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Automatic Classification of Heartbeats Using ECG
Morphology and Heartbeat Interval Features
Philip de Chazal*, Member, IEEE, Maria O’Dwyer, and Richard B. Reilly, Senior Member, IEEE

Abstract—A method for the automatic processing of the
electrocardiogram (ECG) for the classification of heartbeats is
presented. The method allocates manually detected heartbeats
to one of the five beat classes recommended by ANSI/AAMI
EC57:1998 standard, i.e., normal beat, ventricular ectopic beat
(VEB), supraventricular ectopic beat (SVEB), fusion of a normal
and a VEB, or unknown beat type. Data was obtained from
the 44 nonpacemaker recordings of the MIT-BIH arrhythmia
database. The data was split into two datasets with each dataset
containing approximately 50 000 beats from 22 recordings. The
first dataset was used to select a classifier configuration from
candidate configurations. Twelve configurations processing fea-
ture sets derived from two ECG leads were compared. Feature
sets were based on ECG morphology, heartbeat intervals, and
RR-intervals. All configurations adopted a statistical classifier
model utilizing supervised learning. The second dataset was used
to provide an independent performance assessment of the selected
configuration. This assessment resulted in a sensitivity of 75.9%,
a positive predictivity of 38.5%, and a false positive rate of 4.7%
for the SVEB class. For the VEB class, the sensitivity was 77.7%,
the positive predictivity was 81.9%, and the false positive rate was
1.2%. These results are an improvement on previously reported
results for automated heartbeat classification systems.

Index Terms—Electrocardiogram (ECG), heartbeat classifier,
linear discriminant analysis, statistical classifier model.

I. INTRODUCTION

HEART arrhythmias result from any disturbance in the rate,
regularity, and site of origin or conduction of the cardiac

electric impulse [1]. Broadly speaking, arrhythmias can be di-
vided into two groups. The first group includes ventricular fib-
rillation and tachycardia which are life-threatening and require
immediate therapy with a defibrillator. Detection of these ar-
rhythmias is well researched and successful detectors have been
designed with high sensitivity and specificity [2]–[5].

This study investigated the second group which includes ar-
rhythmias that are not imminently life-threatening but may re-
quire therapy to prevent further problems. The electrocardio-
gram (ECG) is a low-cost, noninvasive, and effective test for ar-
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rhythmia analysis and has become the standard diagnostic tool.
Some arrhythmias appear infrequently and up to a week of ECG
activity may need to be recorded using a Holter ECG mon-
itor to successfully capture them. Many arrhythmias manifest
as sequences of heartbeats with unusual timing or ECG mor-
phology. An important step toward identifying an arrhythmia is
the classification of heartbeats. The rhythm of the ECG signal
can then be determined by knowing the classification of consec-
utive heartbeats in the signal [6]. Classification of heartbeats can
be very time-consuming and hence any automated processing of
the ECG that assists this process would be of assistance and is
the focus of this study.

Automated classification of heartbeats has been previously
reported by other investigators (e.g., [7]–[12]) using a variety
of features to represent the ECG and a number of classification
methods. Features include ECG morphology [8], [9], heartbeat
interval features [8]–[11], frequency-based features [7], higher
order cumulant features [10], Karhunen–Loeve expansion of
ECG morphology [11], and hermite polynomials [12]. Classi-
fiers methods employed include linear discriminants [7], back
propagation neural networks [8]–[10], self-organizing maps
with learning vector quantization [11], and self-organizing
networks [12].

Despite standards recommended for reporting performance
results of cardiac rhythm algorithms by the Association for the
Advancement of Medical Instrumentation (AAMI) [13], [14],
only the work in [11] and [12] have utilized these standards.
This makes it very difficult to assess the relative merits of the
different algorithms. The AAMI standards are adopted in this
study and our results have been compared to those of [11] and
[12].

In [11], Hu et al. customized a heartbeat classifier to a specific
patient (known as a local classifier) and then combined it with
a global classifier designed from a large database of ECG sig-
nals. The two classifiers were then combined using a mixture of
experts (MOE) approach. The local classifier requires a cardiol-
ogist to annotate a segment of a patient-specific ECG in order to
implement the MOE approach. The global classifier achieved an
accuracy of 62.2% and the MOE classifier achieving 94.0% ac-
curacy for distinguishing ventricular ectopic beats (VEB) from
non-VEBs.

