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ABSTRACT 
Some of the most convincing film agd video effects are created 
in &@tal post-production by removing apparahls that supporls or 
manipulates actors and objects. Wires and people, for instance, can 
be removed by digitally painting rhein out of the scene provided 
some ‘clean plate’ image is available for pasting U1 the missing 
regions. This paper addresses the problem when no such plate is 
available. Object removal requires the estimation of the motion 
of the hidden material and then the reconstruction of the missing 
image data. Using the notion of temporal motion smoothness. this 
paper articulates the two problems using a Bayesiat framework 
and so develops a unique tool for automated object removal. The 
tool is currently being tested in the film effects industry and initial 
feedback is very positive. 

1. INTRODUCTION 

Some of the most convincing fihn and video effects are created 
in digital post-production by removing apparatus that manipulates 
actors and objects. The undesired apparatus e.g. wires, cranes; 
will be termed rigs in the rest of this paper. Of course some of the 
undesired ’rig’ material may also be objects in the scene itself. for 
example: undesired people. A simple procedure for removing the 
undesired apparahls is to generate a ‘clean plate‘ image containing 
only the backgrnund image data for instance. That data can then 
be pasted into the region covered by the rig. However, arranging 
clean plate image capture can be a tedious exercise outside a studio 
and it is useful to consider whether it is possible to remove rigs 
without the need for a cleaii plate. It is assumed here that the user 
has roughly outlined the region to be reconstructed in each frame. 

Figure 3 shows a sequence in which the rig to be removed is 
delineated by a red overlay. As the rig traverses the scene, it un- 
covers and reveals image material. Intuitively then, it would seem 
sensible that the removal of the rig can be achieved by collating 
the uncovered and revealed data throughon1 the sequence to re- 
construct tlle image U, the region of the rig. This is only possible 
because the rig is mmirrg. If it were stationary, then the problem of 
reconstructing the hdden image is one of image regeneration, or 
image synthesis. In this latter case, the methods of Efros et al and 
Bertahnio et a1 [ l ,  21 would be more suitable, although the success 
of those techniques would depend on the scale of the underlying 
‘texNre’. 

Fig. 1. A view of five frames with two objects showing simple 
motion. The motion in the arca of the rig (red) is to be rcmoved. 
‘The ideal inkrpolated motion in h e  rig area is shown as dashed 
arrows. The rig can he totally removed by franie 3 (no hatched 
area left). 

It is possible to take an object based approach to this problem. 
The motion ofthe scene can be used to segmeiit the sequence into 
a itumber of interacting layers, and the estimation problem i s  to 
synthesise a complete layer for each image frame. However it is 
clear that motion based inage sequence segmentation i s  a diflicult 
problem, particularly whet, realistic motion is complcx due to fast 
m w h g  objects, motion blur and non- rigid bodies. Instead, a more 
pragmatic appmach in the medium term is to employ local mea- 
sures of  motion and reconstruct the image data using a recursive 
picture building process. 

To illustrate the basic idea, Figure 1 shows a view of five one- 
duiiensional image frames $ontaining two moving objects. The 
rig is the lower object. The motion of the top object, background 
and rig is indicated with blue, black aid red arrows respectively. 
For simplicity The diagrams show only motion in one direction. 
The dashed motion in the region of the rig shows the situation if it 
were possible to reconstnrcl the motion of the sequence. without 
the presence ofthe rig. Usingthismotion information it is passible 
to reconstruct the data hidden by the rig by recursively propagat- 
ing data from norr-rig regions into the rig obscured region in each 
frame. 

Figure 1 also shows how this propagation can take place. In 
fnme 2, motioninfomation that maps rig dataonto non-rigdata in 
frame 1 can be used to pull image material into a small portion of 
the rig. Thus the bottom of the rig in frame 2 can he filled in with 
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a bit of frame 1 (this is shown as a green (right diagonal pattemed) 
patch). A similar situation exists between frame 2 and frame 3, 
allowing a palt of f m e  3 to patch the top of the rig (indicated 
by the brown (left diagonal) patch). In frame 3 the same concept 
allows more of the rig to be removed. After just 3 fiames in this 
case (depending in general on the amount ofmotion the rig is un- 
dergoing) completely reconstructed images, without any rig, can 
be generated. AAer this process, the first few frames still contain 
part of the rig as shown by the presence of the large hatched re- 
gion in the rig area of the first frame (also see Figure 2). However 
a backward recursive pass will allow propagation of reconstructed 
data from the future frames into these partially rebuilt past frames 
to complete the picture building process. Note in addition, that 
both forward and backward motion can be used sindtancously to 
reconstruct rig data in each frame. 

