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Abstract
The use of computers to solve scientific problems is abundant and almost a need of the day. As the 

complexity of the problems increased, the need to get fast and accurate results has also taken an 

altogether  different  meaning.  The  area where  one needs  to  use all  the  resources  at  disposal  to 

compute  the  results  efficiently  and  quickly  is  known as  HPC (High Performance  Computing). 

Evolution of computers has given the idea of using the entire RAM at disposal while computing the 

results; hence, parallelization becomes highly desirable.

 

The goal of this project is to parallelize distributed memory systems using WINDOWS platform, 

analyzing  some  small(computationally)  parallelized  problems  and  if  possible  then  trying  to 

implement them for the software ABAQUS(FEM  tool). Moreover the parallel program developed 

can be used for numerical solution to Helmholtz equation.

The basic equation governing acoustics is the Helmholtz equation; analytical complications have 

driven researchers to develop Numerical methods to solve this equation. Numerical methods in turn 

have posed computational difficulties even with the use of modern day computers, parallelization of 

solution  of  Helmholtz  equation  is  the  result  of  these  problems.  The  standard  algorithms  are 

available for the Numerical methods and they only need to be programmed on a platform which can 

support parallel programming. By the implementation of suitable parallel techniques a considerable 

amount of efficiency with respect to time in obtaining the solutions can be achieved.
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Chapter 1

1.1 Introduction
Numerical simulation and other computationally intensive problems are often successfully tackled 

using parallel computing. Frequently these problems are too large to solve on a single system or the 

time  needed  to  complete  them  makes  single-cpu  calculation  unpractical.  The  need  for  more 

computer power will always be there. Scientists often state that 

“If you have the computer power, we will use it”

 With more computational power available, the scientists are able to perform their work faster or 

increase the accuracy of their computations. The ability to perform calculations in parallel opens 

doors to a whole new way of doing computation. Complex mathematical problems can often be 

broken down into smaller sub-problems. These sub-problems can often be parallelised with respect 

to either memory or computation.

Successful parallelisation is usually measured by the problem “speedup”. This quantity indicates 

how much faster a given problem is solved on multiple processors, compared to the solution time 

on one processor. More often than not, this speedup is only based on the computationally intensive 

part of the code, and phases as program start-up or data loading and saving elude the test. Also, 

when the ratio of computation to the input data is high enough, I/O (Input-Output) time is negligible 

in the total execution time.

Multiple processors are used to tackle a single computational task. The general principle involved is 

the division of single task into many independent operations.  These independent operations will be 

performed by different processors in parallel, at the same time. The necessary condition for the 

program algorithm to work is the  division of single task into mutually contiguous and independent 

operations.  Although mathematical  algorithm may contain independent  operations,  the  program 

may not be completely free from the dependence of operations. This is quite a common situation, 

because most programs are written for sequential processing hence data exchange becomes a must 

between these so called independent operations.  The goal of parallel  processing is reduction in 

elapsed execution time.  Processor time is attributed to processor cycles spent in execution of the 

instruction  stream for  that  program.  Parallel  programs  might  include  additional  instructions  to 

facilitate parallel execution. The total processor time, spent on all processors should increase as a 

result, see Fig. 1.1.
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Figure 1.1 Elapsed time compared to CPU time[8]

The overhead due to parallel processing can stall the improvement in elapsed execution time. In 

some cases the overhead is such that it  takes longer to run program on several processors. The 

overhead  might  come  from  algorithmic  complexities,  such  as  the  necessity  to  exchange  data 

between the computational threads or synchronise the threads.

The analysis of any parallel program is generally done by using scalability. Scalability is defined as 

the  ratio  between  the  performance  on  one  processor  and  n  processors,  or the  respective 

execution times.  Sometimes efficiency is also used to analyse the results achieved by a certain 

parallelization. Efficiency is  the ratio of speed up to the number of processors used for certain 

solution.

S=
nT

T1     (Eqn.1.1)

Where

S: Speed up

nT : Time of execution on n processors

1T : Time of execution on 1 processor

n: Number of processors
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n
SE =     (Eqn. 1.2)                                               

     

In terms of the speedup and efficiency, parallel programs might behave according to the different 

models  presented  in  Fig.1.2 Ideal  speedup is  improvement  of  performance  proportional  to  the 

number of processors n.

Figure 1.2 Speedup and Efficiency for parallel programs[8]

Saturation in performance increase is a common pattern when the overhead of parallel computation 

is comparable to the speedup gained from distributing the work load to processors.  Sometimes 

when the number of processes are too large a decrease in performance can be seen, it happens due 

to the synchronisation required to complete the work. Moreover, sometimes there is not enough 

work to be distributed but the algorithm of the program assigns some memory to those processes 

and hence the elapsed time increases. The most sought after speedup is the linear one but it is not 

the case always,  infact  there  is  a   cap on the speedup achievable for  any serial  program. The 

Amdahl's law explained in the next section explains as to why any program can be made faster only 

to a certain extent.   

1.2 Amdahl’s law[1]

Amdahl's  law,  named  after  computer architect Gene  Amdahl,  is  used  to  find  the  maximum 
expected improvement to an overall system when only part of the system is improved. It is often 
used in parallel computing to predict the theoretical maximum speedup using multiple processors. 

The generalized Amdahl's law is: 
pf

S
−

≤
1

1   (Eqn. 1.3)  
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• S: Maximum possible scalability
• pf : Value of parallel fraction in a program

Another way of presenting the Amdahl’s law is:

∑
=

≤ n

k k

k

U
P

S

0

1
 (Eqn. 1.4)

Where,

• S: Scalability 

•  : is a percentage of the instructions that can be improved (or slowed)

• kU : is the speed-up multiplier (where 1 is no speed-up and no slowing)

•  : represents a label for each different percentage and speed-up

•  : is the number of different speed-up/slow-downs resulting from the system change

1.2.1 Description

Amdahl's  law  is  a  formula  that  computes  the  expected  speedup  of  parallelized 

implementations of an algorithm relative to the non-parallelized algorithm. For example, if a 

parallelized  implementation  of  an  algorithm can  run  12% of  the  algorithm's  operations 

arbitrarily fast (while the remaining 88% of the operations are not parallelizable); Amdahl's 

law states that the maximum speedup of the parallelized version is 136.1
12.01

1 =
−

 times 

faster than the non-parallelized implementation. More technically, the law is concerned with 

the speedup achievable from an improvement to a computation that affects a proportion P of 

that  computation  where  the  improvement  has  a  speedup  of  S.  (For  example,  if  an 

improvement  can speed up 30% of  the computation,  P will  be 0.3;  if  the improvement 

makes the portion affected twice as fast,  S will be 2). Amdahl's law states that the overall 

speedup of applying the improvement will be
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S
PP +− )1(

1
(Eqn. 1.5) 

P: is a percentage of the instructions that can be improved (or slowed)

S:  is the speed-up multiplier (where 1 is no speed-up and no slowing)

To see how this formula was derived, assume that the running time of the old computation was 1, 

for some unit of time. The running time of the new computation will be the length of time the 

unimproved fraction takes, (which is 1 −  P), plus the length of time the improved fraction takes. 

The length of time for the improved part of the computation is the length of the improved part's 

former running time divided by the speedup, making the length of time of the improved part P/S. 

The final speedup is computed by dividing the old running time by the new running time, which is 

what the above formula does. Here's another example. We are given a task which is split up into 

four parts: P1 = .11 or 11%, P2 = .18 or 18%, P3 = .23 or 23%, P4 = .48 or 48%, which add up to 

100%. Then we say P1 is not sped up, so S1 = 1 or 100%, P2 is sped up 5x, so S2 = 5 or 500%, P3 

is sped up 20x, so S3 = 20 or 2000%, and P4 is sped up 1.6x, so S4 = 1.6 or 160%. By using the 

formula 
4

4

3

3

2

2

1

1

S
P

S
P

S
P

S
P

+++ (Eqn. 1.6)

We find the running time is 4575.0
6.1
48.0

20
23.0

5
18.0

1
11.0 =+++ or a little less than ½ the original 

running time, which we know is 1. Therefore the overall speed boost is 186.2
4575.

1 =  ,a little more 

than double the original speed using the formula 
4

4

3

3

2

2

1

1

1

S
P

S
P

S
P

S
P +++

Clearly, the 20x and 5x speedup don't have much effect on the overall speed boost and running time 

when  over  half  of  the  task  is  only  sped  up  1x,  (i.e.  not  sped  up),  or  1.6x.

1.3 Helmholtz Equation
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Sound essentially is pressure fluctuations in any medium, satisfying some constraints any medium 

can be solved for the pressure field by the equation written below

                                 ( ) ( )2
2

2 2

,1,
p t

p t
c t

∂
∇ =

∂
x

x (Eqn.1.7)

( ),p tx  is the acoustic pressure at position x at time t,

c  is the velocity of sound in the medium of propagation. 

Equation (1.7) is valid for the propagation of the acoustic waves in a constant density medium 

where no bulk flow is present.

Most of the acoustic sources are harmonic with respect to time, this makes the field   harmonic in 

the time domain i.e. ( ),p tx  can be presented in                      

                                       ( ) ( ), j tp t p e ω−=x x       (Eqn.1.8)

( )p x  is the spatial pressure field

2 fω π=  is the frequency of the fluctuation

Substituting equation (1.8) in to (1.7) we get the equation written below

  

                                        ( ) ( )2 2 0p k p∇ + =x x       (Eqn.1.9)

 k
c

ω=  is known as the wave number. Equation (1.7) is known as the Helmholtz equation, it is a 

second order linear differential equation which can be solved for simple systems.  The boundary 

conditions for the system become important as their knowledge can be used to solve the Helmholtz 

equation to get the spatial pressure field. More often than not the complexity of the geometry forces 

the analytical problem to be very difficult and hard to solve.