Lagerholm et al. [12] described a method for clustering ECG
heartbeats from a recording into 25 clusters and determined that
on average 98.5% of the heartbeats in any one cluster were from
the same heartbeat class. This translates to a classification per-
formance of 98.5% if an expert can correctly identify the dom-
inant beat of a cluster.
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TABLE I
MAPPING THE MIT-BIH ARRHYTHMIA DATABASE HEARTBEAT TYPES TO THE AAMI HEARTBEAT CLASSES

TABLE II
HEARTBEAT TYPES ASSOCIATED WITH THE EXTRACTED BEATS FOR THE FULL DATABASE, DATASET 1 (DS1) AND DATASET 2 (DS2) FROM THE MIT-BIH

ARRHYTHMIA DATABASE. HEARTBEAT TYPE AND CLASS ABBREVIATIONS ARE DEFINED IN TABLE I

II. AIM

The aims of this study were first to examine the heartbeat clas-
sification problem and, second, to design and test an automatic
classification system using a comprehensive ECG database fol-
lowing AAMI recommended practice [13]. Methodology im-
provements on previous approaches included:

• trialing eight representations of the ECG morphology;
• use of the five heartbeat classes recommended in [13];
• comparison of 12 classifier configurations processing fea-

tures obtained from single and multiple ECG leads;
• weighting the training examples to prevent the large

classes from dominating the training process.

In Section III, the ECG database is discussed. Section IV
presents the methodology adopted for this classification
problem. Tests and experiments that were performed are also
described in detail in this section. The results of the classifi-
cation performance of different classifier configurations are
presented in Section V. Section VI discusses the significant
results and a comparison is made with previously published
work. Some conclusions are drawn in Section VII.

III. ECG DATA

Data from the MIT-BIH arrhythmia database [15] were used
in this study, which includes recordings of many common and
life-threatening arrhythmias along with examples of normal
sinus rhythm. The database contains 48 recordings, each con-
taining two 30-min ECG lead signals (denoted lead A and B). In
45 recordings, lead A is modified-lead II and for the other three
is lead V5. Lead B is lead V1 for 40 recordings and is either lead
II, V2, V4, or V5 for the other recordings. Twenty-three of the
recordings are intended to serve as a representative sample of
routine clinical recordings and 25 recordings contain complex
ventricular, junctional, and supraventricular arrhythmias [15].

The data are bandpass filtered at 0.1–100 Hz and sampled
at 360 Hz. There are over 109 000 labeled ventricular beats
from 15 different heartbeat types (Table I lists the heartbeat
types). There is a large difference in the number of examples
of the heartbeat types as shown in Table II. The largest class
is “Normal beat” (NOR) with over 75 000 examples and the
smallest class is “Supraventricular premature beat” (SP) with
just two examples.

In agreement with the AAMI recommended practice, the
four recordings containing paced beats were removed from
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Fig. 1. Division of the MIT-BIH arrhythmia database into training and
testing sets for classifier evaluation using the cross-validation scheme. Final
performance evaluation is performed on an independent set.

the analysis. The remaining recordings were divided into
two datasets with each dataset containing ECG data from
22 recordings with the same approximate proportion of beat
types. Both datasets contain approximately 50 000 heartbeats
and have a mixture of the routine and complex arrhythmia
recordings. Table II shows the breakdown of each dataset by
heartbeat type. The first dataset (DS1) was used to evaluate
the performance of different candidate classifiers. The second
dataset (DS2) was used for a final performance evaluation of
the heartbeat classification system, as shown in Fig. 1.

The AAMI recommended practice was used to combine
the MIT-BIH heartbeat types into five heartbeat classes which
were used in all subsequent processing. Each class includes
heartbeats of one or more types as shown in Table I. Class N
contains beats originating in the sinus node (normal and bundle
branch block beat types), class S contains supraventricular ec-
topic beats (SVEBs), class V contain ventricular ectopic beats
(VEBs), class F contains beats that result from fusing normal
and VEBs, and class Q contains unknown beats including
paced beats.