In s u n n n q ,  tlie essential idea is to reconstmct motion in the 
rig area, then to use that motion to reconstTUct the picture. The 
main problem with this idea is the iiiterpolation of motion in the 
region of the rig while handling occlusion and uncovering. By us- 
ing a Bayesian approach to the problem, a suitable spatio-tempral 
scheme can be built. This is one of tlie main contributions of the 
paper and is discussed next. 

2. MOTION RECONSTRUCTION 

A basic Waiislational motion image sequence model is used as fol- 
lows. 

Where x indicates the location of a pixel x = [ i , j ] .  the intensity 
at that site in frame n is denoted by I,.(x) and the two component 
motion vector mapping that site into the previous frame is given 
by dn, , - l (x) .  e(x) accounts for uncertainty in the model .and is 
assumed10 follow aFaussian distributionN(0, U:). Althuughthe 
model accounts for translation inotion only, it is used at the pixel 
resolution. In the kamework that follows. this implies that more 
complex motion fields cax be haidled. 

The problem is lo reconstruct the motion d:,%-,(.) (back- 
ward) and dh,,,+,(.) (forward) at sites covered by the rig'. The 
rig sites are denoted by xI. The motion of the rig itself is de- 
noted by d;,,-r(.). Also important is to configure an occlusion 
field , on,,+l that indicates temporal discontinuities at the 
boundaries of moving objects. To simplify the arguments that 
follow. only the backward motion d!&,(.) will be considered. 
A similar situation exists in the forward direction. Consider for 
the nioment tlmt motion fields for the entire sequence have been 
obtained, excepting at the rig locations denoted as the sites x-?. 
Thus . . . , dn-l,n-z ( x - ~ ) .  dn,* ~ ( x - ~ )  have all been obtaitied. 

Pmceeding in a probabilistic fashion it is necessay to iua- 
nipulate the distribution p(d~,~-~(x~)ld~,"-,(x~), d(x-,), I), 
where I denotes all previous and next frames. The best estimate for 

, dk,m-l(.) is Uiat which maximises this probability. To continue, 
Bayea' law allows the distribution to he decomposed as follows. 

r&) = r d X  + dn,n-l(x)) + e(x) (1) 

P(dk,n-i(xT), o " , " - t ( x ~ ) l d " , ~ - i ( * x ~ ) ,  I) = 

P I ( I ( X ~ ) I I - ~ .  D)pt(d~,,_,(x,)lD,-,,,-2,on,n-i) 

~ ~ ( c t , , , ~ - i  ( X ~ ) \ D ~ , ~ - I  ( * x ~ ) ) P ~ ( o ~ , ~ - I  (xr)lort,n-i ( *x')) h 

(2) 

'Superscrip1 h i s  used lo indicale the underlying kiddm imsgs motion 

p l ( . )  denotes the likelihood of the image data gives all the E- 

quired motion infomation at each pixel site D. pi(.) is the prior 
probability of a particular clioice of hidden motion ui the current 
frame given the motion in theprevioss frame D"-I ,~ -z ,  and *xr 
indicates all sites not including xr. 'This eucoumges temporal mo- 
tioii smoothness. ps(-) is a spatial smoothness constraint on the 
interpolated motion field. To design a suitable algorithm, mcan- 
ingful expressions must be attached to these concepts. 
The image data likelihood The model in equation I is used to im- 
pose the constraint that the image data matched by motion vectors 
between frames should be roughly the sanie. Because the observed 
image sequence is only partially observed i.e. obscured by therig, 
it becomes useful to attach weights to each pixel in each frame. 
This weight field, w,(x) is a contuiuous variable belween 1 (for 
data available) and 0 for data missing. In the rig area, w(xr) = 0. 
The image data likelihood can then he defined as follows (dmp- 
ping the argument xr fx brevity. 

