the accessibility rights of two processes. (The formal
definition is available in the Appendix in [38].)

[a : (int)I ]t [b :(int)O ] = [a : (int)I;b : (int)O ] and
[a : (int)I ]t [a :(int)O ] = [a : (int)IO ]

Now we can analyse the substitution on types in the above
example by the following equations.

[x : (int)I;a : (int)O ]fb=xg
= [xfb=xg : (int)I ]t [a : (int)O ] = [b : (int)I;a : (int)O ]

[x : (int)I;a : (int)O ]fa=xg
= [xfa=xg : (int)I ]t [a : (int)O ] = [a : (int)IO ]

The properties oft will be discussed in the next section,
when we consider well-typed programs. Note that in gen-
eralt is a partial operator and therefore apriori substitution
is not always defined. However we will see that in properly
typed environments it is always well-defined.

Example 2.2 (Interface server and mobile client code)
A (specific) compute service is a process which given

B

Client

Client

A

req
Interface

Server

pred

succ

service 1

service 2

I

p

s

Figure 5. Interface Server and Distributed Services

some data and a return address, applies some specified op-
eration to the data and returns the result to the address.
For some given namea, let Succ(a) represent the process
�a?(y; z) z!hsucc(y)i, which we write as

Succ(a)(= �a?(y; z) z!hsucc(y)i

This represents a service (forsucc) situated ata. A similar
one for the predecessor function,pred, is defined as:

Pred(a)(= �a?(y; z) z!hpred(y)i

A client may wish a number of operations to be performed
on given data, in a particular sequence, with some data for
later operations depending on results produced by earlier
operations. This situation is given diagrammatically in Fig-
ure 5. Here there is an Interface (I) between clients and the
collection of services or operations on offer. Now a higher-
orderscript is sent to the interface. This script is executed
locally by the interface, which interacts as necessary with
the various services. This protocol puts the computational
onus on the server and avoids repeated interactions between
clients and services. The server at the interfaceI may then
be defined by:

Serv I(req; s; p) (= �req?(X) X s p

It takes in a scriptX , a process parameterised on service
ports, and applies it to the actual port names of the two lo-
cal services, in this cases and p. Note that these actual
names are not known to clients, thereby, in this case, af-
fording some security protection to the server from clients;
all interaction between clients and the server is through the
interface req.

We give two examples of clients requesting services.
Client (A) wants to increment a numberk twice, whereas
the Client (B) wants to evaluate the successor and the pre-
decessor of two different numbersn andm in parallel.

CA(req)(=
req!hλ(s; p) ((ν c)s!hk;cic?(z) s!hz;ciFw(crA))i

CB(req)(=
req!hλ(s; p) (ν cc0)(s!hn;ciFw(c r1B) j p!hm;c0iFw(c0 r2B))i

The forwarders in their bodies are used to relay the final
results to each client on their result channels,rA for Client
(A), andr1B; r2B for Client (B) respectively.
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Putting the clients and server together we have the fol-
lowing parallel composition (Figure 5):

CA(req) j CB(req) j ServI(req; s; p) j Succ(s) j Pred(p)

After a certain amount of reductions,k + 2 is returned to
Client (A) onrA, andn+1 andm�1 are returned to Client
(B) onr1B andr2B, respectively.

3. The Fine-Grained Typing System
3.1. Well-formed Types and Environments

In Figure 6 we present a formal system with three forms of
judgements, all interrelated:

Γ ` Env Γ is a well-formed environment
Γ ` α : tp α is a well-formed type inΓ
Γ ` α � α0 α is less thanα0 in Γ

For convenience we useΓ ` J as a shorthand for any of the
three allowed forms of judgement. The first is designed to
ensure that an identifier can only be used in the construction
of a type if it has already beendeclared in the environment.
For example one can not deduce

y : hx : (nat)Oi; x : (nat)O ` Env

because the variablex is used in the type associated withy
before being introduced. However if they are interchanged
then this does constitute a valid environment:

x : (nat)O; y : hx : (nat)Oi ` Env

This emphasises the fact that our typing system willnot
have an interchange rule; in general being able to form a
judgement of the form

Γ; x : τ; y : τ0; Γ0 ` J

will not necessarily imply

Γ; y : τ0; x : τ; Γ0 ` J

When constructing well-formed environments only
types which are currently well-formed may be used. This
is the purpose of the second form of judgement. So for ex-
ample we can not deduce

Γ; y : hy : (nat)Oi ` Env

To do so we would need to be able to deduce

Γ ` hy : (nat)Oi : tp

This in turn is not possible, basically becausey is not in the
domain ofΓ.