IV. METHODS FOR AUTOMATED HEARTBEAT CLASSIFICATION

Fig. 2 depicts the stages of an automated system suitable
for heartbeat classification which is based on the outcomes of
this study. It consists of three stages: a preprocessing stage,
a processing stage, and a classification stage. The digitized
ECG is applied at the input to the preprocessing stage. The
preprocessing stage utilizes a filtering unit to remove artifact
signals from the ECG signal. These signals include baseline
wander, power line interference, and high-frequency noise. The
processing stage consists of heartbeat detection and feature
extraction modules. The heartbeat detection module attempts
to locate all heartbeats. The feature extraction module is
concerned with forming a vector of measurements (feature
vector) from each heartbeat that are processed by the classifier
stage. The feature extraction modules are required because,
although it is possible for the classification stage to process
the ECG samples directly, greater classification performance is
often achieved if a smaller number of discriminating features
(than the number of ECG samples) are first extracted from the

ECG. The classification stage contains one or more classifier
units which select one of the required classes in response to
the input feature vector. The classifier units normally contain
parameters which are set during the system development to
optimize the classification performance. A combiner then
unites the decisions of the classifier units to form the final
decision of the system. The modules forming these stages are
discussed in more detail below.

A. ECG Filtering

All ECG signals were filtered with two median filters to re-
move the baseline wander. Each signal was processed with a
median filter of 200-ms width to remove QRS complexes and
P-waves. The resulting signal was then processed with a me-
dian filter of 600 ms width to remove T-waves. The signal re-
sulting from the second filter operation contained the baseline
of the ECG signal, which was then subtracted from the orig-
inal signal to produce the baseline corrected ECG signal. Un-
wanted power-line and high-frequency noise was removed from
the baseline corrected ECG with a 12-tap low-pass filter. The
filter was a finite impulse response filter with equal ripple in the
pass and stop bands. The 3-dB point of the filter was 35 Hz. The
filtered ECG signals were used in all subsequent processing.

B. Heartbeat Detection

This study did not investigate the problem of heartbeat detec-
tion from the ECG; instead we have utilized the heartbeat fidu-
cial point times provided with the MIT-BIH arrhythmia data-
base. The provided fiducial points occur at the instant of the
major local extremum of a QRS-complex (i.e., either the time
of the R-wave maximum or S-wave minimum). These fiducial
points were first obtained automatically and then manually cor-
rected on a beat-by-beat basis.

C. Heartbeat Segmentation

The ECG heartbeat segmentation program of Laguna et
al.1 was used to provide estimates of heartbeat segmentation
points, i.e., the QRS onset and offset and T-wave offset times,
a Boolean value indicating the presence/absence of a P-wave,
and, if present, the P-wave onset and offset time for each heart-
beat fiducial point. The program was applied separately to both
ECG leads to form two sets of estimates of the segmentation
points for each heartbeat.. The program has been validated
on the Common Standards in Electrocardiography Multilead
database [16] and the MIT-BIH QT database [17] and the
accuracy of the system in determining heartbeat segmentation
points was comparable with the interexpert variation.

D. Feature Extraction

Features relating to fiducial point intervals were calculated
for each heartbeat. Features relating to heartbeat intervals and
ECG morphology were calculated separately for the two ECG
signals for each heartbeat (see the “Processing” stage of Fig. 2).
Table III lists the features used in this study.

1“ecgpuwave”: see http://www.physionet.org/physiotools/software-
index.shtml.
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Fig. 2. Schematic representation of classifier configuration IX for the automated processing of the ECG for classification of heartbeats.

TABLE III
FEATURE GROUPS CONSIDERED IN THIS STUDY. WHERE FEATURES ARE

DERIVED SEPARATELY FROM THE TWO ECG LEADS, THE GROUP LABELS FOR

LEAD B FEATURES ARE SHOWN IN SQUARE BRACKETS

1) RR-Interval Features: Heartbeat fiducial point intervals
(henceforth called RR-intervals) were defined as the interval be-
tween successive heartbeat fiducial points. Four features (see
Table III: RR-intervals) were extracted from the RR sequence.

The pre-RR-interval was the RR-interval between a given heart-
beat and the previous heartbeat. The post-RR-interval was the
RR-interval between a given heartbeat and the following heart-
beat. The average RR-interval was the mean of the RR-inter-
vals for a recording and had the same value for all heartbeats
in a recording. Finally, the local average RR-interval was de-
termined by averaging the RR-intervals of the ten RR-intervals
surrounding a heartbeat.

2) Heartbeat Interval Features: Three features per ECG
lead (see Table III: heartbeat intervals A and B) relating to
heartbeat intervals were calculated after heartbeat segmenta-
tion. The QRS duration was the time interval between the QRS
onset and the QRS offset. The T-wave duration was defined
as the time interval between the QRS offset and the T-wave
offset. The third feature was a Boolean variable indicating the
presence or absence of a P-wave.