 1.4  Numerical Methods for Helmholtz equation

In most of the practical engineering problems analytical solution to Helmholtz equation is rendered 

very difficult due to the factors mentioned in the last section. Many numerical methods have been 

developed  over  the  years  to  counter  this  problem;  numerical  methods  tend  to  transform  the 

Helmholtz equation to a set of different linear algebraic equations of the form

                                            Ax = b         (Eqn.1.10)

Where A is a square matrix, b is the forcing vector obtained by the boundary value data and x is the 

solution of  the acoustic  domain.  Once  A and  b are determined by the geometry and boundary 
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conditions,  the unique solution  x,  which is  a  close approximation to  the exact  solution can be 

obtained. The order of the matrix and vectors depends upon the various parameters used in any 

particular numerical method. Some of the conventional numerical methods are:

• Finite Difference method 

• Finite Element method   

• Boundary Element method

The effectiveness of the numerical methods can be gauged by the fact that a differential equation is 

transferred to a linear algebraic one. The pressure field is transferred to discrete pressure points in 

the domain; generally  A and b are related to the stiffness and source of domain respectively. The 

first look at equation (1.10) may give the impression of it to be very simple to solve, on the contrary 

its computational challenges are immense and widespread. The order of the matrix and vector of a 

domain may run into a large number of unknowns, the problem is also compounded by the fact that 

the matrix also contains complex values. All over the world mathematicians [2] have worked hard 

to solve the linear system of equations in the most easy and effective ways. There are standard 

iterative algorithms [2] available to solve this linear system of equations, these algorithms fall in the 

category of Numerical methods, some of these standard iterative methods are mentioned below:

• GMRES (Generalized minimal residual method) 

• Jacobi method

• BiCG (Bi-conjugate gradient method)

• BiCGSTAB (Biconjugate Gradient Stabilization  method)

• MINRES (Minimal Residual method)

The parallel solution of Helmholtz equation has its roots in the availability and programmability of 

the above mentioned standard algorithms. One can program to run these numerical methods on 

various processors giving the solution in a fast and effective manner. The rate at which an iterative 

method converges depends greatly on the spectrum of the coefficient matrix A. Hence, iterative 

methods usually involve a second matrix that transforms the coefficient matrix into one with a more 

favorable  spectrum.  The  transformation  matrix  is  called  preconditioner.  A good  preconditioner 

improves the convergence of the iterative method, sufficiently to overcome the cost of constructing 

and applying the preconditioner. Indeed, without a preconditioner the iterative method may even 

fail to converge. In the next section an overview of all the major iterative methods has been given 

besides explaining two methods.  
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Chapter 2 Literature Review

2.1 Parallel Computing
Parallel computing can be defined as simultaneous usage of multiple processors for solving the 

same problem so that the result can be achieved faster. The concept of parallelization comes from 

the belief that any problem can be divided into smaller tasks which can be solved independent of 

each other but with some coordination.  Generally,  any program works by dividing itself  into a 

group of instructions which are executed serially in an order (see Fig. 2.1).

Figure 2.1 Serial computing[3]

The only and most important drawback with serial computing is the inability to process more than 

one instruction at  a time. This results in time losses when the computational limits of a single 

processor are stretched to its limits. In simplest sense a parallelized program does what a serial one 

is  not  capable  of  doing.  A problem  is  broken  into  various  discrete  parts  that  can  be  solved 

concurrently; these parts are made to form a series of instructions which are then carried out at the 

same  time  on  different  processors.  The  computer  resources  utilized  can  be  of  the  three  types 

mentioned below.

• A single computer with multiple processors

• An arbitrary number of computers connected by a network

• Any combination of the above two
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A simple schematic representation of the parallel computing is shown in the Fig 2.2

Figure 2.2 Parallel computing[3]

Any computational problem needs to have the following properties to be made parallel

● Broken apart into coherent pieces of work

● Multiple program instructions can be executed by the division 

● Solved in less time with multiple computer resources than with single resource

Generally, parallel computing has been considered to be the high end of computing fed by the need 

of numerical simulations for highly complex problems. Weather forecasting, nuclear reactions and 

space technology are just some of the fields which led to pioneering research and development in 

parallel computing.  

2.2 Parallel computing systems
A parallel computing systems consists of resources where more than one processor is at disposal for 

computational needs. There are many different types of parallel systems. They are distinguished by 

the  kind  of  interconnection  between  processors  and  memory.  One  of  the  most  accepted 

terminologies of parallel architecture classifies these systems according to 

• whether  all  processors  execute  the  same  instructions  at  the  same  time  (single  

instruction/multiple data --SIMD) or

• each processor executes different instructions (multiple instruction/multiple data –MIMD)

11



One  other  way  of  dividing  the  parallel  systems  is  based  on  the  memory  architecture.  Shared 

memory parallel systems (See  Fig.2.3) have multiple processors sharing the same global address 

space. Changes affected by one processor in the memory space are visible to other processors as 

well. The shared memory parallel systems can further be divided into two main classes based upon 

memory access times.

Figure 2.3 Shared Memory systems[3]

 UMA(Uniform Memory Access):It consists mainly of a combination of Symmetric multipro-

cessor  machines  (SMPs),  all  the  processors  are  identical.  Moreover,  the  access  time to  the 

shared memory is equal for all the processors. Sometimes these types of systems are known as 

Cache- Coherent UMA. It  is to say that one change made my any of the processor on the 

memory is easily visible to the rest of the other processors.  

 NUMA(Non-uniform Memory Access):Non-uniform as the word suggests is referred to a sys-

tem where memory access is not equal for all the processors. Normally these are made by con-

necting various SMPs (Symmetric multiprocessor machines), for this reason only the commu-

nication over two SMPs (Symmetric multiprocessor machines) is slower than communication 

inside SMPs (Symmetric multiprocessor machines). Shared memory systems have their advant-

ages as well as disadvantages. The programming is easy and user-friendly and the data sharing 

is fast and uniform due to proximity of the memory. The primary disadvantages are the lack of 

scalability between memory and CPUs and the responsibility of synchronization for correct ac-

cess to memory space lies with the programmer. Moreover it becomes difficult to make more 
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and more SMPs with ever increasing CPUs.

Distributed memory systems (Fig.2.4) also run on multiple processors but every processor can 

only access its own local memory space, no global address space exists between them.  The 

architectural  differences  between  shared-memory  multiprocessors  and  distributed-memory 

multiprocessors  have  implications  on  how  each  is  programmed.  With  a  shared-memory 

multiprocessor, different processors can access the same variables. This makes referencing data 

stored in memory similar to traditional single-processor programs, but adds the complexity of 

shared  data  integrity.  A distributed-memory  system introduces  a  different  problem:  how to 

distribute  a  computational  task  to  multiple  processors  with  distinct  memory  spaces  and 

reassemble the results from each processor into one solution.

Figure 2.4 Distributed Memory systems[3]

When a processor needs access to data in another processor, it is usually the task of the programmer 

to explicitly define how and when data is communicated. Synchronization between tasks is likewise 

the  programmer's  responsibility.  The  various  advantages  and  disadvantages  associated  with 

Distributed  memory  systems  are  mentioned  as  follows.  The  most  significant  advantage  with 

distributed  systems  is  the  direct  proportionality  between  number  of  processors  and  memory 

availability. A x fold increase in processor will deliver a x fold increase in the memory available. 

Sometimes the cheap and cost-effectiveness of distributed systems outweighs the benefits enjoyed 

with Shared memory systems. The processors which are not being used for any purpose can be 

utilized by the parallel program. Memory access in a distributed environment is quite fast vis a vis 

the Shared memory systems. It is also very easy to develop large clusters of computers which are 

inexpensive  and  customizable.  There  are  lot  of  flip-sides  too  associated  with  distributed 
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environment, the programming becomes highly complex as the programmer has to keep track of all 

the communications between the processors. Moreover the access to the memory is no uniform in 

nature. It is an individual memory system which is providing the access hence it would be different 

from one processor to another.

These days the ideal way of parallel programming would be to incorporate a system utilizing both 

shared as well as distributed memory systems. Infact, most of the largest and fastest computers in 

the world employ both these architectures 

Figure 2.5 Latest parallel systems[3]

The shared memory component is usually a cache coherent SMP machine. Processors on a single 

SMP can refer to its memory as global, while distributed system is the networking of various SMPs 

(Symmetric  Multiprocessor).  The  network  communications  are  a  requirement  for  data  tranfer 

between the SMPs. This type of system incorporates both the advantages as well as inconveniences 

of all parallel architectures available. 
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2.3 Parallel programming models

There are various methods for doing the programming on parallel systems, as is clear from 

abovementioned texts that most significant part is to ensure the communication. There are sev-

eral parallel programming models in common use: 

o Message passing

o Data parallel

o Shared Memory  

o Threads

o Hybrid 

Parallel programming models exist as an abstraction above hardware and memory architectures. Al-

though it might not seem apparent, these models are not specific to a particular type of machine or 

memory architecture. In fact, any of these models can (theoretically) be implemented on any com-

bination of hardware.  Which model to use is often a combination of what is available and personal 

choice? There is no "best" model, although there certainly are better implementations of some mod-

els over others. The following sections describe each of the models mentioned above, and also dis-

cuss some of their actual implementations. 

