the uncovered and revealed data throughout the sequence to re-
construct the image in the region of the rig. This is only possible
because the rig is moving. If it were stationary, then the problem of
reconstructing the hidden image is one of image regeneration, or
image synthesis. In this latter case, the methods of Efros et al and
_Bertalmio et al {1, 2] would be more suitable, although the success
of those techniques would depend on the scafe of the underlying
‘texture’.
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ABSTRACT

Some of the most convincing film and video effects are created
in digital post-production by removing apparatus that supports or
manipulates actots and objects. Wires and people, for instance, can
be removed by digitally painting them out of the scene provided
some ‘clean plate’ image is available for pasting in the missing
regions. This paper addresses the problem when no such plate is
available. Object removal requires the estimation of the motion
of the hidden material and then the reconstruction of the missing
image data. Using the notion of temporal motion smoothness, this
paper articulates the two problems using a Bayesian framework
and so develops a unique tool for automated object removal. The
tool is currently being tested in the film effects industry and initial
feedback is very positive.

1. INTRODUCTION

Some of the most convincing film and video effects are created
in digital post-production by removing apparatus that manipulates
actors and objects. The undesired apparatus e.g. wires, cranes;
will be termed rigs in the rest of this paper. Of course some of the
undesired ‘rig’ material may also be objects in the scene itself, for
example: undesired people. A simple procedure for removing the
undesired apparatus is to generate a ‘clean plate’ image containing
only the background image data for instance. That data can then
be pasted into the region covered by the rig. However, arranging
clean plate image capture can be a tedious exercise outside a studio
and it is useful 1o consider whether it is possible to remove rigs
without the need for a clean plate. It is assumed here that the user
has roughly outlined the region to be reconstructed in each frame.

Figure 3 shows a sequence in which the rig to be removed is

delineated by a red overlay. As the rig traverses the scene, it un-
covers and reveals image material. Intuitively then, it would seem

sensible that the removal of the rig can be achieved by collating
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Fig. 1. A view of five [rames with two objects showing simple
motion. The motion in the arca of the rig (red) is to be removed.
The ideal interpolated motion in the rig area is shown as dashed
arrows. The rig can be totally removed by frame 3 (no hatched
area left).

1t is possible to take an object based approach to this problem.
The motion of the scene can be used to segment the sequence into
a mumber of interacting layers, and the estimation problem is to
synthesise a complese layer for each image frame. However it is
clear that motion based image sequence segmentation is a difficult
problem, particularly when realistic motion is complex due to fast
moving objects, motion blur and non- rigid bodies. Instead, a more
pragmatic approach in the medivm term is to employ local mea-
sures of motion and reconstruct the image data using a recursive
picture building process.

To jllustrate the basic idea, Figure 1 shows a view of five one-
dimensional image frames containing two moving obfects. The
rig is the lower object. The motion of the top object, background
and rig is indicated with blue, black and red arrows respectively.
For simplicity The diagrams show only motion in one direction.

" The dashed motion in the region of the rig shows the situation if it

were possible to reconstruct the motion of the sequence, withont
the presence of the rig. Using this metion information it is possible
to reconstruct the data hidden by the rig by recursively propagat-
ing data from non-rig regions into the rig obscured region in each
frame.

Figure i also shows how this propagation can take place. In
frame 2, motion information that maps rig data onto non-rig data in
frame 1 can be used to pull image material into a small portion of
the rig. Thus the bottom of the rig in frame 2 can be filled in with
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a bit of frame 1 (this is shown as a green (right diagonal patterned)
patch). A similar siteation exists between frame 2 and frame 3,
allowing a part of frame 3 to patch the top of the rig (indicated
by the brown (left diagonal) patch). In frame 3 the sanie concept
allows more of the rig to be removed. Afier just 3 frames in this
case (depending in general on the amount of motion the rig is un-
dergoing) completely reconstructed images, without any rig, can
be generated. After this process, the first few frames still contain
part of the rig as shown by the presence of the large hatched re-
gion in the rig area of the first frame (also see Figure 2). However
a backward recursive pass will allow propagation of reconstructed
data from the future frames into these partiaily rebwilt past frames
to complete the picture building process. Note in addition, that
both forward and backward motion can be used simuitaneously to
reconstruct rig data in each frame.

In summary, tie essential idea is to reconstruct wotion in the
fig area, then to use that motion to reconstruct the picture. The
main problem with this idea is the interpolation of motion in the
region of the rig while handling occlusion and uncovering. By us-
ing a Bayesian approach to the problem, a suitable spatio-temporal
scheme can be built. This is one of the main contributions of the
paper and i3 discussed next. :

2. MOTION RECONSTRUCTION

A basic trauslational motion inlage sequence model is used as fol-
lows.

1h(x) = In—s(x + dnn-1(x)) + e(x) m
Where X indicates the location of a pixel x = [z, 7. the intensity
at that site in frame n is denoted by I, (x) and the two component
motion vector mapping that site into the previous frame is given
by dn,n-1(X). €{X} accounts for uncertainty in the model and is
assumed to follow a Gaussian distribution A (0, 02 ). Although the
model accounts for translation motion only, it is used at the pixel
resolution. In the framework that follows, this implies that more
complex motion fields can be handled.