3) ECG Morphology Features: Features used in this study
to represent the morphology of the ECG signals were divided
into eight groups. All groups contained amplitude values of the
ECG signal. The major distinction between the groups was the
method used for sampling the signals. Four groups used a sam-
pling rate determined by the heartbeat segmentation information
and four groups used a fixed-interval sampling rate.

a) Segmented ECG morphology features: Four groups
used a sample rate and sampling windows determined by the
QRS onset and offset and the T-wave offset points and con-
tained 19 features each. Fig. 3(a) depicts the sampling process.
Two sampling windows were utilized. The boundaries of the
first window were determined by the QRS onset and offset.
Ten features were derived by uniformly sampling the ECG
amplitude in this window. The second window was bounded
by the QRS offset and the T-wave offset. Nine features of the
ECG amplitude were formed by uniformly sampling in this
window. As the ECG signals were already sampled, linear
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Fig. 3. Two time-sampling methods for extracting ECG morphology features. (a) After determining the fudicial point (FP), the QRS onset and offset and T-wave
offset points are found. Ten evenly spaced samples of the ECG between the QRS onset and offset and nine evenly spaced samples of the ECG between the QRS
offset and T-wave offset are extracted. (b) After determining the FP, nine samples of the ECG between FP-50 ms and FP + 100 ms and nine samples between
FP+150 ms and FP+500 ms are extracted.

interpolation was used to estimate the intermediate values of
the ECG amplitude.

The above sampling method was applied to lead A to form the
Morphology 1A group (see Table III: Morphology 1A) and ap-
plied to lead B to form the Morphology 1B group (see Table III:
Morphology 1B).

The Morphology 2A group (see Table III: Morphology 2A)
and the Morphology 2B group (see Table III: Morphology 2B)
were calculated in an identical way to the Morphology 1A and
1B groups, respectively, except that the entire ECG signal was
scaled so that the standard deviation of all sample values was
unity before the sampling windows were applied. This scaling
operation resulted in a signal that was independent of the orig-
inal ECG signal amplitude.

b) Fixed-interval ECG morphology features: The sample
rate was fixed and the sampling windows were located by the
heartbeat fiducial point (FP) for four groups. Fig. 3(b) depicts
the sampling process. Two sampling windows were formed
based on FP. The first window approximately covered the
QRS-complex and contained the portion of the ECG between
FP-50 ms and 100 ms. A 60-Hz sampling rate was applied
to the ECG amplitude resulting in ten features. The second
window approximately contained the T-wave and started at

150 ms and finished at 500 ms. The ECG signal am-
plitude was sampled at 20 Hz in this window, resulting in eight
features. Lower sampling rates were used for T-wave sampling
windows as the frequency content of this wave is lower than
the frequency content of the QRS-complex. This reduced the
number of feature values to be processed by the classifier.

The above sampling method was applied to lead A to form the
Morphology 3A group (see Table III: Morphology 3A) and ap-
plied to lead B to form the Morphology 3B group (see Table III:
Morphology 3B).

The Morphology 4A group (see Table III: Morphology 4A)
and the Morphology 4B group (see Table III: Morphology 4B)
were calculated in an identical way to the Morphology 3A and
3B groups, respectively, after scaling the ECG signal as de-
scribed previously.

4) Feature Sets: The above features were combined into
eight feature sets which are summarized in Table IV. Feature

TABLE IV
EIGHT FEATURE SETS INVESTIGATED IN THIS STUDY

set 1 (FS1) contained 26 features including the RR features
and the features from lead A requiring the determination of
the heartbeat segmentation points. These features included the
unscaled segmented ECG morphology group (Morphology 1A)
and the heartbeat interval A group. Feature set 2 contained the
same features as FS1 except that the scaled segmented ECG
morphology group (Morphology 2A) replaced the Morphology
1A group. Feature set 3 (FS3) contained 22 features including
the RR features and the unscaled fixed-interval morphology
features from lead A (Morphology 3A). Thus, the determination
of the heartbeat segmentation points was not required for this
feature set. Feature set 4 contained the same features as FS3
except that the scaled fixed-interval ECG morphology group
(Morphology 4A) features replaced the Morphology 3A group.

Feature sets 5–8 (FS5 to FS8) were similar to FS1 to FS4
except that features included were calculated from lead B (see
Table IV).