2.3.1 Shared Memory Model

In this type of programming model since the global memory is common to all the processors the 

data is asynchronously read and written. Programmers use different mechanisms to control access to 

the shared memory. Program development can often be simplified. An important disadvantage in 

terms of performance is that it  becomes more difficult  to understand and manage data locality. 

Moreover since the data sharing is done through memory address, the need for explicit communica-

tion is substituted.
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2.3.2 Threads Model[3]

In the threads model of parallel programming, a single process can have multiple, concurrent execu-

tion paths. Perhaps the simplest analogy that can be used to describe threads is the concept of a 

single program that includes a number of subroutines: 

Figure 2.6 Thread based parallel model[3]

The main program a.out is scheduled to run by the native operating system. a.out loads and ac-

quires all of the necessary system and user resources to run. a.out performs some serial work, and 

then creates a number of tasks (threads) that can be scheduled and run by the operating system con-

currently. Each thread has local data, but also, shares the entire resources of a.out. This saves the 

overhead associated with replicating a program's resources for each thread. Each thread also bene-

fits from a global memory view because it shares the memory space of a.out. A thread's work may 

best be described as a subroutine within the main program. Any thread can execute any subroutine 

at the same time as other threads. Threads communicate with each other through global memory 

(updating address locations). This requires synchronization constructs to insure that more than one 

thread is not updating the same global address at any time. Threads can come and go, but a.out re-

mains  present  to  provide  the  necessary  shared  resources  until  the  application  has  completed. 

Threads are commonly associated with shared memory architectures and operating systems. 
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Implementations: 

From a programming perspective, threads implementations commonly comprise: 

o A library of subroutines that are called from within parallel source code 

o A set of compiler directives embedded in either serial or parallel source code 

In both cases, the programmer is responsible for determining all parallelism. 

Threaded implementations are not new in computing. Historically, hardware vendors have imple-

mented  their  own proprietary  versions  of  threads.  These  implementations  differed  substantially 

from each other making it difficult for programmers to develop portable threaded applications. Un-

related  standardization  efforts  have  resulted  in  two  very  different  implementations  of  threads: 

POSIX Threads and OpenMP[3]. 

• POSIX Threads 

o Library based, requires parallel coding 

o Specified by the IEEE POSIX 1003.1c standard (1995). 

o C Language only 

o Commonly referred to as Pthreads. 

o Most hardware vendors now offer Pthreads in addition to their proprietary threads 

implementations. 

o Very explicit parallelism requires significant programmer attention to detail. 

• OpenMP[5] 

o Compiler directive based can use serial code 

o Jointly defined and endorsed by a group of major computer hardware and software 

vendors. The OpenMP FORTRAN API was released October 28, 1997. The C/C++ 

API was released in late 1998. 

o Portable / multi-platform, including Unix and Windows NT platforms 

o Available in C/C++ and Fortran implementations 

o Can be very easy and simple to use - provides for "incremental parallelism" 

17



2.3.3 Message Passing Model

The message passing model is essentially based on the division of problems into various number of 

tasks. Normally, each task works independently until data exchange is required. Communication 

forms the back-bone of this type of method, various types of send and receive messages are imple-

mented to get the desired results. The tasks are executed on various local processes, the processes 

can be on different processors or the same processor. The name message passing is derived from the 

sharing of data that is done for complete execution of the job. Every process has its own local vari-

ables and by no means can any process access the memory of another one. The onus is on the pro-

grammer to divide the tasks intelligently and equally to utilize all the resources at disposal.  Data 

transfer usually requires cooperative operations to be performed by each process. For example, a 

send operation must have a matching receive operation Fig. 2.7. 

Figure 2.7 Message passing model[3]

Implementations: 

• From a programming perspective, message passing implementations commonly comprise a 

library of subroutines that are embedded in source code. The programmer is responsible for 

determining all parallelism. 

• In 1992, the MPI Forum was formed with the primary goal of establishing a standard inter-

18



face for message passing implementations. 

• Part 1 of the  Message Passing Interface (MPI)[2] was released in 1994. Part 2 (MPI-2) 

was released in 1996. Both MPI specifications are available on the web at  www.mcs.an-

l.gov/Projects/mpi/standard.html. 

• MPI is now the "de facto" industry standard for message passing, replacing virtually all oth-

er message passing implementations used for production work. Most, if not all of the popu-

lar parallel computing platforms offer at least one implementation of MPI. The latest imple-

mentation being MPICH2 [7]. 

2.3.4 Data Parallel Model

 Data parallel model refers to the division of data into various groups. The divided data is sent to 

different tasks which then work on it. Most of the parallel work focuses on performing operations 

on a data set. The data set is typically organized into a common structure, such as an array or cube 

Fig 2.8. A set of tasks work collectively on the same data structure, however, each task works on a 

different partition of the data structure. Generally, each of the task consists of same operation but 

implemented  on different data sets. Distributed memory systems use this model by storing only a 

part of the data in the local memory. On shared memory architectures, all tasks may have access to 

the data structure through global memory. 

Figure 2.8 Data parallel model[3]

Implementations: 

• Distributed memory implementations of this model usually have the compiler convert the 

program into standard code with calls to a message passing library (MPI usually) to distrib-

ute the data to all the processes. All message passing is done invisibly to the programmer. 
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2.3.5 Hybrid  In this model, any two or more parallel programming models are combined. Cur-

rently, a common example of a hybrid model is the combination of the message passing model 

(MPI) with either the threads model (POSIX threads) or the shared memory model (OpenMP). This 

hybrid model lends itself well to the increasingly common hardware environment of networked 

SMP machines. Another common example of a hybrid model is combining data parallel with mes-

sage passing. 

2.4 Iterative Methods for Helmholtz equation
2.4.1 Overview of the Methods

In this section some of the above mentioned numerical methods for the system of linear equations 

will be explained with a description on the class of matrices for which they are most suitable.

• The Jacobi method is based on the solving for every variable locally with respect to the 

other variables;  single iteration of the method corresponds to solving for every variable 

once. The resulting method is easy to understand and implement, but convergence is slow.

• The MINRES method is used to generate a sequence of orthogonal vectors, these vectors are 

the residuals of iterates, it’s an effective method when the coefficient matrix is symmetric 

but positively indefinite. The storage space required with this method is optimized to a great 

extent.

• The Generalized Minimal Residual method computes a sequence of orthogonal vectors (like 

MINRES), and combines these through a least-squares solve and update. However, unlike 

MINRES it requires storing the whole sequence, so that a large amount of storage is needed. 

For  this  reason,  restarted  versions  of  this  method  are  used.  In  the  restarted  versions, 

computation and storage costs are limited by specifying a fixed number of vectors to be 

generated. This method is useful for general nonsymmetrical matrices. 

• The  Biconjugate  Gradient  method  generates  two  sequences  of  vectors,  one  based  on  a 

system with the original coefficient matrix A, and one on AT. Instead of orthogonalizing each 

sequence, they are made mutually orthogonal. This method uses limited storage and is very 

useful when the matrix is nonsymmetrical and nonsingular; however, convergence may be 

irregular,  and  the  possibility  that  the  method  might  break  down.  BiCG  requires  a 

multiplication with the coefficient matrix and with its transpose in all the iterations. 

• The Biconjugate Gradient Stabilized method is a variant of BiCG but using different updates 

for the AT- sequence in order to obtain smoother convergence.

The iterative algorithms generally employed for solving the Helmholtz equation would have to 
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satisfy  certain  conditions  for  the  coefficient  matrix.  The  coefficient  matrix  formed  after  using 

Numerical methods is sparse, nonsymmetric and positive definite. The iterative methods suitable for 

this system of linear equations obtained by the WEM are GMRES and Big STAB, the GMRES 

method is explained as follows

2.4.2 GMRES

The Generalized Minimal Residual method is an extension of MINRES (which is only applicable to 

symmetric systems) to the unsymmetrical systems. It generates a sequence of orthogonal vectors, 

but in the absence of symmetry this can no longer be done with short recurrences;  instead, all 

previously  computed  vectors  in  the  orthogonal  sequence  have  to  be  retained.  For  this  reason, 

“restarted” versions of the method are used.

Theory

The Generalized Minimal Residual method is designed to solve nonsymmetrical linear systems. The 

most popular form of GMRES uses restarts to control storage requirements.

If no restarts are used, GMRES will converge in no more than n steps (assuming exact arithmetic). 

Of course this is of no practical value when  n is large; moreover, the storage and computational 

requirements in the absence of restarts are prohibitive. Indeed, the crucial element for successful 

application of GMRES revolves around the decision of when to restart; that is, the choice of  m. 

There are examples for which the method stagnates and convergence takes place only at the nth step, 

for these kinds of systems any choice of m less than n fails to converge. 

The major drawback of GMRES is that the amount of work and storage required per iteration rises 

linearly  with  the  iteration  count.  In  case  one  is  fortunate  enough  to  obtain  extremely  fast 

convergence, the cost will rapidly become prohibitive. The restarted version to some extent has 

been able to overcome this problem, after a chosen number of iterations the accumulated data are 

cleared  and the  intermediate  results  are  used  as  the  initial  data  for  the  next  m iterations.  The 

procedure is repeated until convergence is achieved. The difficulty is on choosing an appropriate 

value for m. If m is “too small” GMRES may be slow to converge, or fail to converge entirely. A 

value  of  m that  is  larger  than  necessary  involves  excessive  work  (and  uses  more  storage). 