The problem is to reconstruct the motion d’,’,,n_l(-) {back-
ward) and df ., () (forward) at sites covered by the rig'. The
rig sites are denoted by x,. The motion of the rig itself is de-
noted by d7, ,,_1(-). Also important is to configure an occlusion
field 0, .~ 1, On,n41 that indicates temporal discontinuities at the
boundaries of moving objects. To simpiify the arguments that
follow, only the backward motion d? , (-} will be considered.
A similar situation exists in the forward direction. Consider for
the moment that motion fields for the entire sequence have been
obtained, excepting at the rig locations denoted as the sites x_.
Thus ..., dp—1,n—2{X—r), dy,n—1{x-) have all been obtained.

Proceeding in a probabilistic fashion it is necessary to ma-
nipulate the distribution p{d% ,_;(x,)d5 1 (%}, d(x-3. 1),
witere I denotes all previous and next frames. The best estimate for
d,},ﬁ,n,l( - is that which maximises this probability. To continue,
Bayes" law allows the distribution to be decomposed as follows.

P(dﬁ‘n— 105} 00 n o1 (o )dn o1 (052),T) =

p{ (x| 1. D)pe (dﬁ,nl L%} Dpo1n—2,0n,n-1)

Pl o (5 D3 (5%0) PO, mm1 (X Yo it (3361
(2)

‘Superscript b is used to indicate the underying idden image motion

() denotes the likelihood of the image data given all the re-

quired motion information at cach pixel site D. p2{-) is the prior
probability of a particular choice of hidden motion in the current
frame given the motion in the previows frame Dy, 1 2, and #x,
indicates all sites not including x,. This encourages temporal mo-
tion smoothness. p,{-) is a spatial smoothness constraint on the
interpolated motion field. To design a suitable algerithm, mean-
ingful expressions must be attached to these congcepts.
The image data likelihood The model in equation 1 is used to im-
pose the constraint that the image data matched by motion vectors
between frames should be roughly the same. Because the observed
image sequence is only partially observed i.e. obscured by the ng,
it becomes useful to attach weights to each pixel in each frame.
This weight field, w,,(x) is 2 continuous variable between 1 (for
data available) and O for data missing, In the rig area, w(x,) = 0.
The image data likelihood can then be defined as foilows (drop-
ping the argument X%, for brevity.

ALl) coxp = sirinn A~ Loa() @)
&

where x/. denotes the motion compensated site X +d% .\ (x.).
Thus the likelihood is proportional to the weighted image match-
ing error between frames. However, since in the rig area the weight
is zero, the image data likelihood has no effect on the motion in-
terpolation problem and can be ignored. Note that a product of
weights s used here since this temporal likelihood is only useful
when both motion compensated pixels contain known data.
Temporal smoothness It is through temporal smoothness that the
motion in the rig area can be interpolated as shown in Figure 1.
Assuming little acceleration between frames the distribution can
be written: as follows.

1 .
pe(di a_1l) o exp— ;(1 — onn—1)wn-1(x;)
x| ot = dne 2 (] @)

where | - | denotes the Euclidean vector difference. This prior pe-
nalises vectors that do not match well with their motion compen-
sated counterpart in the previous frame. The occlusion variable
Onn-1 at site X, allows large mismatch between motion com-
pensated vectors to indicate a motion discontimuity. The error is
weighted only by the previous image weights so that the motion
smocthness term is only valid when the previous motion compen-
sated image data is not at a rig location. &2 represents the amount
of acceleration that is allowed. Smali values < 1 penalise ac-
celeration heavily, while large values allow poor temporal vector
matches. A value of 0.01 is used here to encourage low accelera-
tion.

Spatial Smoothness This is a common concept in any consider-
ation of motion estimation. The idea is to ensure that in a local
region the motion and occlusion field is smooth since objects tend
to be locally well connected. The prior adopted for motion is a
Gibbs Energy prior (e.g. Konrad and Dubois [3]} as follows.

ST Ms)dn o —de) ] (9
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where s is each motion vector in the 8 connected neighbourhood
represented by 8, (x), and A(s) is the weight associated with each
clique. The neighbourhood 8., (x) is the 8 nearest neighbour. The
occlusion prior uses the Ising model (similar to equation 5), with
the addition of a penalty term exp — (o, n—1 ()} to prevent 0, 5,1
set to 1 everywhere. A = 2.0 in the results presented later.

3. A PRACTICAL SOLUTION

Solving equation 2 for d”* (+) given the various component expres-
sions 3, 4, 5 is not straightforward if the problem is treated as direct
estimation. This is because the arguments of the various motion
compensation actions required are also unknowns. The first step
in simplifying the solution is to use the notion of ICM or local
conditional maximisation [4]. A solution is therefore generated at
each pixel site conditioned on the state of the sites around. Each
site is visited in tumn and after a number of passes over the im-
age, the motion field converges to some overall state. The second
step in designing a simple solution is to recognise that it is possi-
ble to generate a number of reasonably good initial estimates for
d"(.) using straightforward, deterministic ideas. These estimates
can then be used as candidate solutions. Each candidate is eval-
uated according to the probability criterion in equation 2, and the
best candidate selected at each site. There are two stages in gener-
ating possible candidate solutions discussed next.