The eight feature sets were used to examine the effect on clas-
sification performance of lead placement, alternative ECG mor-
phology representations, and inclusion of heartbeat segmenta-
tion information.

E. Classifier Model

Classifier models based on linear discriminants (LDs) were
utilized throughout this study. The model parameters were de-
termined using "plug-in" maximum-likelihood estimates calcu-
lated from the training data.
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For linear discriminants, the unweighted likelihood func-
tion is defined as [18]

(1)

where the number of classes is , the number of training exam-
ples in class is , and is the value of the
Gaussian distribution with mean and common covariance

evaluated at training example . The training process de-
termines the parameter values of and that maximizes the
value of .

The relative proportions of the classes of the available training
examples influences the performance of an LD classifier. If a
few classes dominate the training data examples, then the classi-
fier training process is heavily influenced by these classes [18].
One solution to avoid this problem is to include a subsample
of the training examples of the larger classes in the training
process but this is wasteful of training data. A better solution
implemented in this study is to include all training examples
but reduce the relative contribution of the training examples of
the large classes to the training process. This is achieved by
weighting the contribution of each training example to the like-
lihood function by a class dependent factor .

A weighted likelihood function is

(2)

and the contribution of a training example to is directly related
to .

This is maximized when the mean vectors are defined as

(3)

and the covariance matrix is defined as

(4)

In this study, values for were determined as follows. All
classes were weighted so that, as far as possible, each class con-
tributed the equivalent of 400 examples to the training process.
This threshold was chosen as it was felt that classes with less
examples were not adequately represented and hence their con-
tribution to the likelihood function needed to be reduced. If the
number of examples in a class was greater than 400, then
the was set to . For the classes with less than 400 ex-
amples, no weighting was used (i.e., ). The values of
for the five heartbeat classes were: N: ; S: ;
V: ; F: ; and Q: 1.

F. Classifying and Combining Classifiers

After determining the ’s and from the training data, a
feature vector is classified by assuming values for the prior

probabilities and calculated the estimated posterior proba-
bilities for the th class using

(5)

where .
The prior probability of the N, S, V, and F classes was set to

10/41. As the number of unknown beats was a tiny fraction of all
the heartbeats, the prior probability of the Q class was reduced
relative to the other classes and was set to 1/41.

The final classification of a single feature set system was ob-
tained by choosing the class with the highest posterior proba-
bility estimate from (5).

To obtain a classification based on processing information
from multiple feature sets simultaneously, the posterior prob-
abilities obtained from each feature set were combined across
the separate classifier outputs. Assuming that the outputs from

classifiers are to be combined, the final posterior probability
output was calculated from the individual classifier
outputs using the unweighted Bayesian product in-
tegration scheme [19] as follows:

(6)

As before, the final classification is obtained by choosing the
class with the highest posterior probability estimate. By using
information from all available signals, more efficient use of the
available ECG diagnostic information was made.

G. Candidate Classifier Configurations

Twelve classifiers configurations were evaluated. Config-
urations I-VIII were single-lead configurations processing
FS1-FS8, respectively. These configurations utilized one LD
classifier. Configurations IX-VII were multiple-lead config-
urations that processed FS1 and FS5; FS2 and FS6; FS3 and
FS7; and FS4 and FS8 respectively. These four configuration
implemented two LD classifiers (each processing one feature
set) and were combined using the integration scheme of (6).

H. Classification Performance Measures

The performance of the classifier configurations was calcu-
lated using a number of measures. Table V shows how the full
classification matrix is used to calculate the performance mea-
sures. In accordance with the AAMI recommendations, two sets
of performance measurements were calculated. These perfor-
mance measures focus on the ability of algorithms to distin-
guish VEBs from non-VEBs [Table V(a)] and SVEBs from non-
SVEBS [Table V(b)]. It is worth noting that the AAMI-recom-
mended calculations shown in 4(a) do not reward or penalize a
classifier for the classification of ventricular fusion (F) or un-
known beats (Q) as VEBs. Similarly, in Table V(b), the calcula-
tions do not reward or penalize a classifier for the classification
of unknown beats as SVEBs.

