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Abstract— This paper presents a robust method to estimate
the unknown standard deviation of a centred normal distribution
from a mixture density. This method is applied to different signal
processing problems. The first one concerns silence segmentation
from audio data. The second application deals with colour
class parameter extraction. In this later case, the mean is also
estimated from the observations.

I, INTRODUCTION

High-level semantic extraction methods are heavily depen-
dent on the reliability of low-level processes that often require
the designer to intituively set tuning parameters [1], [2], [3).
Many of these low-level processes can be re-expressed as a
desire to identify the occurrence of particular events expressed
as features. In that case the task is one of separating and
extracting a desired class of features C (inliers) from the
polluting class C (outliers [4]). It is possible to make some
relatively loose assumptions about the distribution of the class
C of interest, to allow its statistics to be estimated from an
observed mixture distribution and separated from the outliers
{51

The modelling of inliers and outlier dala has already been
studied in robust statistics [6], [5]. For instance, in [6], the
M-estimators are designed to perform robust estimation of
parameters over a mixture of observations where the inlier
class is modelled using a centred normal distribution. The scale
parameter ¢ [6] that controls the rejection of the data in the
M-estimation is then corresponding to the standard deviation
of the inliers [5]. This parameter is usually estimated using
the median or MAD estimators [7]. In {5], distributions for
both inlier and outlier classes are proposed in the context of
an image matching application. The inliers follow a Laplacian
distribution also depending on a unique parameter o (standard
deviation), whereas outlier distribution is modeled by non-
paramelric metheds computed over the observations [5].

Following [6], we consider a class of interest (inlier) with a
centred normal distribution. This paper proposes a new mech-
anism for estimating inlier statistics (the standard deviation
o) that is a generalisation of a method proposed for edge
based segmentation [8], It employs a non-parametric technique
for identifying lobes in measured distributions and so is
more robust that previous approaches. This new mechanism
is applied to multimedia data analysis. Two low level tasks
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illustrate the efficiency of the new method: detection of silence
in audio data and table or court segmentation in sport video
broadcasts [1], [2], [3].

11. PRINCIPLE
A. The class of Inliers

Considering two independent random variables, X; and X,
following the same centred normal law Px (z) ~ N(0, ), the
random variable Y = /X2 + X7 has a Rayleigh distribution
(8], [9):

2

Pyly) = 55 -exp [—23’7] Uy) M

One way to estimaie the standard deviation ¢ is to compute
the distribution Py (y) uvsing observation samples {y.}. by
a histogram for instance, and compute the value Yinaxc that
maximises this distribution. The parameter ¢, or standard
deviation of the variables X, is then easily computed by:

OMS = Ymaxc (2)

The notation MS for the estimate oxg refers to the Mean Shift
procedure that has been used to compute Y. ¢ (cf. section
H-D). For comparison purposes, we also compute the standard
least squares estimate using the observations {x;}:

ors = E[z”) (3)
And the robust Median Absolute Deviation [7]:
omap = 1.4826 - median|z — median(z)| 4)

Figure 1 shows the results of a simulation for those three
estimations of the standard deviation. All three are close to
the true value. |

B. The disturbing oluliers

However in practice, the two observed random variables,
X, and X, follow a mixture of two laws [8]. The first one is
the class of interest, noted C, of normal distribution N0, &).
The second one, noted C, gathers all the outliers of the class
C. As defined in [4], an outlier is a data point that contains
no information about the system - the inlier class C - ro be
estimated. Figure 2' shows the distribution Py (y) simulated
using mixed observations of the random variables X, and X,.
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Fig. 1.
Xa ~ N(0,0 = 2) and Xp ~ N0, 0 = 2): in red sofid line oM =
2.0413, in green dashdot line oy ap = 1.9997 and in black dash line o5 =
1.9996.
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Fig. 2.
been independently generated from N'(0,¢ = 2) and mixed with 500000
samples from A(3,0 = 1) for X, and from N(12,¢ = 3) for X,.
Estimated standard deviation: in red solid line omg = 2.0413, in green
dashdot line oyap = 2.9209 and in black dash line o = 7.3283.

Rayleigh Distribution with outliers: 100000 samples Xy, X, have

The estimaticn of the standard deviation using our methed is
closer to the true value than the other standard methods.

Depending on the proportion and the distribution of the
outliers, the location of the relevant peak in Py (y) gets
trickier. Assuming that the peak of interest for the estimation
of ¢ is the closest to the value y = 0, we propose to use
the mean shift procedure [10] to estimate the local maxima of
interest Yiax e from Py (y).

C. Generalizarion

More generally, for a random variable ¥ computed from
independent random variables ¥i. X; ~ A(0, o) such as:

> ©

i=1,m

V=

Rayleigh Distribution Py (y) simulated with 100000 samples from

has the y function with n degrees of freedom as a probabiljty
density function [9]:

21-% n—1 2
PY(‘!J)=IT(§)"'—CIT'€XP [—Qy—az—]-b’(y) (5)
2

The maximum of Py(y) is then linked to the unknown
parameter o such as:

= argmax, Py (y)

=yn-1lg
Once the maximum Yi,.. ¢ is located, this relation provides
an estimate of the unknown parameter &.