where x: denotes the motion compensated site x, + d:,.-,(x,). 
Thus the Ikelihood is proportional to the weighted image match- 
ing error between frames. However, sUice in the rig area the weight 
is zern. the image data Likelihood has no effect on the motion in- 
terpolation problem and can be ignored. Note that a prodtrcr of 
weights is used here since this temporal likellhood is only useful 
when both motion compensated pixels contain known data. 
Temporal smoothness It is thrnugli temporal smoothness that the 
motion in the rig area can he interpolated as shown in Figure 1. 
Assuming little acceleratioii between frames the distribution can 
be written as follows. 

1 
pt(dE,n-ll.) o( exp- -(1 - O ~ . ~ - I ) U J - I ( X ~ )  .Z 

where 1 . 1 denotes the Euclidean vector difference. This prior pe- 
nalises vectors that do not match well with their motion campen- 
sated counterpart in the previous frame. The occlusion variable 
on,"--l at site xr allows large mismatch between motion com- 
pensated vectors to indicate a motion discontinuity. The enor is 
weighted only by the previaus image weights so that the motion 
smoothness term is only valid when the previous motion compen- 
sated image data is not at a rig location. U: represents the amount 
of acceleration that is allowed. Small values < 1 penalise ac- 
celeration heavily. while large values allow poor temporal vector 
matches. A value of 0.01 is used here to encourage low accelem- 
tion. 
Spatial Smoothness This is a common concept in any consider- 
atiou of motion estimation. The idea is to ensme that in a local 
region the motion and occlusion field is smooth since objects tend 
to be Locally well connected. The prior adopted Tor motion is a 
Gibbs Energy prior (e.g. K o N . ~  and Dubois [3]) as follows. 
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where s is each motion vector in the 8 connected neighbourhood 
represented by S ,  (x), and X(s) is the weight associated with each 
clique. The neighbourhwd S, (x) is the 8 nearest neighbour The 
occlusion prior uses the Ising model (similar to equation 5), with 
the addition ofa penalty term exp - (no,,,- 1 (.)) to prevent o","-I 
set to 1 everywhere. A = 2.0 in the results presented later. 

3. A PRACTICAL SOLUTION 

Solving equation 2 for dh(.) gixsen the various componentexpres- 
'sions 3 , 4 . 5  is not straightforward ifthe problem is treated as direct 
estimation. This is because the arguments of the various motion 
compensation actions required are also unknowns. The first step 
U1 simplifying the solution is to use the notion of ICM or local 
conditional maximisation [4]. A solution is therefore generated at 
each pixel site conditioned on the state of the sites around. Each 
site is visited in turn and afler a number of passes over the im- 
age, the motion field converges to some overall state. The second 
step in designing a simple solution is to recognise that it is possi- 
ble to generate a number of reasonably good initial estimates for 
d h ( . )  using straightforward, deterministic ideas. These estimates 
can then bo used as candidate solutions. Each candidate is eval- 
uated according to the probability criterion in equation 2, and the 
best candidate selected at each site. There are two stages in gener- 
ating possible candidate solutions discussed next. 
Weighted motion estimation Using the image weights w(x) de- 
scribed preeiously. it is possible to deiine an error criterion for 
motion estiniation that ignores the rig area as follows 

Many mfferent approaches can be used to estimate motion with 
this criterion and lieere a block based version ofthe Wiener estima- 
tion approach [SI is used. The weighted approach ensures that the 
error in image matching at the rig sites does not affect the motion 
estimation process at the edges of the rigs. Obviously, within the 
rig area_ no motion estimates can be generated with this method 
as the weights of all pixels are zero. The iinal weighted gradient 
based motion estimator is applied on a multiresolution pyramid. 4 
levels are used with block sizes of 9, 9, 5, 5 at each le\zel ofthe 
pyramid. 
Spatially interpolated Candidates The previous process will al- 
low motion to be estimated for those blocks that overlap the rig 
region. In order to create candidate motion estimates inside the 
rig, a simple idea is to spatially interpolate thc motion field within 
the gap. There are two simple methods that perform well. l h e  
first is to interpolate the vector field using the motion smoothness 
prior in equalion 5, using instead a weighted energy. Thus a pau- 
wise term is removed if the neighbourhood vector concerned has 
not yet been interpolated. Using ICM, each vector is interpolated 
in turn starting from the outside of the rig and moving inwards. 