In the rules forΓ ` α : tp one is only constrained to
use identifiers which are already declared in the current en-
vironment. In (t-chan), the conditionSI � SO is necessary
to ensure that readers of a channel receive at most the capa-
bilities given by a sender. There are only two novelties. In
the formation rule for dependent types, (t-absN) the bound
variablex is allowed in the construction of the result type
ρ. Secondly the rule (t-proc) ensures a process always has a
type∆ which does not exceed the current environmentΓ.

Subtyping also plays a role in the formation of environ-
ments. For example we can not deduce

a : (nat)O; y : ha : (nat)IOi ` Env

because the capability associated witha when forming the
type associated withy is not a subtype of that associated
with a in the current environment. For noΓ can we deduce

Γ ` (nat)O � (nat)IO

The rules for subtyping are a straightforward extension of
those given in [37, 26, 12], apart from the necessity to only
use identifiers declared in the current environment. Func-
tion types are contravariant in their first arguments and co-
variant in their second, while, in (s-chan), channel types are
covariant in the input capability and contravariant in the out-
put. Again the only real novelty is the subtyping rule for
process types, (s-proc); this means the ordering of process
types iscontravariant w.r.t. the ordering of [37, 26].

A series of consistency lemmas about this system of
judgements follows. They are invariably deduced by induc-
tion on the derivations in the standard manner. Remem-
ber informallyX ;Y;Z; :::denote variables with higher-order
types, as opposed to channel types.

Lemma 3.1 (1) (Renaming)Suppose u 62 fv(Γ;v; τ;Γ0).
Then Γ; u : τ; Γ0 ` J implies Γ; v : τ; Γ0fv=ug `
Jfv=ug.

(2) (Implied Judgement)Γ; Γ0 ` J implies Γ ` Env and
Γ; u : τ; Γ0 ` Env implies Γ ` τ : tp.

(3) (HO-bound Change)Γ; X :σH; Γ0 ` J and Γ `σ0

H : tp
imply Γ; X :σ0

H ; Γ0 ` J.

(4) (Weakening)Assume Γ; x : τ ` Env and u 62 dom(Γ0).
Then Γ; Γ0 ` J impliesΓ; u : τ; Γ0 ` J.

(5) (Multiple Weakening) Assume Γ; Γ00 ` Env and
dom(Γ0)\ dom(Γ00) = /0. Then Γ; Γ0 ` J implies
Γ; Γ00; Γ0 ` J.

(6) (Bound Weakening)Assume Γ ` τ0 � τ. Then
Γ;u : τ;Γ0 ` J implies Γ;u : τ0;Γ0 ` J.

(7) (Implied Judgement)Γ ` α � α0 implies Γ ` α :tp
and Γ ` α0 :tp.

(8) (HO Narrowing)Γ;X :σH ;Γ0 ` J implies Γ;Γ0 ` J.

(9) (Exchange)Assume Γ;u0 : τ0 ` Env. Thenwehave
Γ;u : τ;u0 : τ0;Γ0 ` J implies Γ;u0 : τ0;u : τ;Γ0 ` J.

Note that in general we can not replaceX :σH with u :σ in
the statements (3) and (8) above since the channelu may
appear freely inΓ0 andJ. This underlines the major techni-
cal difference between our system and the systemF<:, [6];
several lemmas for type variables inF<: [6], do not hold for
channels in our system.

We now turn our attention to the partial join operatort
which plays a crucial role in our definition of substitution,

Definition 3.2 (FBC, cf. [12, 37]) We say that a partial or-
der(S;v) is finite bounded complete (FBC) for every finite
nonempty subsetS� S, if S has a lower bound thenS has a
greatest lower bound. 2
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Well-formed Environment

(e-nil) /0` Env (e-val)
Γ ` τ : tp u 62 dom(Γ)