The performance measures listed in Table V(a) and (b) do not
measure the ability of the classifier to separate the heartbeats
into the multiple classes simultaneously, i.e., the multiway clas-
sification performance. While these measures are very useful
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TABLE V
PERFORMANCE MEASURES USED IN THIS STUDY FOR (a) DISTINGUISHING VEBS FROM NON-VEBS, (b) DISTINGUISHING SVEBS FROM NON-SVEBS, AND (c)

DISTINGUISHING THE FIVE AAMI HEARTBEAT CLASSES. THE PERFORMANCE MEASURES ARE ALL DERIVED FROM THE MUTUALLY EXCLUSIVE GROUPS

OF TRUE POSITIVES (TP), TRUE NEGATIVES (TN), FALSE POSITIVES (FP), AND FALSE NEGATIVES (FN). THE CELLS ASSOCIATED

WITH THESE GROUPS IN (a) AND (b) ARE SHADED TO AID IDENTIFICATION

clinically, they were not convenient for comparing the perfor-
mance of different classifier configurations. To rank the perfor-
mance of the different classifier configurations, the multiway
classification accuracy and class sensitivities were calculated
for each classifier [see Table V(c)] and compared.

All aggregate performance measures for a dataset were cal-
culated by giving each heartbeat equal weighting (the so-called
“gross” statistics in [13]).

I. Clustering Performance Measure

The method described in this study was compared to the
heartbeat clustering method of [12]. Heartbeat clustering
systems do not classify heartbeats but attempt to group all
heartbeats from the same heartbeat class into a unique cluster.
For these systems, a heartbeat is defined as misclustered if it
assigned to a cluster where the dominant beat type is a different
class. To determine the clustering performance of our method,
each heartbeat was processed and the five possible outputs of
the classifiers were considered as cluster labels rather than
heartbeat classes. Once the cluster labels were determined for
all heartbeats in a recording, the expert annotations were used
to determine the dominant heartbeat class of each cluster. To
compare our method to [12], a similar error measure to
their measure was defined.

was calculated by first determining the number of
correctly clustered VEBs and correctly clustered
non-VEBs . A VEB was correctly clustered if
a beat belonging to the VEB class was assigned to a cluster

where the dominant beat was the VEB class. A non-VEB was
correctly clustered if a beat belonging to N, S, F, or Q beat
classes was assigned to a cluster where the dominant beat was
either N, S, F or Q beat class. was then determined using

(7)

J. Assessing the Performance of the Classifiers

Classifier performance was estimated using two methods
in this study. In the first method, the cross-validation scheme
[20], [21] was applied to DS1. The available data was divided
into folds in two ways. In the first division (DD1), the data
was assigned to 22 folds with each fold containing data from
one recording. In the second division (DD2), all heartbeats
were considered independent and randomly assigned to the
22 folds. The cross-validation method was used to assess the
performance of different candidate classifiers and identify the
best performing classifier for a second performance estimation.

The second method of performance estimation was to train
the system using DS1 and test the system by processing DS2.
Fig. 1 shows how the data was divided in this study into separate
sets for performance assessment.

V. RESULTS

The multiway classification performance figures are shown in
Table VI for the candidate classifier configurations considered
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TABLE VI
MULTIWAY PERFORMANCE OF THE CANDIDATE CONFIGURATIONS ON DS1. (A) CONFIGURATION I USING THE BEAT-BASED DATA DIVISION SCHEME AND (B)

SINGLE-LEAD AND (C) MULTI-LEAD CONFIGURATIONS USING THE RECORD-BASED DATA DIVISION SCHEME. THE SELECTED CONFIGURATION IS IN BOLD

in this study. All performance figures were determined by aggre-
gating the test-set figures from the 22 test-set folds. Table VI(a)
presents results for configuration I using cross-validation ap-
plied to DD2. Results in Table VI(b) and VI(c) are obtained
using cross validation applied to DD1. Table VI(b) presents
results for the single-lead configurations processing FS1-FS8.
Table VI(c) presents results for the four multilead configura-
tions. The objective of this section of the study was to select a
classifier configuration with the best performance in separating
all classes simultaneously. For this reason Table VI shows the
multiway classification performance measures only.

After consideration of the results in Table VI, configuration
IX was chosen as the best performing classifier. It was retrained
using DS1 and tested on DS2. A schematic diagram of a system
implementing configuration IX is shown in Fig. 2. In accor-
dance with AAMI recommendations, the classification perfor-
mance for each recording and the gross performance figures
were calculated for DS2 (test-set) and are shown in Table VII(a).
For comparison, the classification performance of a published
system [11] is shown in Table VII(b). The clustering perfor-
mance is shown in Tables VII(c) and VIII shows a summary
table of beat-by-beat performance.