A second useful method is to assume that the material hidden 
by the rig is moving with only one single motion that is the same 
as the region immediately sunonnding the rig. This would he the 
case if the rig is moving against a large rigid body background for 
instance. A rectangular area that encases the rig could then be used 
for estimation with the weighted criterion shown above. This is 
similar to the global motion estimation ideas previously presented 
in [6] .  

Temporally interpolatcd candidates In the case of low accelera- 
tion, motion between n - I, n - 2, suitably motion compemated, 
is a good estimate for the motion between t iames n, n - 1. Vec- 
tors d,-l,,-z can therefore be used as candidates for dk,n-l at 
locationsinframen indicated by x-d,-l,,-z(x). These motion 
candidates are assigned to the nearest integer pixel site in n. Only 
vectors that 'ht* in rig locations need 10 be recorded. 
THE FINAL ALGORlTIIM Consider a site x, and the back- 
~ a r d m o t i o n d ~ , , - ~ ( x , ) .  Ateachsiteintherigofframen,alist 
of motion candidates can be collected using the temporally pro- 
jected set and any of the eight nearest neighbours that have al- 
ready been assigned. Denote the ith vector in this list of N vectors 
as d:. For each d: two possible occlusion stztcs are associated. 
O ~ , ~ - I ( X ~ )  = 0 , l .  This creates 2N motioncandidates. Foreach 
such motiodocclusion candidate the log posterior density is evalu- 
ated from equation 2. This amounts to summing a spatial smooth- 
ness e m r  (for both motion and occlusion), a temporal smoothness 
emir and a DFD term for each motiodocclusion candidate. The 
candidate with the smallest error is selected as the interpolated 
vector. This process is iteratively repeated over the rig region, and 
again for the forward motion. 

Finally, the hidden data in the rig region, is estimated from 
pr( . )  (across three frames) as fk using weighled interpolation as 
follows. 

where w', I' denotes motion compensation. To recursively recon- 
struct the rig, the weight image wn is updated by performing the 
sanie interpolation process on the weight image sequence. Thus 
the reconstrncted portions in frame n are automatically used in re- 
constructing the image in frame n + 1. 

4. PICTURES 

Figure 3 shows results from removing a moving motorcycle in a 
real scene with PAL resolution frames. The original data is shown 
together with the user defined matte in a red overlay. There is sub- 
stantial camera motion, and the user defined matte is only a rough 
outline that does not allow for objects moving behmd or infmnt 
of the rig. The sequence was processed using 5 iterations for mo- 
tion interpolation with the algorithm above, a = 2.76, and r: 
measured fmni non-rig parts of the image. A forward and back- 
ward pass of the algorithm was used in order to complete the 'fill 
in' operation in the early frames of recursion. Figure 2 shows 
an'example ofthe motion interpolation action as well as the ef- 
fect of recursion on rig removal. For longer video examples see 
www.mee. tcd.ie/-sigmedia/postpro. 

5. FINAL COMMENTS 
This paper has introduced a novel mechanism for the automated 
reinoval of rigs in image sequences. The use of motion interpo- 
lation is important for the success of the algorithm, and it allows 
a recursive approach to fill in the region as it moves across the 
background. The use of a candidate selection strategy for motion 
interpolation allows a straightforward implementation of the al- 
gorithm. The process presented here is currently being tested by 
The Foundry (a London based f i n  effects software house) and the 
nser feedback is already positive. The pelwise constraint strategy 
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Fig. 2. ‘lop ILek Frame 2 with original niotiou (blue) and inter- 
plated motioo (red). Clockwise from top right: First three con- 
secutiw rig removed fmmes from a forward pass oftlie algoritlun. 
Note progressively more of the ‘rig’ is removed with tune. 

potentially allows complex motion to be handled, but effects llke 
motion blur and self-occlusion are still not well modelled by the 
occlusioii framework presented. That is the subject of future work. 
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