Γ; u : τ ` Env

Well-formed Types

(t-base) Γ ` Env
Γ ` >; ?; σB; proc; [ ] : tp (t-sort) Γ ` τi :tp

Γ ` (τ1; :::;τn) :tp (t-chan) Γ ` SI � SO
Γ ` hSI;SOi : tp

(t-absH) Γ ` σH :tp; ρ :tp
Γ ` σH ! ρ : tp (t-absN) Γ;x :σ` ρ :tp

Γ ` (x :σ)! ρ : tp (t-proc)
8u 2 dom(∆): Γ ` Γ(u)� ∆(u)

Γ ` [∆ ] : tp

Subtyping

(s-id) Γ ` α : tp
Γ ` α � α (s-sort) Γ ` τi : tp

Γ ` ?� (τ1; :::;τn)� >
(s-base)

Γ ` [∆ ] :tp
Γ ` [∆ ]� proc

(s-chan)

Γ ` SI1� SI2; SO2� SO1

Γ ` hSIi;SOii : tp (i = 1;2)
Γ ` hSI1;SO1i � hSI2;SO2i

(s-absH) (s-absN ) (s-proc)

Γ ` σ0

H � σH ; ρ� ρ0

Γ ` σH ! ρ� σ0

H ! ρ0

Γ ` σ2� σ1 Γ;x :σ1 ` ρ1 � ρ2

Γ ` (x :σ1)! ρ1� (x :σ2)! ρ2

Γ ` [∆1 ] : tp
8u 2 dom(∆2): Γ ` ∆1(u) � ∆2(u)

Γ ` [∆2 ]� [∆1 ]

Figure 6. Well-formed Types and Subtyping

Proposition 3.3 Under an arbitrary well-formed environ-
ment, the subtyping relation over types is a partial order
and finite bounded complete. 2

The proof of this proposition, available in [38], is construc-
tive; we give an inductive definition of the required partial
meet operationu; this requires a simultaneous definition of
a partial join operationt, the operation we have already
used above.

The next Lemma will be important in the proof of Sub-
ject Reduction. It shows that, under certain circumstances, a
variable can be replaced by an identifier throughout a judge-
ment, although this replacement may also change the envi-
ronment of the judgement.

Lemma 3.4 (Name substitution)Suppose Γ ` Γ(u) � σ.
Then Γ;x :σ;Γ0 ` J implies Γ;Γ 0fu=xg ` Jfu=xg. 2

Finally we conclude this section with the following prop-
erty, which relates to the construction of an efficient algo-
rithm of the typing system (cf. [26, 37]).

Proposition 3.5 (Decidability) Γ ` J is decidable. More-
over, if Γ ` αi : tp (i = 1;2), then Γ ` α1t α2 : tp and
Γ ` α1uα2 : tp are decidable. 2

3.2. Type Inference

The typing system is given in Figure 7. The judgements are
of the form:

Γ ` P :α a term P has a typeα under Γ

For convenience the inference rules in Figure 7 are divided
into three groups. The first,(Common), are elementary, al-
though the subsumption rules (SUBH ) and (SUBN ) will play
a major role in type inferences. The second,(Function),

are inherited from typing systems for the polymorphicλ-
calculus. Here we have two forms of functional types, each
with its introduction and elimination rules. The novelty oc-
curs with abstraction over channel variables. Intuitively if
a termP has a typeρ, then a channel abstractionλ(x : σ)P
is a function which becomesPfa=xg when it is applied to
a namea with a typeσ. Therefore, we will bind free oc-
currences ofx in ρ in the abstraction rule (ABSN ). The
corresponding elimination (APPN ) allows dynamic channel
instantiation into types duringβ-reduction. If a termP has
a type(x :σ)! ρ, we can apply it to a namea whose type is
less thanσ to P. Thena is substituted forx in ρ in (APPN ).

The final group,(Process), are based on the IO-Typing
systems from [26, 12, 37]. However many of the rules are
sufficient novel to warrant detailed explanation.

The empty rule, (NIL ): A process type[∆ ] of represents
an upper bound on the interface or interaction points of a
process. Since an empty process0 has no interaction point,
under any well-formed environmentΓ it is typed as:

Γ ` 0 : [ ]

The parallel rule, (PAR): To inferΓ ` P1 jP2:π it is suffi-
cient to inferΓ ` P1:πandΓ ` P2:π individually. However,
in the presence of subsumption, there is a more informative
derived version of this rule, which will be frequently used:

Γ ` P1 : π1; Γ ` P2 : π2

Γ ` P1 jP2 : π1tπ2

A meta-result of our system ensures that, relative to a par-
ticular environment, the join of process types always exists.