Unfortunately, there are no definite rules governing the choice of  m choosing when to restart is a 

matter  of  experience.   The  pseudo  code  for  GMRES  method  is  explained  with  the  use  of  a 

preconditioner M in the Fig 2.10
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   Figure 2.10 GMRES pseudo code [2]
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2.4.3 BiCG (Biconjugate Gradient method)

This method is a variant of the CGS(Conjugate Gradient) method which is not suitable for the 

unsymmetrical  systems  because  the  residual  vectors  cannot  be  made  orthogonal  with  short 

recurrences. The GMRES method retains orthogonality of the residuals by using long recurrences, 

at the cost of a larger storage demand. The Biconjugate Gradient method takes another approach, 

replacing the orthogonal sequences, at the price of no longer providing a minimization

Theory 

Few theoretical results are known about the convergence of BiCG. For symmetric positive definite 

systems the method delivers the same results as Conjugate Gradient (CG), but twice the cost per 

iteration. For nonsymmetrical matrices it has been shown that in phases of the process where there 

is significant reduction of the norm of the residual, the method is more or less comparable to full 

GMRES. In practice this is often confirmed, but it is also observed that the convergence behavior 

may be quite irregular, and the method may even breakdown. BiCG requires computing a matrix-

vector product  Ap(k) and a transpose product  ATp(k). In some applications the latter product may be 

impossible to perform, for instance if the matrix is not formed explicitly and the regular product is 

only given in operation form, for instance as a function call evaluation.

In  a  parallel  environment,  the  two  matrix-vector  products  can  theoretically  be  performed 

simultaneously; however, in a distributed –memory environment, there will be extra communication 

costs associated with one of the two matrix-vector products, depending upon the storage scheme for 

A. A duplicate copy of the matrix will alleviate this problem, at the cost of doubling the storage 

requirements for  the matrix.  Care must also be exercised in choosing the preconditioner,  since 

similar problems arise during the two solves involving the preconditioning matrix.

It is difficult to make a fair comparison between GMRES and BiCG. GMRES really minimizes a 

residual,  but at  the cost  of increasing work for keeping all  residuals orthogonal  and increasing 

demands  for  memory  space.  BiCG  does  not  minimize  a  residual,  but  often  its  accuracy  is 

comparable to GMRES, at the cost of twice the amount of matrix vector products per iteration step. 

However, the generation of the basis vectors is relatively cheap and the memory requirements are 

modest. Several variants of BiCG have been proposed that increase the effectiveness of this class of 

methods in certain circumstances. The pseudo code for this method is shown in the Fig 2.11. 
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    Figure 2.11 Pseudo code of  Pre-Conditioned BiCG [5]
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Chapter 3

Designing Parallel Programming
In  order  to  improve the overall  efficiency of  any solver,  it  is  imperative to  solve larger,  more 

memory intensive problems, or simply solve problems with greater speed than is possible on a 

serial computer. Parallel programming and parallel computers can be used to satisfy these needs. 

Using parallel programming methods on parallel computers gives access to greater memory and 

Central Processing Unit (CPU) resources not available on serial computers. Hence, one is able to 

solve large problems that may not have been possible otherwise, as well as solve problems more 

quickly. One of the basic methods of programming for parallel computing is the use of Message 

Passing Interface (MPI) libraries. These libraries manage transfer of data between instances of a 

parallel program running on multiple processors in a parallel computing architecture.

The topics to be discussed in this chapter are

• The difference between domain and functional decomposition.

• Some Parallel programming issues

3.1 Problem Decomposition
The first step in designing a parallel algorithm is to decompose the problem into smaller problems. 

Then,  the  smaller  problems  are  assigned  to  processors  to  work  on  simultaneously.  Roughly 

speaking, there are two kinds of decompositions.

1. Domain decomposition

2. Functional decomposition

These are discussed in the following two sections.

3.1.1 Domain Decomposition 

In domain decomposition or “data parallelism”, data is divided into pieces of approximately the 

same size and then mapped to different processors. Each processor then works only on the portion 

of the data that is assigned to it. Of course, the processes may need to communicate periodically in 

order to exchange data. Data parallelism provides the advantage of maintaining a single flow of 

control. A data parallel algorithm consists of a sequence of elementary instructions applied to the 

data: an instruction is initiated only if the previous instruction is ended. Single-Program-Multiple-

Data (SPMD) follows this model where the code is identical on all processors. Such strategies are 

commonly employed in finite differencing algorithms where processors can operate independently 

26



on large portions of data, communicating only the much smaller shared border data in every itera-

tion. 

Figure 3.1 Domain decomposition

3.1.2 Functional decomposition

Frequently, the domain decomposition strategy turns out not to be the most efficient algorithm for a 

parallel program. This is the case when the pieces of data assigned to the different processes require 

different lengths of time to process. The performance of the code is then limited by the speed of the 

slowest process. The remaining idle processes do no useful work. In this case, functional decompos-

ition (see Fig. 3.2) or “task parallelism” makes more sense than domain decomposition. In task par-

allelism, the problem is decomposed into a large number of smaller tasks and then, the tasks are as-

signed to the processors as they become available. Processors that finish quickly are simply as-

signed more work. 

Figure 3.2 Functional decomposition[3]
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Task parallelism is implemented in a client-server paradigm see Fig 3.3. The tasks are allocated to a 

group of slave processes by a master process that may also perform some of the tasks. The client-

server paradigm can be implemented at virtually any level in a program. For example, if one simply 

wishes to run a program with multiple inputs, a parallel client-server implementation might just run 

multiple copies of the code serially with the server assigning the different inputs to each client pro-

cess. As each processor finishes its task, it is assigned a new input. Alternately, task parallelism can 

be implemented at a deeper level within the code. 

                       

Figure 3.3 Client server paradigms

.

3.1 Parallel Programming Issues
Parallelization is not envisaged if communications is not possible; the extent of communication var-

ies from problem to problem.  The need for communications between tasks depends upon the prob-

lem:  

Some types of problems can be decomposed and executed in parallel with virtually no need for 

tasks to share data. These types of problems are often called embarrassingly parallel because they 

are so straight-forward. Very little inter-task communication is required. 

3.2.1 Key Factors[3]

There are a number of important factors to consider when designing your program's inter-task com-

munications: 

•  Communications cost 

o Inter-task communication virtually always implies overhead. 

o Machine cycles and resources that could be used for computation are instead used to 
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package and transmit data. 

o Communications  frequently  require  some type  of  synchronization  between tasks, 

which can result in tasks spending time "waiting" instead of doing work. 

o Competing communication traffic can saturate the available network bandwidth, fur-

ther aggravating performance problems. 

• Latency vs. Bandwidth 

o Latency is the time it takes to send a minimal (0 byte) message from point A to point 

B, commonly expressed as microseconds. 

o Bandwidth is the amount of data that can be communicated per unit of time. Com-

monly expressed as megabytes/sec. 

o Sending many small messages can cause latency to dominate communication over-

heads. Often it is more efficient to package small messages into a larger message, 

thus increasing the effective communications bandwidth. 

• Visibility of communications 

o With the Message Passing Model, communications are explicit and generally quite 

visible and under the control of the programmer. 

o With the Data Parallel Model, communications often occur transparently to the pro-

grammer, particularly on distributed memory architectures. The programmer may not 

even  be  able  to  know exactly  how inter-task  communications  are  being  accom-

plished. 

• Synchronous vs. asynchronous communications 

o Synchronous communications  require  some type  of  "handshaking" between tasks 

that are sharing data. This can be explicitly structured in code by the programmer, or 

it may happen at a lower level unknown to the programmer. 

o Synchronous  communications  are  often  referred  to  as  blocking communications 

since other work must wait until the communications have completed. 

o Asynchronous communications allow tasks to transfer data independently from one 

another. For example, task 1 can prepare and send a message to task 2, and then im-

mediately begin doing other work. When task 2 actually receives the data doesn't 

matter. 

o Asynchronous communications are often referred to as  non-blocking communica-
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tions since other work can be done while the communications are taking place. 

o Interleaving computation with communication is the single greatest benefit for using 

asynchronous communications. 

• Scope of communications 

o Knowing which tasks must communicate with each other is critical during the design 

stage of a parallel code. Both of the two scoopings described below can be imple-

mented synchronously or asynchronously. 

o Point-to-point - involves two tasks with one task acting as the sender/producer of 

data, and the other acting as the receiver/consumer. 

o Collective - involves data sharing between more than two tasks, which are often spe-

cified as being members in a common group, or collective. Some common variations 

(there are more):

The main goal of writing a parallel program is to get better performance over the serial version. 

This thing in mind, there are several issues that you need to consider when designing your parallel 

code to obtain the best performance possible within the constraints of the problem being solved. 

These issues are

•  load balancing

•  minimizing communication

Each of these issues is discussed in the following sections.

3.2.2 Load Balancing

Load balancing is the task of equally dividing work among the available processes. This can be easy 

to do when the same operations are being performed by all the processes (on different pieces of 

data). It is not trivial when the processing time depends upon the data values being worked on. 

When there are large variations in processing time, you may be required to adopt a different method 

for solving the problem.

3.2.3 Minimizing Communication 

Total execution time is a major concern in parallel programming because it is an essential compon-

ent for comparing and improving all programs. Three components make up execution time:

1. Computation time

2. Idle time

3. Communication time
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Computation time is the time spent performing computations on the data. Ideally, if one has N pro-

cessors working on a problem then it should be finished in 1/Nth the time of the serial job. This 

would be the case if all the processors’ time was spent in computation.

Idle time is the time a process spends waiting for the data from other processors. During this time, 

the processors do no useful work. An example of this is the ongoing problem of dealing with input 

and output in parallel programs. Many message passing libraries do not address parallel I/O, leaving 

all the work to one process while all other processes are in the idle state.