VI. DISCUSSION

The classification performance for configuration I was deter-
mined using the two data division schemes, DD1 and DD2. The
results show that the classification performance figures resulting
from DD2 [Table VI(a)] are notably higher than the same fig-
ures resulting from DD1 [Table VI(b)]. The multiway accuracy
estimated using DD2 was 86.1% which was 7.1% higher than
the same result estimated using DD1. The same trends can be
seen for the specificity and sensitivity results in this table.

These results demonstrate that dividing data on a beat basis
results in optimistically biased classifications results. This
scheme is biased as intrasubject beats can be highly dependent
and hence dependent beats may appear in the training and
testing sets. This data division scheme has been previously
favored by other investigators (e.g., [7], [9], [10]) and should
be avoided. The DD1 scheme is a superior scheme to DD2

as the test data do not contain any heartbeats from subjects
represented in the training data. For the rest of this study, the
DD1 scheme was employed.

A. Performance of the Candidate Configurations

In terms of accuracy, the best-performing single-lead classi-
fier was configuration VII with an accuracy figure of 83.0%.
Inspection of the sensitivity and specificity results reveal that,
while it achieved a high specificity (88.1%), the resulting sen-
sitivities were very low (SVEB 30.4%, VEB 39.9%, F 32.1%,
and Q 0.0%), and so this configuration would be of limited
clinical use. Of more benefit is a system with more balanced
specificity and sensitivity performance figures. On this basis,
classifier configuration I achieved the best performance (accu-
racy 79.0%, specificity 80.6%, and sensitivities: SVEB 59.9%,
VEB 65.3%, fusion (F) 74.5%, and unknown (Q) 25.0%) of the
single-lead configurations.

The multilead configurations always resulted in higher accu-
racy performance than the single-lead configurations processing
the same feature sets. For the four multilead configurations as-
sessed, the increase in accuracy occurred because of an increase
in specificity and the VEB sensitivity with no change or a slight
decrease in the other specificities compared to the single-lead
configurations. Thus, combining the information from multiple
ECG leads was a good performance enhancing strategy.

Configuration XI, in terms of accuracy, was the best-per-
forming classifier overall (86.2%). It achieved a high specificity
of 91.2% but modest sensitivity figures for the SVEB (54.7%),
VEB (40.0%), fusion (F-26.0%), and unknown (Q-0.0%)
classes. As a result, this was not judged to be the best-per-
forming configuration classifier. Instead, configuration IX
was chosen as it had more balanced sensitivity and specificity
performance figures (specificity 86.7%; sensitivities: SVEB
53.3%, VEB 67.3%, F 71.6%, and Q 12.5%) while maintaining
a high overall accuracy of 84.5%. This classifier processed fea-
ture sets that utilized unscaled ECG morphology and included
heartbeat segmentation points. Thus, the inclusion of the ab-
solute amplitude of an ECG beat and the addition of heartbeat
segmentation information to the feature-extraction process
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TABLE VII
(A) CLASSIFICATION PERFORMANCE OF CONFIGURATION IX ON EACH RECORDING OF DS2 USING THE AAMI RECOMMENDED PERFORMANCE MEASURES, (B)
AGGREGATE CLASSIFICATION PERFORMANCE FOR THE SYSTEM IN [11], AND (C) THE CLUSTERING PERFORMANCE OF CLASSIFIER IX AND SYSTEM FROM [12]

were worthwhile steps. This latter observation contradicts the
findings of Millet et al. [22].

B. Final Testing

Table VII(a) shows the performance assessment, as recom-
mended by the AAMI standards, of configuration IX on DS2.
This assessment is unbiased as DS2 was not used at any point
in the development of the classifier.

For the SVEB class, the gross sensitivity was 75.9%, the pos-
itive predictivity was 38.5%, and the false positive rate (FPR)
was 4.7%. The gross sensitivity was 77.7%, the positive pre-
dictivity was 81.9%, and the FPR was 1.2% for the VEB class.
Thus, the performance of our system in detecting SVEBs is not
as high as the performance of the system in detecting VEBs. A
likely reason for this is that there were 942 SVEBs in the training
data which was notably less than the 3787 VEBs available.

The summary table of beat-by-beat performance (Table VIII)
provides insight into how groups are being misclassified.
These results show that two main errors are being made by
the system based on configuration IX. First, 1904 normal
(N) beats were misclassified as SVEB (S) beats, and, second,
3509 N beats were misclassified as fusion (F) beats. Future
work needs to look at identifying features that more clearly
distinguish normal beats from these two aberrant beat classes.