The output rule, (OUT): Under what circumstances can
we concludeΓ ` a!hV iP : π? We require the following:

� The residualP should have the required type,Γ ` P : π
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(Common) (VAL ) ` Γ;u : τ;Γ0 : Env
Γ;u : τ;Γ0 ` u : τ (CON) ` Γ : Env

Γ ` 1 :nat etc.

(SUBH ) Γ ` P : ρ Γ ` ρ� ρ0

Γ ` P : ρ0
(SUBN ) Γ ` u : σ Γ ` σ� σ0

Γ ` u : σ0

(Function) (ABSH ) Γ;X :σH ` P : ρ
Γ ` λ(X :σH)P : σH ! ρ (APPH ) Γ ` P : σH ! ρ Γ `Q : σH

Γ ` PQ : ρ

(ABSN ) Γ;x :σ` P : ρ
Γ ` λ(x :σ)P : (x :σ)! ρ (APPN ) Γ ` P : (x :σ)! ρ Γ ` u : σ

Γ ` Pu : ρfu=xg

(Process) (NIL )
` Γ : Env
Γ ` 0 : [ ] (PAR)

Γ ` P1;2 : π
Γ ` P1 jP2 : π (REP)

Γ ` P : π
Γ ` �P : π (RES)

Γ; a :σ` P : π
Γ ` (ν a :σ)P : π=a

(OUT)
π `Γ u : (τ1; :::; τn)

O Γ ` P : π
Γ ` Vi : τi τi = σi )π `Γ Vi : σi

Γ ` u!hV1; :::;VniP : π
(IN)

π `Γ u : (τ1; :::; τn)
I

Γ;x1 : τ1; :::;xn : τn ` P : π;x1 : τ1; :::;xn : τn

Γ ` u?(x1 : τ1; :::;xn : τn)P : π

In (OUT) and (IN), π `Γ u : σ meansΓ ` [u :σ ]� π.

In (IN), π;x : τ is defined as: (1)π;x :σ def
= πt [x :σ ], and (2) π;x :σH

def
= π.

Figure 7. Typing System forλπv

� The valueV should have a type appropriate to the
channela. That is, there should be some value type
τ such thatΓ `V : τ and

� the channela should have the output capability at the
typeτ. However this capability ona should be avail-
able from the overall interface of the process,π. This
can be represented by the judgementΓ ` [a:(τ)O ]�π.

However there may be a further requirement. If the value
being output is actually a channel, sayb with a typeτ = σ,
then the capability being exported must also be available
from the process interfaceΓ ` [b :σ ]� π.

The general statement of the rule, for multiple output
values, is given in Figure 7; it uses the notation defined in
Figure 7

π `Γ u : σ

to mean that, relative to the environmentΓ the interface, or
process type,πcan provide at least the capabilityσ at u.

As an example let∆ab be the environment which maps
b to the type(int)O anda to the typeh∆bi

IO, allowing it
to transmit thunked values of type∆b, which mapsb to the
same type(int)O. Then with the output rule, together with
(NIL ), we can establish

∆ab ` b!h1i0 : [∆b ]

and therefore

∆ab ` a!hb!h1i0i0 : [a : h∆bi
O ]

The input rule, (IN): The rule for prefixing is a straight-
forward generalisation of that in [37]:

π`Γ a : (τ)I Γ;x : τ ` P : π;x : τ
Γ ` a?(x : τ) P : π

>=a =>, ?=a =?, σB=a = σB, proc=a = proc

hSI;SOi=a = hSI=a;SO=ai
(τ1; :::;τn)=a = (τ1=a; :::; τn=a)
(σH ! ρ)=a = σH=a! ρ=a

((x :σ)! ρ)=a = (x :σ=a)! ρ=a
[∆ ]=a = [fu : (σ=a) j u :σ2 ∆ ^ u 6= ag ]

Figure 8. Name Erasing on Types

To deduce that the processa?(x : τ) P has the interfaceπwe
need to establish two facts:

� The interfaceπ can provide the correct capability for
the channela; that isπ`Γ a : (τ)I.

� The residualP, having input a value for the variablex,
has the augmented interfaceπ;x : τ; however this can
be established in the environmentΓ augmented byx;
that isΓ;x : τ ` P : π;x : τ.