Finally, communication time is the time it takes for processes to send and receive messages. The 

cost of communication in the execution time can be measured in terms of latency and bandwidth. 

Latency is the time it takes to set up the envelope for communication, where bandwidth is the actual 

speed of transmission, or bits per unit time. Serial programs do not use interprocess communication. 

Therefore, one must minimize this use of time to get the best performance improvements.
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Chapter 4

Parallel Programs
From the previous sections it is quite clear that a Helmholtz equation is changed to a system of 

linear equations using numerical methods. The order of these equations is quite large and hence 

iterative methods should be used to solve them easily, moreover parallel programming gives us the 

chance to solve this big problem in fast manner. The programs were made in C++ language while 

the library from which the parallel functions were imported was MPI (Message Passing Interface). 

A primary reason for the usefulness of this model is that it is extremely general. Essentially, any 

type of parallel computation can be cast in the message passing form. In addition, this model can be 

implemented on a wide variety of platforms, from shared-memory multiprocessors to networks of 

workstations and even single-processor machines. Generally allows more control over data location 

and flow within a parallel application than in, for example, the shared memory model. Thus pro-

grams can often achieve higher performance using explicit message passing. Indeed, performance is 

a primary reason why message passing is unlikely to ever disappear from the parallel programming 

world.

MPI  stands for “Message Passing Interface”. It is a library of functions (in C and C++) or sub-

routines (in FORTRAN) that you insert into source code to perform data communication between 

processes. 

MPI  is  a  standard  for  inter-process  communication  on  distributed-memory multiprocessor.  The 

standard has been developed by a committee of vendors, government labs, and universities [4]. Im-

plementation of the standard is usually left up to the designers of the systems on which MPI runs, 

but a public domain implementation, MPICH, is available [7]. 

The execution model of a program written with MPI is quite different from one written with Open-

MP. When an MPI program starts, the program spawns into the number of processes as specified by 

the user. Each process runs and communicates with other instances of the program, possibly run-

ning on the same processor or different processors. The greatest computational speedup will occur 

when processes are distributed among processors. Basic communication consists of sending and re-

ceiving data from one process to another, unlike OpenMP's thread communication via shared vari-

ables. This communication takes place over a high-speed network which connects the processors in 

the distributed-memory system. 
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A data packet sent with MPI requires several pieces of information: the sending process, the receiv-

ing process, the starting address in memory of the data to be sent, the number of data items being 

sent, a message identifier, and the group of processes that can receive the message. All of these 

items are able to be set by the programmer. For example, one can define a group of processes, and 

then send a message only to that group. Some collective communication routines do not require all 

of items. For example, a routine which allows one process to communicate with all other processes 

in a group when called by each of those processes would not require the specification of a receiving 

process since every process in the group should be a receiver. 

In the simplest MPI programs, a master process sends off work to worker processes. Those pro-

cesses receive the data, perform tasks on it, and send the results back to the master process which 

combines the results. More complex coordination schemes are possible with MPI, but they intro-

duce new challenges. Fig 4.1 shows the execution model of a basic MPI program. 

Figure 4.1 MPI execution model

The primary goals addressed by MPI are:

• Provide source code portability, MPI programs should compile and run as-is on any plat-

form.

• Allow efficient implementations across a range of architectures
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MPI also offers

• A great deal of functionality, including a number of different types of communication, spe-

cial routines for common “collective” operations, and the ability to handle user-defined data 

types and topologies.

Some things that are outside the scope of MPI are 

• The precise mechanism for launching an MPI program. In general this is platform-depend-

ent and language used dependent.

• Dynamic process management that is, changing the number of processes while the code is 

running.

One should use MPI when one needs any one of the following

• Write a portable parallel code

• Achieve high performance in parallel programming, e.g. when writing parallel libraries.

Clearly there are cases when MPI is not required

• Can achieve sufficient performance and portability using a data-parallel or shared-memory 

approach.

• Parallelism is not required at all; using it when the requirement is almost zilch would make 

the code complex and hard for the users to understand.

4.1 Distributed memory programming
4.1.1 MPI Library

One of the biggest challenges in programming a distributed-memory multiprocessor is implement-

ing efficient  inter-process  communication.  Communication  is  not  limited to  the simple  master-

worker relationship shown in Fig 4.1. It may very well be the case that a process requires data or 

computed results from any other process during execution. It may also be the case that each process 

requires the same data sent from a single process, or that all processes require data from all the oth-

er processes. Ensuring process synchronization in these cases adds a level of complexity to pro-

grams developed on distributed-memory multiprocessors. Making communication efficient, that is, 

minimizing the overhead involved in message passing, adds further complexity. MPI provides many 

communication routines to aid the programmer in developing inter-process communication. These 

routines include: 
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• Barriers - points within a program where each process waits until all other processes get 

there. When this occurs, each process resumes execution. 

• Blocking sends and receives - message passing routines which cause a process to wait until 

a message is sent or received before continuing execution 

• Non-blocking sends and receives - message passing routines which do not cause a process to 

wait until a message is sent or received before continuing execution 

• Collective communications Fig. 4.2 - messages sent in one of three ways: one process sends 

other processes in a process group a message, all processes in a group send messages to all 

processes in the same group, and all processes in a group send a message to one process 

Figure 4.2 Collective communications[3]
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Table 4.1 Common MPI subroutines [6] 

The primary goal of this project was to study the parallelization on WINDOWS based distributed 

memory  computers.  After  due  consideration  to  the  available  resources  and  time  frame,  the 

MPICH[7] version of the open source parallel library was chosen for this task. The approach to pro-

gramming has been explained in  Chapter 2 and  3.  A list of commonly used subroutines (FOR-

TRAN) or functions(C and C++) are presented in the table 4.1. The language chosen for program-

ming was C++ and the compiler used is Microsoft Visual C++. The easiest way to start with paral-

lelizing a program was to take up a matrix vector multiplication. The method of programming and 

issues related to it are tackled in the next section.
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4.2 Matrix vector multiplication
As we have seen earlier (Chapter 1) that solving Helmholtz equation (Equation 1.7) requires us to 

do a matrix vector multiplication hence the solution of this becomes an imperative issue. The study 

of parallelization effects are done by parallelizing this multiplication using two different algorithms. 

The elapsed time by a serial program is compared with times taken by the different algorithms. The 

results invariable follow the Amdahl’s law mentioned in Chapter 1. 

4.2.1 Serial matrix vector multiplication

Serial matrix vector multiplication refers to the solution done using single processor on a computer. 

The complete code for this can be found in Appendix C. The code follows a simple rule of forming a 

buffer space for answer vector and then goes on tackling the matrix row-wise. Each row is multi-

plied to the vector one at a time and the answer is stored in the buffer formed initially to store the 

answer

                  

  

Figure 4.3 Serial Matrix vector multiplications

4.2.2 Row-wise parallel matrix vector multiplication

The code to matrix vector multiplication using this type of algorithm is available in  Appendix B. 

The only difference between this program and the serial one is division of program into mutually in-

dependent tasks in the parallelized version.  The strategy still remains the same of multiplying each 

row to the vector, though in this case it is done at the same time but independently. This algorithm 

mainly utilizes domain decomposition; the initial matrix is divided into data sets row-wise. Now 

clearly this will divide the whole problem into m number of parallel tasks, where m is the number 

of rows in the matrix. The number of processes will decide the number of simultaneous task com-

pletion done by this method. Obviously there is overhead associated with this algorithm also, each 
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task has to be sent to the different process and memory requirements also shoot up as the buffer 

space is dynamic and has to be intimated to  other processes. The vector too is sent to each and 

every process, the I/O is not parallel and hence initially some of the processes are left idle. 

4.2.3 Block-wise parallel matrix vector multiplication

The code for this algorithm is presented in the Appendix A. One of the disadvantages that the previ-

ous algorithm suffers is the unequal load distribution. The load is divided on the availability of the 

processes, i.e. when one of the processes has completed one of the row vector multiplication then 

and only then will the master process check for the availability of tasks. In this algorithm the tasks 

are equally formed at the start or domain decomposition is done. The task formation in itself is de-

pendent on the number of processes.  

In order to have a good load balance it is necessary to divide the matrix into blocks of equal size. 

The size should be the size of the matrix divided by the number of processes. Because the processes 

have to multiply these pieces with a vector again, the blocks should be contiguous.

Figure 4.4 Block-wise matrix vector multiplication

As can be seen from Fig. 4.3 the matrix has been divided into 5 blocks of contiguous nature. Each 

block with the vector is then sent to the corresponding process where multiplication is done and the 

result is sent back to the master process. The master process hence divides as well as assembles the 

solution for this problem. It is quite clear that the communication overhead will increase with the 

increasing number of processes.

39

 Matrix  m cols                         Vector 

0 
 
1 
 
3 
 
4 
 
5  n/pu 
blocks 



Chapter 5: Results

5.1 Introduction                                                        41

5.2 Program Results                                                  41

5.2.1 Serial Matrix vector                                    41

5.2.2 Row-wise matrix vector multiplication      42

5.2.3 Block-wise matrix vector multiplication    45

40



Chapter 5

5.1 Introduction
The three codes made to test the parallelism have been attached in the Appendices. The codes were 

made and run on a twin processor WINDOWS based computers with configuration of 2MB RAM 

and 3 GHz processor speed. The two computers were installed with MPICH[6] and a parallel pro-

gram was made on one of the computer. The execution of program requires the executable to be 

copied on all the systems being used for the calculation purposes. MPICH is readily available on the 

internet for free download with the installation instructions necessary for WINDOWS based plat-

forms. The use of MPI users manual cannot be neglected to say the least, it provides with a sound 

knowledge of various functions/subroutines to go about the parallel program.