TABLE VIII
SUMMARY TABLE OF BEAT-BY-BEAT PERFORMANCE

ON DS2 OF CLASSIFIER IX

Distinguishing normal beats from fusion beats is an inherently
difficult problem as fusion beats are a union of ventricular and
normal beats.

C. Comparison With Other Automated Heartbeat
Processing Systems

The VEB classification results of this study were compared
to the reported results of Hu et al. [11], as this study looked at
the problem of distinguishing VEB from non-VEB heartbeats
on the MIT-BIH arrhythmia database. Hu used a test-set of 20
recordings which excluded all recordings with no premature
ventricular contractions (PVCs). There are 11 test-set record-
ings (see footnote “a” of Table VII) that are common to both
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studies and the aggregate performance results on these record-
ings were compared directly. The gross performance of config-
uration IX on these recordings was: accuracy 96.4%, sensitivity
77.5%, positive predictivity 90.6%, and FPR 1.1%.

Using [11, Table VI], the gross sensitivity, positive predic-
tivity, and FPR rate were recalculated for the 11 recordings in
common and results are shown in Table VII(b). Our system is
notably better than the fully automatic configuration (GE classi-
fier) approach (accuracy 75.3%, sensitivity 69.6%, positive pre-
dictivity 34.6%, and FPR 16.8%) and is comparable to the re-
sults obtained with their semi-automatic MOE approach (accu-
racy 93.6%, sensitivity 78.9%, positive predictivity 76.0%, and
FPR 3.2%). The significant difference is that our system does
not require an expert to annotate part of the recording under test
in order to train the local classifier for the MOE approach.

Lagerholm et al. [12] also used the same 20 recordings as Hu
to determine the performance of clustering VEB and non-VEBs.
Using the 11 recordings in common with our study, a compar-
ison was made of the clustering performance of our system and
Lagerholm’s [see Table VII(c)]. Our system achieved a clus-
tering accuracy of 97.5% which was below the 99.2%

achieved by Lagerholm. It should be noted that our
system used five clusters whereas Lagerholm’s system used 25
clusters, and so our system is attempting a more constrained and
therefore more difficult clustering problem. A significant advan-
tage of our system over Lagerholm’s is that no annotating of the
dominant beat of a cluster by an expert is required before the
classification of a cluster can be made.

D. Automatic Heartbeat Detection

To fully automate the heartbeat classification method
presented here, an automatic heartbeat detection module is
required. Automatic heartbeat detection results in some errors
in heartbeat detection (missed heartbeats, erroneously detected
heartbeats, and errors in heartbeat fiducial point identifica-
tion), and this will cause a reduction in the performance of
the presented heartbeat classifier method for two reasons.
First, a missed heartbeat or an erroneously detected heartbeat
cannot be classified correctly. Second, there will be errors
introduced into the RR-interval features due to heartbeat
detection and fiducial point identification errors. A number of
schemes exist that claim less than 0.5% error rate in detecting
heartbeats e.g., [12], [23], [24]. This error rate is much less
than the error rate of our heartbeat classification method (e.g.,

%), and it is
anticipated that automating the heartbeat detection process with
such a scheme would not degrade the heartbeat classification
performance of our system appreciably.

VII. CONCLUSION

Using the MIT-BIH arrhythmia database, we have discussed
the development of a method for the processing of the ECG for
the classification of heartbeats into five groups: normal beats,
VEBs, SVEBs, fusion of normal and VEBs, and unknown beat
types. In this study, heartbeat fiducial points were determined
manually. The classification performance of 12 classifier con-
figurations were compared and the best configuration chosen for

an independent performance assessment. The chosen configura-
tion processed feature sets derived from two ECG leads each uti-
lizing features derived from RR-intervals, unscaled ECG mor-
phology, and heartbeat segmentation information. The config-
uration implemented two linear discriminant classifiers (each
processing one feature set) which combined the classifier out-
puts to form the final decision. The independent performance as-
sessment of this configuration resulted in a sensitivity of 75.9%,
a positive predictivity of 38.5%, and an FPR of 4.7% for the
SVEB class. The VEB sensitivity was 77.7%, the positive pre-
dictivity was 81.9%, and the FPR was 1.2%. These results are
an improvement on previously reported results for automated
heartbeat classification systems.
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