Here we are using a notation “π;x : τ” defined in Figure 7.
Note “π;x : τ” denotes “π” if τ is not a channel type. In
(IN), by the first sequence in the antecedent and (Implied
judgement), Lemma 3.1, we knowπ is well-formed under
Γ. Hence automaticallyx does not occur inπ. From this, if
πtakes the form[∆ ] for some∆, thenx 62 fv([∆ ]), andP has

a type[∆ ];x :σdef
= [∆;x :σ ] in the second assumption.

As an example let∆c be the environment which mapsc
to the capability((int)O)IO. Then one can easily check that

∆c ` c?
�
z : (int)O

�
z!h1i : [∆c ]

It may seem strange that this process has been typed to have
at most a capability on the channelc; obviously when it re-
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ceives an input onc it will immediately gain some other ca-
pability. But this input will be sent by some other process, in
the presence of which the interface will be increased appro-
priately. For example let∆cd be the extension of∆c which
mapsd to the output capability,(int)O. Then we have

∆cd ` c!hdi : [∆cd ]

Now we can use the rule (PAR), or rather its derived variant,
(together with a version of Multiple Weakening) to deduce

∆cd ` (c?
�
z : (int)O

�
z!h1i j c!hdi) : [∆cd ]

The restriction rule, (RES): The restriction operator
(ν a)� reduces the interface of a process. For example in
an appropriate environment the processa!h1i can be as-
signed the process type, or interface,[a : (nat)O ]. When
we restrict the channela, to obtain the process(ν a)a!h1i,
all a capabilities will be removed from the interface; the
restricted process has the empty interface[ ]. The general
rule is formulated as (RES) whereπ=a denotes the result
of erasing all occurrences ofa from π. This erasure opera-
tor on types is defined formally in Figure 8. For example,
[a : (nat)O ]=a = [ ], and [b : ha : (nat)OiO ]=a = [b : h iO ].
Hence, in appropriate environments,(ν a)a!h1i has a type
[ ] and(ν a)b!ha!h1ii has a type[b : h iO ].

Example 3.6 We revisit Example 2.2. First the successor
service is annotated as:

Succ(a)(= �a?(y :int; z : (int)O) z!hsucc(y)i

where the types ensure that this process only receives the
output capability on the return channelz. Let ∆r , be an
environment defining these return channels; in this case it
mapsrA; r1B andr2B to the same type(int)O. Let σs be a
type(int; (int)O)O andτsc be a type for scripts:

(s :σs)! (p :σs)! [ s :σs; p :σs;∆r ]

So these are abstractions which, when applied to appropri-
ate names, generate processes which can at most use those
names for output, together with the return channels, also for
output only. Using subsumption we can form the judgement

s :σs; p :σs;∆r ` PA : [ s :σs; p :σs;∆r ]

wherePA denotes the body of the script sent byC A, namely
(ν c)s!hk;cic?(z) s!hz;ciFw(crA). By channel abstraction we
therefore have

∆r ` λ(s :σs; p :σs):PA : τsc

That is the value sent by the client is indeed typed as a script.
Now let ∆cl denote the environmentfreq :(τsc)

O; ∆rg.
Then we can form the judgement

∆cl `C A(req) : [∆cl ]

and a similar judgement can be made forCB.
This judgement gives detailed information about the re-

sources known to the clients. For example it says that the
clients do not need to know the locations of the actual inter-
faces of the various services; indeed it only needs to know
that of the server, req, together with the return channels.

Typing the server is slightly different. Here we need
to let ∆serv befreq :(τsc)I; ∆r; s : σs; p : σsg: Then we can
check that

∆serv` Serv I(req; s; p) : [∆serv]

Thus the server requires knowledge of the locations of the
service points, but needs only to be able to send data to
them. It also only sends capabilities on the return chan-
nels. Note also that if we only have a constant process type
proc, as in the previous typing systems for the process cal-
culi [3, 37, 26], then the interface server could input any
functionλs:λp:Q, whereQ an arbitrary process via “req”;
such incoming code may harm local resources. 2

4. Type Soundness
4.1. Subject Reduction

The results in Lemma 3.1 have natural generalisations to
our typing system,Γ ` P : α. The details are available in
[38], but here we show one instance, Channel Narrowing.