5.2 Program results
All  the three programs are  essentially  matrix  vector  multiplication but  done using different  al-

gorithms and hence quite easily the time of execution changes with each of the program. The whole 

objective is to reduce the time it takes on a serial execution and then analyse the extent to which it 

can be parallelized.

5.2.1 Serial matrix vector 

The serial matrix vector multiplication is easily the easiest and most common approach to do the 

program. A single processor was needed to execute the program provided in Appendix C, a matrix 

of the size 1000× 1000 was multiplied with an appropriate vector. The average time taken for this 

exercise comes out to be almost 170 seconds. The table 5.1 shows the various times taken for the 

serial matrix vector multiplication.

No. of pro-
cesses No. of processor Time taken (seconds) Average time(seconds)

1 1 167,25
1 1 169,34
1 1 171,23
1 1 172,99
1 1 170,23
1 1 169,87

170,15

Table 5.1 Serial matrix vector multiplication

As can be seen from the table 5.1 the program was run on a single processor machine with the pro-

gram accounting for one single task. The use of MPICH gives us the flexibility of using more than 

one processor and formation of more than one task for the same problem. The results of paralleliza-
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tion will be found in the next sections.

5.2.2 Row-wise matrix vector multiplication

The algorithm of row-wise matrix vector multiplication was explained in Chapter 4. This program 

was executed on a twin processor computer and then in combination with a four processor distrib-

uted memory system. The time taken for the execution of this program with various combinations is 

provided in the table 5.2. The use of MPICH libraries also enables user to use the log file made to 

look through the various communications done during the execution of the program. The use of log 

file tells the user about the work done by the various processes during the timeline history. A sample 

log file picture will look like Fig. 5.1

Figure 5.1 Sample Process view

The log file is known as Process view and gives us the good knowledge regarding load balancing 

and communication overheads if any are present in the algorithm.

42



Table 5.2 Row-wise matrix vector parallel multiplication
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No. of proc es s es No. of proc es s or T ime taken(s ec ) Average time(s ec ) S peed up
2 2 30,12 30,23 5,62

30,5
30,25
30,03
30,24

3 2 31,17 31,82 5,34
31,59
33,15
31,55
31,65

4 2 32,03 31,97 5,32
31,58
31,67
32,46
32,11

6 2 61,01 53,57 3,17
59,67
57,54
32,02
57,6

8 2 60,96 59,86 2,84
59,22
61,97
57,52
59,62

3 3 30,35 29,81 5,7
29,51
29,74
29,84
29,6

4 4 29,32 29,8 5,71
30

29,96
29,89
29,81

6 4 32,47 33,04 5,15
32

35,11
33,1

32,52



The speed up Vs Number of processes chart was made for this particular program and shown in 

Fig. 5.3

0

1

2

3

4

5

6

7

0 2 4 6 8 10

Speed up

Number of processes

Series1

Linear (Series1)

Figure 5.3  Speed up Vs Number of processes

The chart was made only for a twin processor computer, the use of MPICH gives the flexibility of 

launching as many number of processes as one wishes to do. It is quite clear from the above chart 

that increasing number of processes innumerably will not increase the speed up. The reason for this 

can be the communications overhead which are associated with increasing number of processes. 

This algorithm is a clear example of cost paid towards communications (Chapter 3). Increasing the 

number of processes might work if the initial problem size increases, i.e. if the size of matrix is in-

creased further then more speed up will be achieved but the overall trend of decreasing speed up 

will remain the same.
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5.2.3 Block wise matrix vector multiplication

 The algorithm to this type of program has been explained in Chapter 4. The load balancing in this 

type of algorithm is more dynamic in nature as the load depends on the number of processes used 

by the user. The domain decomposition is clearer if we view the Process view diagram for this type 

of algorithm in Fig 5.4

Figure 5.4 Process view block-wise matrix vector multiplication

As can be seen clearly from the figure that some of the processes are completed before the others 

and while some are left idle for a substantial amount of time. The time taken for the various com-

binations of this algorithm are shown in the table 5.3
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 Table 5.3 Block wise matrix vector multiplication

An interesting observation regarding this algorithm was the time taken if the processes were less 

than 33. The program timed-out after 600 seconds i.e. it could not finish itself off after the stipu-

lated 600 seconds. Moreover, if the number of processes was increased to more than 75 the result 

was the same. This observation could not be explained as to why the program would time itself out 

if the number of processes is less than a certain value. The MPICH library does not provide any 

useful explanation regarding this observation, moreover when the speed up was plotted with the 

number of processes it was found to remain almost the same see Fig. 5.5. 
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No. of Process No. of processors Time taken(sec) Average time (sec) Speed up

33 2

30,23

30,65 5,55

31,01
30,25
30,2

31,55

33 4

30,2

30,33 5,6

30,13
30,65
30,14
30,54

40 2

57,82

55,49 3,06

54,88
54,94
54,91
54,9

40 4

30,64

30,53 5,57

30,67
30,12
30,55
30,66

50 2

59,28

47,76 3,56

56
56,64
33,9

32,96

50 4

30,69

30,45 5,58

30,38
30,87
30,12
30,2



5,565
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5,585

5,59
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Figure 5.5 Speed up VS Number of processes

It is clear from the above Fig.5.5; speed up is independent of the number of processes. Since the do-

main decomposition is done based upon the number of processes the speed up remains constant, the 

portion of program parallelized is neutralized by the communication overhead associated with it. 

The true picture of load balancing could also be checked if more number of processors was used to 

execute the program. This analysis  is  somewhat incomplete  without  increasing number  of pro-

cessors; doing so might also explain the time-out which occurred when the number of processes 

was increased to the order of 75.  
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Chapter 6

Conclusions and Future work

6.1 Conclusion
This report provides an overview of the parallelization techniques which can be used for the com-

puters based on WINDOWS platforms. It is possible to use MPICH open source library to parallel-

ize programs on distributed memory environment, though the use of MPI to parallelize ABAQUS 

on WINDOWS is currently not supported. The use of ABAQUS for solving jobs on multiple pro-

cessors requires LINUX or some vendor based parallel architecture. Although, ABAQUS can not be 

parallelized using WINDOWS platform, the problem is essentially of hardware. In the future with 

new developments in MPICH it might become possible to use it implicitly in ABAQUS, though as 

of now parallelization of any code requires deep analysis for getting efficient and positive results. 

At this moment of time any problem which might have any probability of parallelization can be 

solved on distributed memory computer systems using MPICH. The report also discusses the scope 

of the usage of domain decomposition techniques for improving the usage of parallel computation 

techniques. 

The non availability of more than two computers rendered it impossible to test this program on in-

creasing number of processors. The study of parallelization is almost incomplete without analysis of 

the program on increasing number of processors.

6.2 Future Work
In order to demonstrate the applicability of the techniques, scalability of the usage of the techniques 

must be tested. Suitable domain decomposition algorithms must also be tested in order to achieve 

maximum efficiency.  The only program which was parallelized was that of matrix-vector multiplic-

ation, there are innumerable possibilities of checking this parallel system. There is a lot of scope of 

tackling more complex problems and testing the solution on increasing number of processors. The 

matrix vector multiplication can be further modified for sparse matrices and used for the GMRES or 

BiGSTAB iterative methods to solve the Helmholtz equation. The effect of increasing number of 

processors on the elapsed time was not taken up due to the shortage of time. One should join as 

many processors as possible to completely study the parallelization.
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Appendix A
The parallel implementation of a Matrix by vector multiplication is shown below. This computation (Multiplication of vector by matrix) is basic
to almost all of the Numerical methods discussed in the report. The Message passing library used is M P I C H  version 2 , the programs are made in
C++ with a Visu al  C++ compiler used to compile it. The computers on which the programs were executed, consisted of 2 processors each on a
W I N D O W S  Local Area Network(LAN). The implementation of this program should be done only after reading the configuration of MPICH2
with W I N D O W S  manual.
/*
********************************************************************
Example
Objective : Matrice-Vector Multiplication by dividing the Matrix into blocks to send to other processes
Input : User provides the values of matrice and vector with two different files
Output : Process 0 prints the result of Matrice-Vector
Multiplication in a file
Necessary Condition : The executable needs to be copied to each of the Computers where the program runs preferably
in the folder “C://Program Files/MPICH2/bin
********************************************************************
*/
// Header files
#include "mpi.h"
#include "mpe.h"
#include <iostream>
#include <fstream>
#include <stdio.h>
using namespace std;
// Start of the Program
int main(int argc, char *argv[])
{
// MPI Initialisation
MPI::Init(argc,argv);
MPI_Status stat;
// Common Declarations
int NumofRows,NumofCols,x;
int index, irow, VectorSize,root=0,namelen;
int MatrixFileStatus = 1, VectorFileStatus = 1;
float *c;
float *Vector;float *ansbuff;
float *Matrix; float *ans; float t=1.0;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int rank = MPI::COMM_WORLD.Get_rank(); // Returns a particular rank of a processor