Weighted motion estimation Using the image weights w(x) de-
scribed previously, it is pessible to define an error criterion for
motion estimation that ignores the rig area as follows

€(x)" = W (X)wn 1 (XY (%) — Inca(x +d(x)))* (6)

Many different approaches can be used to estimate motion with
this criterion and here a block based version of the Wiener estima-
tion approach [5] is used. The weighted approach ensures that the
error in image matching at the rig sites does not affect the motion
estimation process at the edges of the rigs. Obviously, within the
rig area, no motion estimates can be generated with this method
as the weights of all pixels are zero. The final weighted gradient
based motion estimator is applied on a multiresolution pyramid. 4
levels are used, with block sizes of 9, 9, 5, 5 at each level of the
pyramid.

Spatially interpolated Candidates The previous process will al-
low metion to be estimated for those blocks that overlap the rig
region. In order to create candidate motion estimates inside the
rig, a simple idea is to spatially interpolate the motion field within
the gap. There are two simple methods that perform well. The
first is to interpolate the vector field using the motion smoothness
prior in equation 5, using instead a weighted energy. Thus a pair-
wise term is removed if the neighbourhood vector concerned has
not yet been interpolated. Using ICM, each vector is interpolated
in turn starting from the outside of the rig and moving inwards.

A second useful method is to assume that the material hidden
by the rig is moving with only one single motion that is the same
as the region immediately surrounding the rig. This would be the
case if the rig is moving against a large rigid body background for
instance. A rectangular area that encases the rig could then be used
for estimation with the weighted criterion shown above. This is
similar to the global motion estimation ideas previously presented
in [6].

TFemporally interpolated candidates In the case of low accelera-
tion, motion between nn — 1,n — 2, suitably motion compensated,
is a good estimate for the motion between frames n,n — 1. Vec-
tors dn—1 »—2 can therefore be used as candidates for dﬁ,n_l at
locations in frame n indicated by x — d,._1 5 -2(x). These motion
candidates are assigned 1o the nearest integer pixel site in n. Only
vectors that *hit” in rig locations need to be recorded.
THE FINAL ALGORITHM Consider a site x,. and the back-
ward motion d? ,,_; (x.). At each site in the rig of frame =, a list
of motion candidates can be collected using the temporally pro-
jected set and any of the eight nearest neighbours that have al-
ready been assigned. Denote the ith vector in this list of N vectors
as df. For each df two possible occlusion states are associated.
On n—1(xr) = 0,1. This creates 2N motion candidates. For gach
such motionfocclusion candidate the log posterior density is evalu-
ated from equation 2. This amounts to summing a spatial smooth-
ness error (for both motion and occlusion), a temporal smoothness
error and a DFD term for each motion/occlusion candidate. The
candidate with the smallest error is selected as the interpolated
vector. This process is iteratively repeated over the rig region, and
again for the forward motion.

" Finally, the hidden data in the rig region, is estimated from
pi(-) (across three frames) as £ using weighted interpolation as
follows.

L L Ly A Y
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where w’, I’ denotes motion compensation. To recursively recon-
struct the rig, the weight image w,, is vpdated by performing the
same interpolation process on the weight image sequence. Thus
the reconstructed portions in frame n are automatically used in re-
constructing the tmage in frame n + 1.

4. PICTURES

Figure 3 shows results from removing a moving motorcycle in a
real scene with PAL resolution frames. The original data is shown
together with the user defined matte in a red overlay. There is sub-
stantial camera motion, and the user defined matte is only a rough
outline that does not allow for objects moving behind or infront
of the rig. The sequence was processed using 5 iterations for mo-
tion interpolation with the algorithm above, o = 2.76, and o2
measured from non-rig parts of the image. A forward and back-
ward pass of the algorithm was vsed in order to complete the “fill
in’ operation in the early frames of recursion. Figure 2 shows
an example of the motion interpolation action as well as the ef-
fect of recursion on rig removal. For longer video examples see
www.mee.tcd.ie/ "sigmedia/postpro.

5. FINAL COMMENTS
This paper has introduced a novel mechanism for the automated
removal of rigs in image sequences. The use of motion interpo-
lation is important for the success of the algorithm, and it allows
a recursive approach to fill in the region as it moves across the
background. The use of a candidate selection strategy for motion
interpolation allows a straightforward implementation of the al-
gorithmn, The process presented here is currently being tested by
The Foundry (a London based filin effects software house) and the
user feedback is already positive. The pelwise constraint strategy
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Fig. 2. Top Left: Frame 2 with original moticn (bluc) and inter-
polated motion (red). Clockwise from top right: First three con-
secutive rig removed frames from a forward pass of the algorithin,
Note progressively more of the ‘rig’ is removed with time.

potentially allows complex motion to be handled, but effects like
motion blur and self-occlusion are still not well modelled by the
occlusion framework presented. That is the subject of future work.
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www.mee.tad.ie/~sigmedia/postpro
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