Lemma 4.1 Assume a 62 fn(P). Then Γ;a : σ;Γ 0 ` J : α
implies Γ;Γ0=a ` J : α=a, and Γ;a :σ;Γ 0 ` P : α implies
Γ;Γ0=a ` P : α=a.

The following result which states, informally, that well-
typedness is preserved by substitution of appropriate values
for variables, is the key result underlying Subject Reduc-
tion. This also guarantees that substitution, which usest in
its definition, is always defined when applied to well-typed
terms.

Lemma 4.2 (Substitution Lemma)Assume Γ ` V : τ. Then
Γ;x : τ;Γ0 ` P : α implies Γ;Γ0fV=xg ` PfV=xg : αfV=xg.

Theorem 4.3 (Subject Reduction)

� Γ ` P :π and P� P0 imply Γ ` P0 :π.

� If Γ ` P : ρ and P�! P0, then Γ ` P0 : ρ. 2

4.2. Type Safety

Our typing system is an extension of that for theλ-calculus
from [9] and that for theπ-calculus from [26]; consequently
it guarantees the absence of the typical run-time errors asso-
ciated with these languages. Rather than duplicate the for-
mulation of these kinds of errors, which involves the devel-
opment complicatedtagging notation, here we concentrate
on the novel run-time type errors which our typing system
can catch.

Intuitively Γ ` P : π should mean that, assuming the en-
vironmentΓ, the processP satisfies theinterface π. If π is
the undifferentiated typeproc then, viewed as an interface,
it provides no information. However if it has the form[∆ ]
this means thatP can useat most the resources mentioned
in ∆; moreover these resources can only be used according
to the capabilities they are assigned in∆. A simple formal-
isation of this intuitive idea is given in Figure 9, using a
unary predicateP Γ;π��!er. The first two clauses are the most

0-7695-0725-5/00 $10.00 � 2000 IEEE 



a?(x1 : τ1; :::;xn : τn)P
Γ;π��!er if Γ 6` [a : (τ1; :::; τn)I ]� π.

a!hV1; :::;VniP
Γ;π��!er if no τi with Γ ` Vi : τi

s.t.Γ ` [a : (τ1; :::; τn)
O ]� π.

P (Γ;a:σ);π�����!er

(ν a :σ)P Γ;(π=a)����!er

P Γ;π��!er or Q Γ;π��!er

P jQ Γ;π��!er

P Γ;π��!er

� P Γ;π��!er

Figure 9. Run-time errors

significant. The first says that, relative toΓ, P violates the
interfaceπ if it can input on the channela but the interface
π does not assign any input capability toa; the second is
similar, but for output. Combining these rules, we can also
derive the following communication runtime error between
input and output:

a?(x1 : τ1; :::;xn : τn)P j a!hV1; :::;VniQ
Γ;π��!er

if there is noτ0

i such thatΓ ` τ0

i � τi andΓ ` Vi : τ0

i. The
meaning of the above error is easily understood when we
consider the following example:

a?(x : h∆i) P ja!hRiQ Γ;π��!er if Γ 6` R : [∆ ].

This says if the input process gets the processR which does
not conform the interface “∆”, then a runtime error occurs.

Theorem 4.4 (Type Safety) If Γ ` P : π then P 6 Γ;π��!er. 2

5. Typed Behavioural Semantics

Types constrain the behaviour of processes and their envi-
ronments and consequently have an impact on when their
behaviour should be deemed to be equivalent. Typed be-
havioural equivalences have already been investigated for
various process calculi in papers such as [19, 14, 26, 27, 36].
We contend that the existence of the fine-grained process
types facilitates the development of typed behavioural theo-
ries; more importantly they enable us to state and prove gen-
eral theorems about these equivalences which are extremely
useful for establishing identities. Due to space limitations
in this section we merely outline our results in this area.

A family of relationsR over process terms, ranged over
by closed type environments and process types, is said to be
atyped relation if P1RΓπP2, impliesΓ `P1 : π andΓ `P2 : π.
Note that the relation is parameterised by not only environ-
mentΓ but also interfaceπ. The following definition uses
the notation from [17, 26, 36].

Definition 5.1 Let �Γπ denote the largest typed relation
which:

� is a typed congruence

� is closed under reductions: wheneverPRΓπQ, P!!P0

implies, for someQ0, Q!!Q0 and P0 RΓπQ0.