int size = MPI::COMM_WORLD.Get_size(); // Returns the Number of processors
MPI_Get_processor_name(processor_name,&namelen);
// Main processor starts the work
if(rank==0)
{
if(size==1) // Number of Processors need to be more than one
{
cout<<"The number of processes should be more than 1"<< endl;
MPI_Finalize();
exit(-1);
}
// Reading data from a file called Matrix.txt
ifstream inmatrixdata;
inmatrixdata.open("C://Program Files/MPICH2/bin/Matrix.txt"); // opens the file, location of the file must be
mentioned
if(!inmatrixdata)
{ // File couldn't be opened
MatrixFileStatus = 0;
cerr << "Error: Matrix file could not be opened" << endl;
exit(1);
}
while ( !inmatrixdata.eof() ) // sets EOF(End of File) flag if no value found
{
inmatrixdata >> NumofRows>> NumofCols; // Read the Number of Rows and Columns
Matrix = new float[NumofRows*NumofCols]; // Creation of matrixarray
/* Allocate memory and read Matrix from file */
for(irow=0 ;irow<NumofRows*NumofCols; irow++)
inmatrixdata>> Matrix[irow];
}
inmatrixdata.close();
x= NumofRows/(size-1); // x will divide the Matrix in blocks horizontally
cout << "End-of-Matrixfile reached.." << endl;
/* Read vector from Vector file */
ifstream invectordata; // invectordata is like cin
invectordata.open("C://Program Files/MPICH2/bin/Vector.txt"); // opens the file, location of the file must be
mentioned
if(!invectordata)
{ // File couldn't be opened
VectorFileStatus = 0;
cerr << "Error: Vector file could not be opened" << endl;
exit(1);
}



while ( !invectordata.eof() ) // Keep reading until end-of-file
{
invectordata >> VectorSize; // sets EOF flag if no value found
/*Allocate memory and read Vector from file*/
Vector = new float[VectorSize];
if(VectorFileStatus != 0)
{
for(index = 0; index<VectorSize; index++)
invectordata>>Vector[index];
}
}
invectordata.close();
cout << "End-of-Vectorfile reached.." << endl;
// Checking whether the dimensions of Matrix and Vector are appropriate
if (VectorSize !=NumofCols)
{
cout<<"The number of Columns in Matrix are not equal to number of Rows in Vector"<<endl;
exit(1);
}
}
// Broadcasting the values of x,VectorSize and columns to other processes
// This is done by all the processors hence we have to come out of Master process
if(size !=0)
{
MPI_Bcast(&x,1,MPI_INT,root,MPI_COMM_WORLD);
MPI_Bcast(&NumofCols,1,MPI_INT,root,MPI_COMM_WORLD);
MPI_Bcast(&VectorSize,1,MPI_INT,root,MPI_COMM_WORLD);
MatrixFileStatus=2;
MPI_Bcast (&MatrixFileStatus, 1, MPI_INT, root, MPI_COMM_WORLD);
}
// We again enter the master process
if(rank ==0)
{
cout << "Hello World! I am process " << rank << " I am the Master " << endl;
cout<< " Number of rows read "<<NumofRows<<" "<< " Number of columns "<< NumofCols<< endl;
c=new float[NumofRows];
// Print out the matrix
for(int i=0;i<NumofRows;i++)
{
for(int j=0;j<NumofCols;j++)
cout << Matrix[i*NumofCols+j] << " ";
cout << "\n";



}
// Forming a buffer to store the various divisions of matrix
ansbuff= new float[x*NumofCols];
ans=new float[x]; // Answer matrix received from the slave processes
int numsent=0;int numrcvd=0;
for (int i=0;i<(size-1);i++)
{
// Formation of ansbuff array to send each divided block of matrix
for (int j=0;j<x*NumofCols;j++)
ansbuff[j] = Matrix[i*x*NumofCols+j];
MPI_Send(ansbuff,x*NumofCols, MPI_FLOAT, i+1, i, MPI_COMM_WORLD);
MPI_Send(Vector,VectorSize,MPI_FLOAT,i+1,VectorSize*x*NumofCols,MPI_COMM_WORLD);
numsent++;
cout<<"The number of block sent is "<< numsent<<endl;
}
}
// Now decide which process does what
// The slave processes
if (rank != 0 && MatrixFileStatus==2)
{
Vector=new float[VectorSize];
ansbuff= new float[x*NumofCols];
MPI_Recv(Vector,VectorSize,MPI_FLOAT,0,VectorSize*x*NumofCols,MPI_COMM_WORLD,&stat);// Recovers the Vector
MPI_Recv(ansbuff,x*NumofCols,MPI_FLOAT,0,MPI_ANY_TAG,MPI_COMM_WORLD,&stat);// Recovers the buffer formed
while (stat.MPI_TAG !=(VectorSize+1))
{
if (stat.MPI_TAG !=(VectorSize+1))
{
cout <<" Tag received is "<<stat.MPI_TAG<<endl;
int row=stat.MPI_TAG;
ans=new float[x];
for(int i=0;i<x;i++)
{
float a=0;
for (int j=0;j<NumofCols;j++)
a=a+ ansbuff[i*NumofCols+j]*Vector[j];
ans[i]=a;
}
MPI_Send(ans,x,MPI_FLOAT,0,row,MPI_COMM_WORLD); // Sending the Answer formed on the process
}
MPI_Recv(ansbuff,x*NumofCols,MPI_FLOAT,0,MPI_ANY_TAG,MPI_COMM_WORLD,&stat); // Recovering the message to
terminate or not



}
}
if (rank==0)
{ // Checking for the answer
for(int i=0;i<(size-1);i++)
{
MPI_Recv(ans,x,MPI_FLOAT,i+1,i,MPI_COMM_WORLD,&stat);
int sender=stat.MPI_SOURCE; // Checking for the process which sent the answer
// Answer matrix
for (int j=0;j<x;j++)
c[i*x+j]=ans[j];
cout <<"The process from which the answer is received is "<< sender << endl;
MPI_Send(ansbuff,x*NumofCols,MPI_FLOAT,sender,VectorSize+1,MPI_COMM_WORLD);
}
int y=NumofRows-x*(size-1); // Finding rows for which the answer has not been calculated
if (y!=0)
{
for (int i=0;i<y;i++)
{
float a=0;
for (int j=0;j<NumofCols;j++)
a=a+ Matrix[NumofCols*((size-1)*x+i)+j]*Vector[j]; // Finding the Answer for the Rows which were
not sent
c[x*(size-1)+i]=a;
}
}
fstream outdata("C://Program Files/MPICH2/bin/Output.txt",ios::out); // Forming the Output file
outdata<<"Test Write to file"<<endl;
outdata<<"The Answer Vector is "<<endl;
for (int i=0;i<NumofRows;i++)
outdata<<c[i]<<endl;
outdata.close();
}
MPI::Finalize(); // Finishing the MPI operations, no MPI routine will work after calling MPI::Finalize
return 0;
}



Appendix B
This program was written in C++ using M P I C H 2  library and follows the algorithm of sending each row to a processor to multiply with the
vector.
/*
********************************************************************
Example
Objective : Parallel Matrice-Vector Multiplication by sending each row to a slave process
Input : User provides the values of matrice and vector with a file
Output : Process 0 prints the result of Matrice-Vector
Multiplication into a file
Necessary Condition : The executable needs to be copied to all the computers used, preferably in the folder
C://Program Files/MPICH2/bin
********************************************************************
*/
// Header Files
#include "mpi.h"
#include "mpe.h"
#include <iostream>
#include <fstream>
#include <stdio.h>
using namespace std;
// Main program starts here
int main(int argc, char *argv[])
{
// Initialisation of MPI(Message Passing Interface)
MPI::Init(argc,argv);
MPI_Status stat;
// Common Declarations
int NumofRows,NumofCols;
int index, irow, VectorSize,root=0,namelen;
int MatrixFileStatus = 1, VectorFileStatus = 1;
float *c;
float *Vector;float *ansbuff;
float *Matrix; float ans; float t=1.0;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int rank = MPI::COMM_WORLD.Get_rank();
int size = MPI::COMM_WORLD.Get_size();
MPI_Get_processor_name(processor_name,&namelen);
// Main processes start the work
if(rank==0)
{



// OK This is the master routine
// Reading data from a file
ifstream inmatrixdata; // indata is like cin
inmatrixdata.open("C://Program Files/MPICH2/bin/Matrix.txt"); // opens the file, location of the file must be
mentioned
if(!inmatrixdata)
{ // File couldn't be opened
MatrixFileStatus = 0;
cerr << "Error: Matrix file could not be opened" << endl;
exit(1);
}
while ( !inmatrixdata.eof() )
{ // Keep reading until end-of-file
inmatrixdata >> NumofRows>> NumofCols; // sets EOF flag if no value found
// Creation of matrixarray
Matrix = new float[NumofRows*NumofCols];
/* ...Allocate memory and read Matrix from file .......*/
for(irow=0 ;irow<NumofRows*NumofCols; irow++)
inmatrixdata>> Matrix[irow];
}
inmatrixdata.close();
cout << "End-of-Matrixfile reached.." << endl;
/* Read vector from Vector file */
ifstream invectordata; // invectordata is like cin
invectordata.open("C://Program Files/MPICH2/bin/Vector.txt"); // opens the file, location of the file must be
mentioned
if(!invectordata)
{ // File couldn't be opened
VectorFileStatus = 0;
cerr << "Error: Vector file could not be opened" << endl;
exit(1);
}
while ( !invectordata.eof() )
{ // Keep reading until end-of-file
invectordata >> VectorSize; // sets EOF flag if no value found
/* ...Allocate memory and read Vector from file .......*/
Vector = new float[VectorSize];
if(VectorFileStatus != 0)
{
for(index = 0; index<VectorSize; index++)
invectordata>>Vector[index];
}