Ymax C

{6)

D. Finding the maximum Yyaxe using Mean Shift

The mean shift is a nonparametric estimator of the density
gradient. By computing its zeros, the maxima of the distribu-
ttont can then be located [10]. We collect a set of independent
observations {g} of the random varjable Y. Considering the
Epanechnikov kernel, the closest mode to the value y = 0 is
computed using the following mean shift procedure:

Init ¥y =0 (or y = ming{¥: })
M (y) = ﬂl_g Lpucly-hyta Yk Y
)]

¥+ y+ Mu(y)
till convergence Ymaxe = ¥

where n, is the number of observation samples y; is the
interval [y—h; y+h)]. The bandwidth parameter h, that controls
the resolution of the mode selection, has been manuatly set in
our appiications in section IIT [10].

1I1. APPLICATIONS

Application of this robust parameter estimation for edge
segmentation in images has already been proposed in [8]. We
consider here two other segmentation tasks. In section HI-
A, a silence detection method in audio streams is proposed.
In section IT-B, an automatic colour region segmentation is
presented for sport video indexing purposes.

A, Silence detection in audio data.

In sport broadcast, the audio stream is composed of different
source of sounds (audience, referees, et¢.). One of particular
importance, is the silence that appears in between those
classes. We propose to use our method to segment the silence
class € in audio data from the non-silence one C. We assume
that the hypotheses regarding the class C are met (cf. section
II-A).

1) From siereo dara: Considering a stereo audio signal
(s-{k}), si(k})) (k, index the audio samples), we assume that
the two data streams, s, and s;, are independent and provide
the observations of our random variables X, and X,. The
samples {y} are computed by yx = /s2(k) + 7 (k). Figure
3 shows the distribution Py (y) drawn from those observations.
As the perception of silence is only possible on longer duration
than only one audio sample (at a frequency fs = 44100H z, a
sample lasts for 0.03ms), we propose another way to use our
method in the next section.
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Fig. 3. Disuibution Py (y) computed using stereo andio samples from a
snooker broadcast. Estimated standard deviation: oymg = 7.7544e ~ 004,

omaD — 0.0022 and o5 = 0.02.

2) From mone stream audio data; When only one audio
stream s(k) is available, the observations g, can be computed
using successive samples as follows:

> 82(0) ®)

EAy

Ye =

The size of the temporal window A, centred on the sample k
defines the number n of data considered to compute samples of
the random variable Y. It is also corresponding to the degree
of freedom in the distribution of the inlier class (cf. equation
5).

3} Thresholding: One application of our method is the
segmentation of the data set in between the two classes C
and C, One simple way is to classify data such as:

T €Cif |ox]| < 3o
{ z; € C otherwise
or
{ weCify<3vn—1g

yx € C otherwise

The value 3o insures that 99.7% of the class C are selected.
Figure 4 shows an example of segmented audio signal of a
tennis video computed using a temporal window A = 40ms

[2].

feature used for indexing sport videos [11], Figure 5 shows
the loudness information of a snooker broadcast computed at
two different temporal resolutions A, The relative error of the
estimation oms at multiresolution (using equation 6) has been
less than 0.01 in those experiments (A changing from 0.001s
to 1s). The accuracy of the estimation is then not sensitive to
the choice of the temporal window A in computing Y.

A= ls

Fig. 5. Loudness information ¥ (in blue) with the comresponding Yimax e
(in green) computed at different temporal resolution.

A =0.001s

B. Colour Region segmentation in inages

The application consideted in this section concerns the court
and snooker table detection in tennis and snooker videos [1],
{2], [3]. The class C of interest is the homogeneus colour
of those objects. Depending of the camera view (for indoor
snooker videos) or varying lighting condition (in outdoor ten-
nis videos), the statistics of this class of interest are temporally
changing. We therefore propose to estimate those parameters
for each image of the sequence instead of manually setting
them [12]. From RG B images, we compute the variables:

— R
"= m¥arB Ty =7~ U
=5 .  and then 2y =g — o
9= R=G¥E b=8 - He
_. R+GLB oyt
=558 ze=1I—yg

Following [1], the means uf., pf and pl are estimated by
considering the maximum peak in the colour distribution
P(r,g,I). This is performed in a coarse to fine way: first the
maximum peak is located in the 3D colour histogram and then
starting from those first estimates of the means, a Meanshift
procedure is performed to refine the values %, pf and pl.
The random variable Y is computed either ¥ =
VXZ+ XZ (Py(y|C) is a Rayleigh distribution) or ¥ =

Fig. 4. Silence Detection in Pierce andio data [2]: in green the class C and
in biue C.

For audio data, the variable ¥, as defined in equation 8,
correspond to the loudness or energy of the signal. It is a basic
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VXZ+ X7+ X2 (Py(yC) is a Maxwell distribution). Fig-
ure 6 shows the distribution Py (y) computed using the visual
data from an image of a snooker table (cf. figure 8 {(d)).

The robustness of .the method is assessed by performing the
estimation of o on each images of a snooker video shot as
illustrated in figure 7. The stability in both the estimations of
the means and the standard deviation insures the success of the
segmentation of the regions of interest in the videos. Figure 8
shows the resulting segmentation of snooker table and a court
in sport video images.
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Fig. 6. Maxwell distribution computed with visbal daa (snooker broadcast

image cf. figure § (d}). Estimated standard deviation opg = 0.0174.
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Fig. 7. Top: Means pg, yg and pé estimated over the shot. Bottom: the

(3]

comresponding estimated standard deviation ops. The varance of the opg

is less than 0.000002 over the sequence.

IV. CONCLUSION

Fig. 8.
(threshold at 3oas).
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Examples of unsupervised segmentation of court and snooker 1able
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We proposed a method to robustly estimate the standard  [g]
deviation of a class of data driven by a centred normal  [7]
distribution from a observed mixture. This method has been
successfully applied over two types of data, audio and visual,  [8)

for segmentation purposes.
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