� satisfiesP1 RΓ
π P2 implies P1 +aI , P2 +aI and

P1 +aO , P2+aO whereP+aI
def
,9P0:P!!P0 ^ P0 �

(ν c̃)(a?(x)R jR0) with a 62 fc̃g. Similarly for P +aO .

Let�Γπ denote the correspondingstrong relation. 2

We can establish expected identities such as:

Proposition 5.2 (1) (Garbage collection)P �Γ
[ ] 0.

(2) (Beta-reduction)(λx:P)V �Γπ PfV=Xg. 2

Note (1) is a more general garbage collection law than the
standard one defined with the conditionfn(P) = /0; for ex-
ample, we can prove(ν a)(a?(X) 0 ja!hb?(Y ) Pi) is equiva-
lent to0.

Next we show our fine-grained types also allow us to
give a simple, and clean, definition oftriggers which have
proven to be important in the theory of the higher-order pro-
cesses, as well as theπ-calculus [26, 29].

Definition 5.3 We saya is (only) used as atrigger in P
underΓ if there exists∆ such thatΓ `P : [∆ ], and ifa:σ2∆,
thenσ = SO. 2

Note that the above definition is considerably simpler than
that given in [26] (c.f. Definition 5.3.1, pp.433).

Proposition 5.4 (Higher-order replication)Assume a is
only used as atrigger in P, Q and R under Γ. Then:

(ν a :σ)(PjQ j �a?(x1 : τ1; :::;xn : τn):R)
�Γπ (ν a :σ)(Pj �a?(x1 : τ1; :::;xn : τn):R)

j (ν a :σ)(Q j �a?(x1 : τ1; :::;xn : τn):R)

Again this is a non-trivial generalisation of the correspond-
ing result in [29], Theorem 4.3.3; there “a” is only allowed
to appear syntactically as output subjects. The following
forwarder equality is one useful extension from [16] to the
higher-order setting.

Proposition 5.5 (Forwarder [16]) Assume a is used asa
trigger in P, b 6= a and Fw is theforwarder defined in Section
1. Then: (a :σ)(P jFw(ab))�Γπ Pfb=ag. 2.

Finally we illustrate the usefulness of these general
identities by applying them to the analysis of the system
discussed in Example 3.6. LetSys denote:

(ν req;s; p)(CA(req) j CB(req) j Serv I(req;s; p) j Succ(s) j Pred(p))

Intuitively in this closed system the two clients make three
specific requests of the distributed server. So we have:

Sys
�Γπ (ν req;s; p)(CA(req) j Serv I(req;s; p) j Succ(s) j Pred(p))

j (ν req;s; p)(CB(req) j Serv I(req;s; p) j Succ(s) j Pred(p))
�Γπ rA!hk+2i j rB1!hn+1i j rB2!hm�1i

The first equation is an instance of Proposition 5.4 (since by
τsc which annotates variableX in Serv I(req; s; p), we can
checks andp are used as a trigger in the server). Note that
s and p appear as values, hence they may be used both as
output subjects and objects in the interface server; therefore
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our generalised version of this theorem is required. The
second equation requires Proposition 5.2.

Further investigation of our typed equivalences is an in-
teresting research topic, particularly in its application to the
refinement of the context equality of [29].

6. Conclusion
This Section concludes the paper with extensions, further
issues and related work. For more details, see [38].

Distributed Higher-order π-calculus Type Safety The-
orem means that our typing system can be used to ensure
various kinds ofhost security; that is, protecting hosts from
untrusted imported code. In the full version of this paper,
[38], we discuss this issue more explicitly, by extending
our typing system to the distributed version ofλπv, given
in [37]. Once more the expressiveness of our fine-grained
types means that, for example, channel locality, [37], can
easily be enforced; specifically there is no requirement to
annotate higher-order values as beingsendable. A similar
problem appears with type systems for theλ-calculus in-
volving arrow and reference types, [24]. We hope that an
extension of our scheme to higher-order functional shared
variables (i.e. passing environments ascom types) will also
be useful in this setting.

More type constructors One beneficial point of our typ-
ing system is that it is relatively straightforward to ex-
tend our set of types with many of the standard con-
structs from the literature for both theλ-calculus and the
π-calculus; these include recursive types [4, 21, 33, 26],
record types [9, 32], polymorphic types [6, 27], linear/affine
types [19, 5, 13, 36], and dynamic types [2, 28]. An ex-
tension of our capability based typing systems to more ad-
vanced distributed primitives, especially to constructs in-
volving security [1, 11, 15, 35] would be more challenging.