}
invectordata.close();
cout << "End-of-Vectorfile reached.." << endl;
// The number of Processors needs to be more than 1
if(size==1)
{
cout<<"The number of processes should be more than 1"<< endl;
MPI_Finalize();
exit(-1);
}
// Checking the feasibility of Matrix-Vector multiplication
if (VectorSize !=NumofCols)
{
cout<<" The dimensions of Matrix and Vector don't match up for Multiplication"<< endl;
}
}
// Coming out of process 0 to broadcast the values of NumofRows, VectorSize and Columns to other processes
if(size !=0)
{
MPI_Bcast(&NumofRows,1,MPI_INT,root,MPI_COMM_WORLD);
MPI_Bcast(&NumofCols,1,MPI_INT,root,MPI_COMM_WORLD);
MPI_Bcast(&VectorSize,1,MPI_INT,root,MPI_COMM_WORLD);
MatrixFileStatus=2;
MPI_Bcast (&MatrixFileStatus, 1, MPI_INT, root, MPI_COMM_WORLD);
}
// Again entering the Master process 0
if(rank ==0)
{
cout << "Hello World! I am process " << rank << " I am the Master " << endl;
cout<< " Number of rows read "<<NumofRows<<" "<< " Number of columns "<< NumofCols<< endl;
c=new float[NumofRows];
// Print out the matrix
for(int i=0;i<NumofRows;i++)
{
for(int j=0;j<NumofCols;j++)
cout << Matrix[i*NumofCols+j] << " ";
cout << "\n";
}
// Forming a buffer to store the rows
ansbuff= new float[NumofCols];
int numsent=0;int numrcvd=0;
// Find whether number of processors is smaller than no. of NumofRows



int l= ((size-1) <= NumofRows ? (size-1) : NumofRows);
for (int i=0;i<l;i++)
{
// send a row to each slave process; tag with row number
for (int j=0;j<NumofCols;j++)
// Formation of ansbuff array to send each row of matrix
ansbuff[j] = Matrix[i*NumofCols+j];
MPI_Send(ansbuff,NumofCols, MPI_FLOAT, i+1, i, MPI_COMM_WORLD);
MPI_Send(Vector,VectorSize,MPI_FLOAT,i+1,VectorSize*NumofRows*NumofCols,MPI_COMM_WORLD);
numsent++;
}
// Checking for the answer
for(int i=0;i<NumofRows;i++)
{
MPI_Recv(&ans,1,MPI_FLOAT,MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,&stat);
// Checking for the process which sent the answer
int sender=stat.MPI_SOURCE;
// Checking the tag of the answer
int anstype=stat.MPI_TAG;
// Answer matrix
c[anstype]=ans;
cout <<"The process from which the answer is received is "<< sender << endl;
cout <<"The answer from above tag is "<< ans<< endl ;
// Checking whether the whole of Matrice(row wise) is sent or not
if (numsent < NumofRows)
{
for(int j = 0;j<NumofCols;j++)
ansbuff[j] = Matrix[numsent*NumofCols+j];
MPI_Send(ansbuff,NumofCols, MPI_FLOAT,sender, numsent, MPI_COMM_WORLD);
MPI_Send(Vector,VectorSize,MPI_FLOAT,sender,VectorSize*NumofRows*NumofCols,MPI_COMM_WORLD);
numsent++;
}
else // Sending the information to stop the multiplication to other processors
{ MPI_Send(ansbuff,NumofCols,MPI_FLOAT,sender,NumofRows+1,MPI_COMM_WORLD);
MPI_Send(Vector,VectorSize,MPI_FLOAT,sender,NumofRows+1,MPI_COMM_WORLD);
}
}
}
// Now decide which process does what
// The slave processes
if (rank != 0 && MatrixFileStatus==2 && rank <= NumofRows)
{



Vector=new float[NumofRows];
ansbuff= new float[NumofCols];
MPI_Recv(Vector,VectorSize,MPI_FLOAT,0,VectorSize*NumofRows*NumofCols,MPI_COMM_WORLD,&stat);// Recovers
the Vector
MPI_Recv(ansbuff,NumofCols,MPI_FLOAT,0,MPI_ANY_TAG,MPI_COMM_WORLD,&stat);// Recovers the buffer of NumofRows
formed
while (stat.MPI_TAG !=(NumofRows+1))
{
if (stat.MPI_TAG !=(NumofRows*VectorSize*NumofCols))
{
cout <<" Tag received is "<<stat.MPI_TAG<<endl;
int row=stat.MPI_TAG;
ans=0;
for(int i=0;i<NumofCols;i++)
{ float x= Vector[i];
float y= ansbuff[i];
ans=ans + x*y;
}
cout <<" answer is "<<ans <<" on process "<<rank<<endl;
MPI_Send(&ans,1,MPI_FLOAT,0,row,MPI_COMM_WORLD);// Sending the Answer formed to Master process
}
MPI_Recv(ansbuff,NumofCols,MPI_FLOAT,0,MPI_ANY_TAG,MPI_COMM_WORLD,&stat);// Recover the information
whether to stop or not
}
}
// Forming the output file
if (rank==0)
{
fstream outdata("C://Program Files/MPICH2/bin/Output.txt",ios::out);
outdata<<"Test Write to file"<<endl;
outdata<<"The Answer Vector is "<<endl;
for (int i=0;i<NumofRows;i++)
outdata<<c[i]<<endl;
outdata.close();
}
MPI::Finalize(); // MPI finalized, no MPI routine should be called after finalization
return 0;
}



Appendix C 
/*********************************************************************
Example
Objective : Serial Matrice-Vector Multiplication
Input : User provides the values of matrice and vector with a file
Output : Process 0 prints the result of Matrice-Vector
Multiplication into a file
Necessary Condition : No constraints till now
********************************************************************
*/
// Header Files
#include "mpi.h"
#include "mpe.h"
#include <iostream>
#include <fstream>
#include <stdio.h>
using namespace std;
// Main program starts here
int main(int argc, char *argv[])
{
// Initialisation of MPI(Message Passing Interface)
MPI::Init(argc,argv);
// Common Declarations
int NumofRows,NumofCols;
int index, irow, VectorSize,namelen;
int MatrixFileStatus = 1, VectorFileStatus = 1;
double starttime=0,endtime;
float *Vector;float *ansbuff;
float *Matrix;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int rank = MPI::COMM_WORLD.Get_rank();
int size = MPI::COMM_WORLD.Get_size();
MPI_Get_processor_name(processor_name,&namelen);
starttime = MPI::Wtime();
// Start the work by reading data from a file
ifstream inmatrixdata; // indata is like cin
inmatrixdata.open("C://Program Files/MPICH2/bin/Matrix.txt"); // opens the file, location of the file must be
mentioned
if(!inmatrixdata)
{ // File couldn't be opened
MatrixFileStatus = 0;



cerr << "Error: Matrix file could not be opened" << endl;
exit(1);
}
while ( !inmatrixdata.eof() )
{ // Keep reading until end-of-file
inmatrixdata >> NumofRows>> NumofCols; // sets EOF flag if no value found
// Creation of matrixarray
Matrix = new float[NumofRows*NumofCols];
/* ...Allocate memory and read Matrix from file .......*/
for(irow=0 ;irow<NumofRows*NumofCols; irow++)
inmatrixdata>> Matrix[irow];
}
inmatrixdata.close();
cout << "End-of-Matrixfile reached.." << endl;
/* Read vector from Vector file */
ifstream invectordata; // invectordata is like cin
invectordata.open("C://Program Files/MPICH2/bin/Vector.txt"); // opens the file, location of the file must be
mentioned
if(!invectordata)
{ // File couldn't be opened
VectorFileStatus = 0;
cerr << "Error: Vector file could not be opened" << endl;
exit(1);
}
while ( !invectordata.eof() )
{ // Keep reading until end-of-file
invectordata >> VectorSize; // sets EOF flag if no value found
/* ...Allocate memory and read Vector from file .......*/
Vector = new float[VectorSize];
if(VectorFileStatus != 0)
{
for(index = 0; index<VectorSize; index++)
invectordata>>Vector[index];
}
}
invectordata.close();
cout << "End-of-Vectorfile reached.." << endl;
// Checking the feasibility of Matrix-Vector multiplication
if (VectorSize !=NumofCols)
{
cout<<" The dimensions of Matrix and Vector don't match up for Multiplication"<< endl;
}



cout << "Hello World! I am process " << rank <<endl;
cout<< " Number of rows read "<<NumofRows<<" "<< " Number of columns "<< NumofCols<< endl;
// Print out the matrix
for(int i=0;i<NumofRows;i++)
{
for(int j=0;j<NumofCols;j++)
cout << Matrix[i*NumofCols+j] << " ";
cout << "\n";
}
// Forming a buffer to store the answer
ansbuff= new float[NumofRows];
for (int i=0;i<NumofRows;i++)
{
float a=0;
for (int k=0;k<NumofCols;k++)
a=a+ Matrix[i*NumofCols+k]*Vector[k];
ansbuff[i] = a;
}
// Forming the output file
fstream outdata("C://Program Files/MPICH2/bin/Output.txt",ios::out);
outdata<<"Test Write to file"<<endl;
outdata<<"The Answer Vector is "<<endl;
for (int i=0;i<NumofRows;i++)
outdata<<ansbuff[i]<<endl;
endtime=MPI_Wtime();
double wallclocktime=endtime-starttime;
outdata<<"The wall clock time is "<<wallclocktime<<endl;
outdata.close();
MPI::Finalize(); // MPI finalized, no MPI routine should be called after finalization
return 0;
}

   