Type limitations One limitation of our typing system is
that, while name variables in types can be abstracted by
channel dependency types(x : σ) ! ρ of the channelλ-
abstractionλ(x : σ)P, a similar abstraction is not allowed
when we bound name variables by input prefixa?(x :σ) P.
The result is that there is a loss of information in many of
the types we can assign to processes. A typical example is
the processa?(x) b!hx!hvii. In the current system this can
only be assigned a process type in whichb has the capability
to output values of the undifferentiated typehproci.

Clearly some form of channel abstraction would be
needed to give a more informative type but it is difficult to
see how this might be formulated. One problem here is that,
unlikeβ-application, value reception isnondeterministic. In
the composed term

a?(x) b!hx!hvii j a!hci j a!hdi

the particular channel,c or d which is bound tox depends on
which message is delivered to the waiting process. Indeed
the residual, after receiving an input, may take one of the
(incomparable) types[b : hc :σiO ] or [b : hd :σiO ].

There is a similar loss of information in typing restricted
processes,(ν a)P. For example the process(ν a)b!ha!h1ii
can be assigned, in an appropriate environment, the type
[b : h iO ] which intuitively says thatb can output a (thun-
ked) process which has the empty interface. This type is of
limited interest when used in context. For example consider

(ν a)b!ha!h1ii jb?(X : τ) run X

Here essentially the only the possibility forτ is the type
hproci. But we should be able to say thatb can output a
(thunked) process which contains someunknown channel
name of type(nat)O, and the input type associated with
b should be able toaccommodate such constraints. Some
form of existential quantification over types may be appro-
priate but integrating such a construct into the type language
is also a non-trivial task.

Related work We have already made reference to the ex-
tensive literature on typing for theπ-calculus and related
processes. In developing our fine-grained type system we
have been guided by the polymorphicλ-calculus [9, 6],
where type variables play an important role; as with our
channel names they may appear, and be bound, both in
terms and types. However there is an essential technical
difference: channel instantiation in our system can result
in dynamic changes to the types annotating a term. Chan-
nels are exchanged as values between processes but they
also appear as interaction points in the types of processes.
On the other hand, type variables of the polymorphicλ-
calculus are instantiated by types (sayint) whereas in our
case channel variables occurring in types are instantiated
by channels, not by types. This feature necessitated the de-
velopment of new concepts of well-formed type, subtyping,
well-formed substitution, etc., independent of those devel-
oped in the context of theλ-calculus.

Pierce and Sangiorgi [27] recently proposed a polymor-
phicπ-calculus and used a refined typed behavioural equiv-
alence to reason about concurrent abstract data types. Since
their polymorphic types are based on those of the polymor-
phicλ-calculus (that is they abstract overtype variables via
the operator9), they are quite different from ours. In partic-
ular they do not address the issue of assigning fine-grained
types to processes.

For sequential computations, Tofte and Talpin have de-
veloped the effect typing system [31], and Tang and Jou-
velot developed its subtyping system [30]. This was re-
cently applied to Facile by Kirli [18].1 One may think our
dependency types correspond to her region polymorphism.
However, again her typing system is different from ours
since she adds the original effect system to the functional
types; hence all process has a constant typeUnit and chan-
nels cannot carry nested effects. More precisely, the effect
types in [31, 30] are used to represent the region allocation
or effects of values duringβ-reduction, while our process
types are used to represent interaction effects between con-

1Kobayashi, Nakade and Yonezawa also applied the effect typing sys-
tem to a concurrent logic programming in [20].
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current processes. Hence an integration of the effect typing
system of theλ-calculus and the IO-subtyping system of
theπ-calculus would have difficulty in expressing the kind
of constraints guaranteed by our typing system.

De Nicola, Ferrari and Pugliese studied a subtyping sys-
tem for a language based on Linda [7], and showed that it
is used to control the mobility of agents. In their language,
each located process is equipped with different capabilities
(read, input, our, eval and newloc) rather than the unique
process type, which is similar to our framework. However
their calculus is based on CCS rather than theπ-calculus
and our form of process types based on IO-subtyping and
λ-subtyping are not considered in their formulation.
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